
Due to differences in (mainly) measuring and accumulating CPU times, the two top programs end up serving different purposes: the NetBSD top is a system administration tool, while the MINIX3 top (now mtop) is a performance debugging tool. Therefore, we keep both. The newly imported BSD top has a few MINIX3-specific changes. CPU statistics separate system time from kernel time, rather than kernel time from time spent on handling interrupts. Memory statistics show numbers that are currently relevant for MINIX3. Swap statistics are disabled entirely. All of these changes effectively bring it closer to how mtop already worked as well. Change-Id: I9611917cb03e164ddf012c5def6da0e7fede826d
702 lines
18 KiB
C
702 lines
18 KiB
C
/*
|
|
* Copyright (c) 1984 through 2008, William LeFebvre
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
*
|
|
* * Redistributions in binary form must reproduce the above
|
|
* copyright notice, this list of conditions and the following disclaimer
|
|
* in the documentation and/or other materials provided with the
|
|
* distribution.
|
|
*
|
|
* * Neither the name of William LeFebvre nor the names of other
|
|
* contributors may be used to endorse or promote products derived from
|
|
* this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* top - a top users display for Unix
|
|
*
|
|
* SYNOPSIS: any hp9000 running hpux version 10.x
|
|
*
|
|
* DESCRIPTION:
|
|
* This is the machine-dependent module for HPUX 10/11 that uses pstat.
|
|
* It has been tested on HP/UX 10.01, 10.20, and 11.00. It is presumed
|
|
* to work also on 10.10.
|
|
* Idle processes are marked by being either runnable or having a %CPU
|
|
* of at least 0.1%. This fraction is defined by CPU_IDLE_THRESH and
|
|
* can be adjusted at compile time.
|
|
*
|
|
* CFLAGS: -DHAVE_GETOPT
|
|
*
|
|
* LIBS:
|
|
*
|
|
* AUTHOR: John Haxby <john_haxby@hp.com>
|
|
* AUTHOR: adapted from Rich Holland <holland@synopsys.com>
|
|
* AUTHOR: adapted from Kevin Schmidt <kevin@mcl.ucsb.edu>
|
|
*/
|
|
|
|
#include "config.h"
|
|
#include <stdio.h>
|
|
#include <errno.h>
|
|
#include <unistd.h>
|
|
#include <ctype.h>
|
|
#include <signal.h>
|
|
#include <nlist.h>
|
|
#include <fcntl.h>
|
|
#include <stdlib.h>
|
|
|
|
#include <sys/types.h>
|
|
#include <sys/param.h>
|
|
#include <sys/pstat.h>
|
|
#include <sys/dk.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/dirent.h>
|
|
|
|
#include "top.h"
|
|
#include "machine.h"
|
|
#include "utils.h"
|
|
|
|
/*
|
|
* The idle threshold (CPU_IDLE_THRESH) is an extension to the normal
|
|
* idle process check. Basically, we regard a process as idle if it is
|
|
* both asleep and using less that CPU_IDLE_THRESH percent cpu time. I
|
|
* believe this makes the "i" option more useful, but if you don't, add
|
|
* "-DCPU_IDLE_THRESH=0.0" to the CFLAGS.
|
|
*/
|
|
#ifndef CPU_IDLE_THRESH
|
|
#define CPU_IDLE_THRESH 0.1
|
|
#endif
|
|
|
|
# define P_RSSIZE(p) (p)->pst_rssize
|
|
# define P_TSIZE(p) (p)->pst_tsize
|
|
# define P_DSIZE(p) (p)->pst_dsize
|
|
# define P_SSIZE(p) (p)->pst_ssize
|
|
|
|
#define VMUNIX "/stand/vmunix"
|
|
#define KMEM "/dev/kmem"
|
|
#define MEM "/dev/mem"
|
|
#ifdef DOSWAP
|
|
#define SWAP "/dev/dmem"
|
|
#endif
|
|
|
|
/* what we consider to be process size: */
|
|
#define PROCSIZE(pp) (P_TSIZE(pp) + P_DSIZE(pp) + P_SSIZE(pp))
|
|
|
|
/* definitions for indices in the nlist array */
|
|
#define X_MPID 0
|
|
|
|
static struct nlist nlst[] = {
|
|
{ "mpid" },
|
|
{ 0 }
|
|
};
|
|
|
|
/*
|
|
* These definitions control the format of the per-process area
|
|
*/
|
|
|
|
static char header[] =
|
|
" TTY PID X PRI NICE SIZE RES STATE TIME CPU COMMAND";
|
|
/* 0123456789.12345 -- field to fill in starts at header+6 */
|
|
#define UNAME_START 15
|
|
|
|
#define Proc_format \
|
|
"%8.8s %5d %-8.8s %4d %4d %5s %5s %-5s %6s %5.2f%% %s"
|
|
|
|
/* process state names for the "STATE" column of the display */
|
|
|
|
char *state_abbrev[] =
|
|
{
|
|
"", "sleep", "run", "stop", "zomb", "trans", "start"
|
|
};
|
|
|
|
|
|
/* values that we stash away in _init and use in later routines */
|
|
static int kmem;
|
|
static struct pst_status *pst;
|
|
|
|
/* these are retrieved from the OS in _init */
|
|
static int nproc;
|
|
static int ncpu = 0;
|
|
|
|
/* these are offsets obtained via nlist and used in the get_ functions */
|
|
static unsigned long mpid_offset;
|
|
|
|
/* these are for calculating cpu state percentages */
|
|
static long cp_time[PST_MAX_CPUSTATES];
|
|
static long cp_old[PST_MAX_CPUSTATES];
|
|
static long cp_diff[PST_MAX_CPUSTATES];
|
|
|
|
/* these are for detailing the process states */
|
|
int process_states[7];
|
|
char *procstatenames[] = {
|
|
"", " sleeping, ", " running, ", " stopped, ", " zombie, ",
|
|
" trans, ", " starting, ",
|
|
NULL
|
|
};
|
|
|
|
/* these are for detailing the cpu states */
|
|
int cpu_states[PST_MAX_CPUSTATES];
|
|
char *cpustatenames[] = {
|
|
/* roll "swait" into "block" and "ssys" into "sys" */
|
|
"usr", "nice", "sys", "idle", "", "block", "\0swait", "intr", "\0ssys",
|
|
NULL
|
|
};
|
|
|
|
/* these are for detailing the memory statistics */
|
|
long memory_stats[8];
|
|
char *memorynames[] = {
|
|
"Real: ", "K act, ", "K tot ", "Virtual: ", "K act, ",
|
|
"K tot, ", "K free", NULL
|
|
};
|
|
|
|
/* these are for getting the memory statistics */
|
|
static int pageshift; /* log base 2 of the pagesize */
|
|
|
|
/* define pagetok in terms of pageshift */
|
|
#define pagetok(size) ((size) << pageshift)
|
|
|
|
/* Mapping TTY major/minor numbers is done through this structure */
|
|
struct ttymap {
|
|
dev_t dev;
|
|
char name [9];
|
|
};
|
|
static struct ttymap *ttynames = NULL;
|
|
static int nttys = 0;
|
|
static get_tty_names ();
|
|
|
|
/* comparison routine for qsort */
|
|
|
|
/*
|
|
* proc_compare - comparison function for "qsort"
|
|
* Compares the resource consumption of two processes using five
|
|
* distinct keys. The keys (in descending order of importance) are:
|
|
* percent cpu, cpu ticks, state, resident set size, total virtual
|
|
* memory usage. The process states are ordered as follows (from least
|
|
* to most important): WAIT, zombie, sleep, stop, start, run. The
|
|
* array declaration below maps a process state index into a number
|
|
* that reflects this ordering.
|
|
*/
|
|
|
|
static unsigned char sorted_state[] =
|
|
{
|
|
0, /* not used */
|
|
3, /* sleep */
|
|
6, /* run */
|
|
4, /* stop */
|
|
2, /* zombie */
|
|
5, /* start */
|
|
1, /* other */
|
|
};
|
|
|
|
proc_compare(p1, p2)
|
|
struct pst_status *p1;
|
|
struct pst_status *p2;
|
|
|
|
{
|
|
int result;
|
|
float lresult;
|
|
|
|
/* compare percent cpu (pctcpu) */
|
|
if ((lresult = p2->pst_pctcpu - p1->pst_pctcpu) == 0)
|
|
{
|
|
/* use cpticks to break the tie */
|
|
if ((result = p2->pst_cpticks - p1->pst_cpticks) == 0)
|
|
{
|
|
/* use process state to break the tie */
|
|
if ((result = sorted_state[p2->pst_stat] -
|
|
sorted_state[p1->pst_stat]) == 0)
|
|
{
|
|
/* use priority to break the tie */
|
|
if ((result = p2->pst_pri - p1->pst_pri) == 0)
|
|
{
|
|
/* use resident set size (rssize) to break the tie */
|
|
if ((result = P_RSSIZE(p2) - P_RSSIZE(p1)) == 0)
|
|
{
|
|
/* use total memory to break the tie */
|
|
result = PROCSIZE(p2) - PROCSIZE(p1);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
result = lresult < 0 ? -1 : 1;
|
|
}
|
|
|
|
return(result);
|
|
}
|
|
|
|
machine_init(statics)
|
|
|
|
struct statics *statics;
|
|
|
|
{
|
|
struct pst_static info;
|
|
int i = 0;
|
|
int pagesize;
|
|
|
|
/* If we can get mpid from the kernel, we'll use it, otherwise */
|
|
/* we'll guess from the most recently started proces */
|
|
if ((kmem = open (KMEM, O_RDONLY)) < 0 ||
|
|
(nlist (VMUNIX, nlst)) < 0 ||
|
|
(nlst[X_MPID].n_type) == 0)
|
|
mpid_offset = 0;
|
|
else
|
|
mpid_offset = nlst[X_MPID].n_value;
|
|
|
|
if (pstat_getstatic (&info, sizeof (info), 1, 0) < 0)
|
|
{
|
|
perror ("pstat_getstatic");
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* Allocate space for the per-process structures (pst_status). To
|
|
* make life easier, simply allocate enough storage to hold all the
|
|
* process information at once. This won't normally be a problem
|
|
* since machines with lots of processes configured will also have
|
|
* lots of memory.
|
|
*/
|
|
nproc = info.max_proc;
|
|
pst = (struct pst_status *) malloc (nproc * sizeof (struct pst_status));
|
|
if (pst == NULL)
|
|
{
|
|
fprintf (stderr, "out of memory\n");
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* Calculate pageshift -- the value needed to convert pages to Kbytes.
|
|
* This will usually be 2.
|
|
*/
|
|
pageshift = 0;
|
|
for (pagesize = info.page_size; pagesize > 1; pagesize >>= 1)
|
|
pageshift += 1;
|
|
pageshift -= LOG1024;
|
|
|
|
/* get tty name information */
|
|
i = 0;
|
|
get_tty_names ("/dev", &i);
|
|
|
|
/* fill in the statics information */
|
|
statics->procstate_names = procstatenames;
|
|
statics->cpustate_names = cpustatenames;
|
|
statics->memory_names = memorynames;
|
|
|
|
/* all done! */
|
|
return(0);
|
|
}
|
|
|
|
char *format_header(uname_field)
|
|
char *uname_field;
|
|
{
|
|
char *ptr = header + UNAME_START;
|
|
while (*uname_field != '\0')
|
|
*ptr++ = *uname_field++;
|
|
|
|
return header;
|
|
}
|
|
|
|
void
|
|
get_system_info(si)
|
|
|
|
struct system_info *si;
|
|
|
|
{
|
|
static struct pst_dynamic dynamic;
|
|
int i, n;
|
|
long total;
|
|
|
|
pstat_getdynamic (&dynamic, sizeof (dynamic), 1, 0);
|
|
ncpu = dynamic.psd_proc_cnt; /* need this later */
|
|
|
|
/* Load average */
|
|
si->load_avg[0] = dynamic.psd_avg_1_min;
|
|
si->load_avg[1] = dynamic.psd_avg_5_min;
|
|
si->load_avg[2] = dynamic.psd_avg_15_min;
|
|
|
|
/*
|
|
* CPU times
|
|
* to avoid space problems, we roll SWAIT (kernel semaphore block)
|
|
* into BLOCK (spin lock block) and SSYS (kernel process) into SYS
|
|
* (system time) Ideally, all screens would be wider :-)
|
|
*/
|
|
dynamic.psd_cpu_time [CP_BLOCK] += dynamic.psd_cpu_time [CP_SWAIT];
|
|
dynamic.psd_cpu_time [CP_SWAIT] = 0;
|
|
dynamic.psd_cpu_time [CP_SYS] += dynamic.psd_cpu_time [CP_SSYS];
|
|
dynamic.psd_cpu_time [CP_SSYS] = 0;
|
|
for (i = 0; i < PST_MAX_CPUSTATES; i++)
|
|
cp_time [i] = dynamic.psd_cpu_time [i];
|
|
percentages(PST_MAX_CPUSTATES, cpu_states, cp_time, cp_old, cp_diff);
|
|
si->cpustates = cpu_states;
|
|
|
|
/*
|
|
* VM statistics
|
|
*/
|
|
memory_stats[0] = -1;
|
|
memory_stats[1] = pagetok (dynamic.psd_arm);
|
|
memory_stats[2] = pagetok (dynamic.psd_rm);
|
|
memory_stats[3] = -1;
|
|
memory_stats[4] = pagetok (dynamic.psd_avm);
|
|
memory_stats[5] = pagetok (dynamic.psd_vm);
|
|
memory_stats[6] = pagetok (dynamic.psd_free);
|
|
si->memory = memory_stats;
|
|
|
|
/*
|
|
* If we can get mpid from the kernel, then we will do so now.
|
|
* Otherwise we'll guess at mpid from the most recently started
|
|
* process time. Note that this requires us to get the pst array
|
|
* now rather than in get_process_info(). We rely on
|
|
* get_system_info() being called before get_system_info() for this
|
|
* to work reliably.
|
|
*/
|
|
for (i = 0; i < nproc; i++)
|
|
pst[i].pst_pid = -1;
|
|
n = pstat_getproc (pst, sizeof (*pst), nproc, 0);
|
|
|
|
if (kmem >= 0 && mpid_offset > 0)
|
|
(void) getkval(mpid_offset, &(si->last_pid), sizeof(si->last_pid), "mpid");
|
|
else
|
|
{
|
|
static int last_start_time = 0;
|
|
int pid = 0;
|
|
|
|
for (i = 0; i < n; i++)
|
|
{
|
|
if (last_start_time <= pst[i].pst_start)
|
|
{
|
|
last_start_time = pst[i].pst_start;
|
|
if (pid <= pst[i].pst_pid)
|
|
pid = pst[i].pst_pid;
|
|
}
|
|
}
|
|
if (pid != 0)
|
|
si->last_pid = pid;
|
|
}
|
|
}
|
|
|
|
caddr_t get_process_info(si, sel, compare_index)
|
|
|
|
struct system_info *si;
|
|
struct process_select *sel;
|
|
int compare_index;
|
|
|
|
{
|
|
static int handle;
|
|
int i, active, total;
|
|
|
|
/*
|
|
* Eliminate unwanted processes
|
|
* and tot up all the wanted processes by state
|
|
*/
|
|
for (i = 0; i < sizeof (process_states)/sizeof (process_states[0]); i++)
|
|
process_states [i] = 0;
|
|
|
|
for (total = 0, active = 0, i = 0; pst[i].pst_pid >= 0; i++)
|
|
{
|
|
int state = pst[i].pst_stat;
|
|
|
|
process_states [state] += 1;
|
|
total += 1;
|
|
|
|
if (!sel->system && (pst[i].pst_flag & PS_SYS))
|
|
{
|
|
pst[i].pst_stat = -1;
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* If we are eliminating idle processes, then a process is regarded
|
|
* as idle if it is in a short term sleep and not using much
|
|
* CPU, or stopped, or simple dead.
|
|
*/
|
|
if (!sel->idle
|
|
&& (state == PS_SLEEP || state == PS_STOP || state == PS_ZOMBIE)
|
|
&& (state != PS_SLEEP && pst[i].pst_pctcpu < CPU_IDLE_THRESH/100.0))
|
|
pst[i].pst_stat = -1;
|
|
|
|
if (sel->uid > 0 && sel->uid != pst[i].pst_uid)
|
|
pst[i].pst_stat = -1;
|
|
|
|
if (sel->command != NULL &&
|
|
strncmp (sel->command, pst[i].pst_ucomm, strlen (pst[i].pst_ucomm)) != 0)
|
|
pst[i].pst_stat = -1;
|
|
|
|
if (pst[i].pst_stat >= 0)
|
|
active += 1;
|
|
}
|
|
si->procstates = process_states;
|
|
si->p_total = total;
|
|
si->p_active = active;
|
|
|
|
qsort ((char *)pst, i, sizeof(*pst), proc_compare);
|
|
|
|
/* handle is simply an index into the process structures */
|
|
handle = 0;
|
|
return (caddr_t) &handle;
|
|
}
|
|
|
|
/*
|
|
* Find the terminal name associated with a particular
|
|
* major/minor number pair
|
|
*/
|
|
static char *term_name (term)
|
|
struct psdev *term;
|
|
{
|
|
dev_t dev;
|
|
int i;
|
|
|
|
if (term->psd_major == -1 && term->psd_minor == -1)
|
|
return "?";
|
|
|
|
dev = makedev (term->psd_major, term->psd_minor);
|
|
for (i = 0; i < nttys && ttynames[i].name[0] != '\0'; i++)
|
|
{
|
|
if (dev == ttynames[i].dev)
|
|
return ttynames[i].name;
|
|
}
|
|
return "<unk>";
|
|
}
|
|
|
|
char *format_next_process(handle, get_userid)
|
|
|
|
caddr_t handle;
|
|
char *(*get_userid)();
|
|
|
|
{
|
|
static char fmt[MAX_COLS]; /* static area where result is built */
|
|
char run [sizeof ("runNN")];
|
|
int idx;
|
|
struct pst_status *proc;
|
|
char *state;
|
|
int size;
|
|
|
|
register long cputime;
|
|
register double pct;
|
|
int where;
|
|
struct handle *hp;
|
|
struct timeval time;
|
|
struct timezone timezone;
|
|
|
|
/* sanity check */
|
|
if (handle == NULL)
|
|
return "";
|
|
|
|
idx = *((int *) handle);
|
|
while (idx < nproc && pst[idx].pst_stat < 0)
|
|
idx += 1;
|
|
if (idx >= nproc || pst[idx].pst_stat < 0)
|
|
return "";
|
|
proc = &pst[idx];
|
|
*((int *) handle) = idx+1;
|
|
|
|
/* set ucomm for system processes, although we shouldn't need to */
|
|
if (proc->pst_ucomm[0] == '\0')
|
|
{
|
|
if (proc->pst_pid == 0)
|
|
strcpy (proc->pst_ucomm, "Swapper");
|
|
else if (proc->pst_pid == 2)
|
|
strcpy (proc->pst_ucomm, "Pager");
|
|
}
|
|
|
|
size = proc->pst_tsize + proc->pst_dsize + proc->pst_ssize;
|
|
|
|
if (ncpu > 1 && proc->pst_stat == PS_RUN)
|
|
{
|
|
sprintf (run, "run%02d", proc->pst_procnum);
|
|
state = run;
|
|
}
|
|
else if (proc->pst_stat == PS_SLEEP)
|
|
{
|
|
switch (proc->pst_pri+PTIMESHARE) {
|
|
case PSWP: state = "SWP"; break; /* also PMEM */
|
|
case PRIRWLOCK: state = "RWLOCK"; break;
|
|
case PRIBETA: state = "BETA"; break;
|
|
case PRIALPHA: state = "ALPHA"; break;
|
|
case PRISYNC: state = "SYNC"; break;
|
|
case PINOD: state = "INOD"; break;
|
|
case PRIBIO: state = "BIO"; break;
|
|
case PLLIO: state = "LLIO"; break; /* also PRIUBA */
|
|
case PZERO: state = "ZERO"; break;
|
|
case PPIPE: state = "pipe"; break;
|
|
case PVFS: state = "vfs"; break;
|
|
case PWAIT: state = "wait"; break;
|
|
case PLOCK: state = "lock"; break;
|
|
case PSLEP: state = "slep"; break;
|
|
case PUSER: state = "user"; break;
|
|
default:
|
|
if (proc->pst_pri < PZERO-PTIMESHARE)
|
|
state = "SLEEP";
|
|
else
|
|
state = "sleep";
|
|
}
|
|
}
|
|
else
|
|
state = state_abbrev [proc->pst_stat];
|
|
|
|
/* format this entry */
|
|
sprintf(fmt,
|
|
Proc_format,
|
|
term_name (&proc->pst_term),
|
|
proc->pst_pid,
|
|
(*get_userid)(proc->pst_uid),
|
|
proc->pst_pri,
|
|
proc->pst_nice - NZERO,
|
|
format_k(size),
|
|
format_k(proc->pst_rssize),
|
|
state,
|
|
format_time(proc->pst_utime + proc->pst_stime),
|
|
100.0 * proc->pst_pctcpu,
|
|
printable(proc->pst_ucomm));
|
|
|
|
/* return the result */
|
|
return(fmt);
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
* getkval(offset, ptr, size, refstr) - get a value out of the kernel.
|
|
* "offset" is the byte offset into the kernel for the desired value,
|
|
* "ptr" points to a buffer into which the value is retrieved,
|
|
* "size" is the size of the buffer (and the object to retrieve),
|
|
* "refstr" is a reference string used when printing error meessages,
|
|
* if "refstr" starts with a '!', then a failure on read will not
|
|
* be fatal (this may seem like a silly way to do things, but I
|
|
* really didn't want the overhead of another argument).
|
|
*
|
|
*/
|
|
|
|
getkval(offset, ptr, size, refstr)
|
|
|
|
unsigned long offset;
|
|
int *ptr;
|
|
int size;
|
|
char *refstr;
|
|
|
|
{
|
|
if (lseek(kmem, (long)offset, SEEK_SET) == -1) {
|
|
if (*refstr == '!')
|
|
refstr++;
|
|
(void) fprintf(stderr, "%s: lseek to %s: %s\n", KMEM,
|
|
refstr, strerror(errno));
|
|
quit(23);
|
|
}
|
|
if (read(kmem, (char *) ptr, size) == -1) {
|
|
if (*refstr == '!')
|
|
return(0);
|
|
else {
|
|
(void) fprintf(stderr, "%s: reading %s: %s\n", KMEM,
|
|
refstr, strerror(errno));
|
|
quit(23);
|
|
}
|
|
}
|
|
return(1);
|
|
}
|
|
|
|
void (*signal(sig, func))()
|
|
int sig;
|
|
void (*func)();
|
|
{
|
|
struct sigaction act;
|
|
struct sigaction oact;
|
|
|
|
memset (&act, 0, sizeof (act));
|
|
act.sa_handler = func;
|
|
|
|
if (sigaction (sig, &act, &oact) < 0)
|
|
return BADSIG;
|
|
return oact.sa_handler;
|
|
}
|
|
|
|
/*
|
|
* proc_owner(pid) - returns the uid that owns process "pid", or -1 if
|
|
* the process does not exist.
|
|
* It is EXTREMLY IMPORTANT that this function work correctly.
|
|
* If top runs setuid root (as in SVR4), then this function
|
|
* is the only thing that stands in the way of a serious
|
|
* security problem. It validates requests for the "kill"
|
|
* and "renice" commands.
|
|
*/
|
|
int proc_owner(pid)
|
|
int pid;
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < nproc; i++)
|
|
{
|
|
if (pst[i].pst_pid == pid)
|
|
return pst[i].pst_uid;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
|
|
static get_tty_names (dir, m)
|
|
char *dir;
|
|
int *m;
|
|
{
|
|
char name [MAXPATHLEN+1];
|
|
struct dirent **namelist;
|
|
int i, n;
|
|
|
|
if ((n = scandir (dir, &namelist, NULL, NULL)) < 0)
|
|
return;
|
|
|
|
if (ttynames == NULL)
|
|
{
|
|
nttys = n;
|
|
ttynames = malloc (n*sizeof (*ttynames));
|
|
}
|
|
else
|
|
{
|
|
nttys += n;
|
|
ttynames = realloc (ttynames, nttys*sizeof (*ttynames));
|
|
}
|
|
|
|
for (i = 0; i < n; i++)
|
|
{
|
|
struct stat statbuf;
|
|
char *str = namelist[i]->d_name;
|
|
if (*str == '.')
|
|
continue;
|
|
sprintf (name, "%s/%s", dir, str);
|
|
if (stat (name, &statbuf) < 0)
|
|
continue;
|
|
|
|
if (!isalpha (*str))
|
|
str = name + sizeof ("/dev");
|
|
if (S_ISCHR (statbuf.st_mode))
|
|
{
|
|
ttynames [*m].dev = statbuf.st_rdev;
|
|
strncpy (ttynames[*m].name, str, 8);
|
|
ttynames[*m].name[9] = '\0';
|
|
*m += 1;
|
|
}
|
|
else if (S_ISDIR (statbuf.st_mode))
|
|
get_tty_names (name, m);
|
|
}
|
|
if (*m < nttys)
|
|
ttynames[*m].name[0] = '\0';
|
|
free (namelist);
|
|
}
|
|
|