David van Moolenbroek b89261ba01 Rename top(1) to mtop(1), import NetBSD top(1)
Due to differences in (mainly) measuring and accumulating CPU times,
the two top programs end up serving different purposes: the NetBSD
top is a system administration tool, while the MINIX3 top (now mtop)
is a performance debugging tool.  Therefore, we keep both.

The newly imported BSD top has a few MINIX3-specific changes.  CPU
statistics separate system time from kernel time, rather than kernel
time from time spent on handling interrupts.  Memory statistics show
numbers that are currently relevant for MINIX3.  Swap statistics are
disabled entirely.  All of these changes effectively bring it closer
to how mtop already worked as well.

Change-Id: I9611917cb03e164ddf012c5def6da0e7fede826d
2016-01-13 20:32:53 +01:00

1110 lines
28 KiB
C

/*
* Copyright (c) 1984 through 2008, William LeFebvre
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following disclaimer
* in the documentation and/or other materials provided with the
* distribution.
*
* * Neither the name of William LeFebvre nor the names of other
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* top - a top users display for Unix
*
* SYNOPSIS: Any SGI machine running IRIX 6.2 and up
*
* DESCRIPTION:
* This is the machine-dependent module for IRIX as supplied by
* engineers at SGI.
*
* CFLAGS: -DHAVE_GETOPT -D_OLD_TERMIOS -DORDER
*
* AUTHOR: Sandeep Cariapa <cariapa@sgi.com>
* AUTHOR: Larry McVoy <lm@sgi.com>
* Sandeep did all the hard work; I ported to 6.2 and fixed up some formats.
* AUTHOR: John Schimmel <jes@sgi.com>
* He did the all irix merge.
* AUTHOR: Ariel Faigon <ariel@sgi.com>
* Ported to Ficus/Kudzu (IRIX 6.4+).
* Got rid of all nlist and different (elf64, elf32, COFF) kernel
* dependencies
* Various small fixes and enhancements: multiple CPUs, nicer formats.
* Added -DORDER process display ordering
* cleaned most -fullwarn'ings.
* Need -D_OLD_TERMIOS when compiling on IRIX 6.4 to work on 6.2 systems
* Support much bigger values in memory sizes (over Peta-byte)
* AUTHOR: William LeFebvre
* Converted to ANSI C and updated to new module interface
*/
#define _KMEMUSER
#include "config.h"
#include <sys/types.h>
#include <sys/time.h>
#include <sys/stat.h>
#include <sys/swap.h>
#include <sys/proc.h>
#include <sys/procfs.h>
#include <sys/sysinfo.h>
#include <sys/sysmp.h>
#include <sys/utsname.h>
#include <sys/schedctl.h> /* for < 6.4 NDPHIMAX et al. */
#include <paths.h>
#include <assert.h>
#include <values.h>
#include <dirent.h>
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <errno.h>
#include <fcntl.h>
#include <dlfcn.h>
#include "top.h"
#include "machine.h"
#include "utils.h"
#define KMEM "/dev/kmem"
typedef double load_avg;
#define loaddouble(la) (la)
#define intload(i) ((double)(i))
/*
* Structure for keeping track of CPU times from last time around
* the program. We keep these things in a hash table, which is
* recreated at every cycle.
*/
struct oldproc {
pid_t oldpid;
double oldtime;
double oldpct;
};
static int oldprocs; /* size of table */
static struct oldproc *oldbase;
#define HASH(x) ((x << 1) % oldprocs)
#define pagetok(pages) ((((uint64_t) pages) * pagesize) >> 10)
/*
* Ugly hack, save space and complexity of allocating and maintaining
* parallel arrays to the prpsinfo array: use spare space (pr_fill area)
* in prpsinfo structures to store %CPU calculated values
*/
#define D_align(addr) (((unsigned long)(addr) & ~0x0fU))
#define percent_cpu(pp) (* (double *) D_align(&((pp)->pr_fill[0])))
#define weighted_cpu(pp) (* (double *) D_align(&((pp)->pr_fill[4])))
/* Username field to fill in starts at: */
#define UNAME_START 16
/*
* These definitions control the format of the per-process area
*/
static char header[] =
" PID PGRP X PRI SIZE RES STATE TIME %WCPU %CPU COMMAND";
/*
012345678901234567890123456789012345678901234567890123456789012345678901234567
10 20 30 40 50 60 70
*/
/* PID PGRP USER PRI SIZE RES STATE TIME %WCPU %CPU CMD */
#define Proc_format \
"%7d %7d %-8.8s %4.4s %6.6s %5.5s %-6.6s %6.6s %5.2f %5.2f %-.10s"
/*
* these are for detailing the cpu states
* Data is taken from the sysinfo structure (see <sys/sysinfo.h>)
* We rely on the following values:
*
* #define CPU_IDLE 0
* #define CPU_USER 1
* #define CPU_KERNEL 2
* #define CPU_WAIT 3
* #define CPU_SXBRK 4
* #define CPU_INTR 5
*/
#ifndef CPU_STATES /* defined only in 6.4 and up */
# define CPU_STATES 6
#endif
int cpu_states[CPU_STATES];
char *cpustatenames[] = {
"idle", "usr", "ker", "wait", "xbrk", "intr",
NULL
};
/* these are for detailing the memory statistics */
#define MEMSTATS 10
int memory_stats[MEMSTATS];
char *memorynames[] = {
"K max, ", "K avail, ", "K free, ", "K swap, ", "K free swap", NULL
};
char uname_str[40];
double load[3];
static char fmt[MAX_COLS + 2];
int numcpus;
/* useful externals */
extern int errno;
extern char *sys_errlist[];
extern char *myname;
extern char *format_k();
extern char *format_time();
extern long percentages();
static int kmem;
static unsigned long avenrun_offset;
static float irix_ver; /* for easy numeric comparison */
static struct prpsinfo *pbase;
static struct prpsinfo **pref;
static struct oldproc *oldbase;
static int oldprocs; /* size of table */
static DIR *procdir;
static int ptable_size; /* allocated process table size */
static int nproc; /* estimated process table size */
static int pagesize;
/* get_process_info passes back a handle. This is what it looks like: */
struct handle {
struct prpsinfo **next_proc; /* points to next valid proc pointer */
int remaining; /* number of pointers remaining */
};
static struct handle handle;
void getptable(struct prpsinfo *baseptr);
void size(int fd, struct prpsinfo *ps);
extern char *ordernames[];
/*
* Process states letters are mapped into numbers
* 6.5 seems to have changed the semantics of prpsinfo.pr_state
* so we rely, (like ps does) on the char value pr_sname.
* The order we use here is what may be most interesting
* to top users: Most interesting state on top, least on bottom.
* 'S' (sleeping) is the most common case so I put it _after_
* zombie, even though it is more "active" than zombie.
*
* State letters and their meanings:
*
* R Process is running (may not have a processor yet)
* I Process is in intermediate state of creation
* X Process is waiting for memory
* T Process is stopped
* Z Process is terminated and parent not waiting (zombie)
* S Process is sleeping, waiting for a resource
*/
/* abbreviated process states */
static char *state_abbrev[] =
{ "", "sleep", "zomb", "stop", "swap", "start", "ready", "run", NULL };
/* Same but a little "wordier", used in CPU activity summary */
int process_states[8]; /* per state counters */
char *procstatenames[] = {
/* ready to run is considered running here */
"", " sleeping, ", " zombie, ", " stopped, ",
" swapped, ", " starting, ", " ready, ", " running, ",
NULL
};
#define S_RUNNING 7
#define S_READY 6
#define S_STARTING 5
#define S_SWAPPED 4
#define S_STOPPED 3
#define S_ZOMBIE 2
#define S_SLEEPING 1
#define IS_ACTIVE(pp) \
(first_screen ? proc_state(pp) >= S_STARTING : percent_cpu(pp) > 0.0)
/*
* proc_state
* map the pr_sname value to an integer.
* used as an index into state_abbrev[]
* as well as an "order" key
*/
static int proc_state(struct prpsinfo *pp)
{
char psname = pp->pr_sname;
switch (psname) {
case 'R': return
(pp->pr_sonproc >= 0 && pp->pr_sonproc < numcpus) ?
S_RUNNING /* on a processor */ : S_READY;
case 'I': return S_STARTING;
case 'X': return S_SWAPPED;
case 'T': return S_STOPPED;
case 'Z': return S_ZOMBIE;
case 'S': return S_SLEEPING;
default : return 0;
}
}
/*
* To avoid nlist'ing the kernel (with all the different kernel type
* complexities), we estimate the size of the needed working process
* table by scanning /proc/pinfo and taking the number of entries
* multiplied by some reasonable factor.
* Assume current dir is _PATH_PROCFSPI
*/
static int active_proc_count()
{
DIR *dirp;
int pcnt;
if ((dirp = opendir(".")) == NULL) {
(void) fprintf(stderr, "%s: Unable to open %s\n",
myname, _PATH_PROCFSPI);
exit(1);
}
for (pcnt = 0; readdir(dirp) != NULL; pcnt++)
;
closedir(dirp);
return pcnt;
}
/*
* allocate space for:
* proc structure array
* array of pointers to the above (used for sorting)
* array for storing per-process old CPU usage
*/
void
allocate_proc_tables()
{
int n_active = active_proc_count();
if (pbase != NULL) /* && n_active < ptable_size */
return;
/* Need to realloc if we exceed, but factor should be enough */
nproc = n_active * 5;
oldprocs = 2 * nproc;
pbase = (struct prpsinfo *)
malloc(nproc * sizeof(struct prpsinfo));
pref = (struct prpsinfo **)
malloc(nproc * sizeof(struct prpsinfo *));
oldbase = (struct oldproc *)
malloc (oldprocs * sizeof(struct oldproc));
ptable_size = nproc;
if (pbase == NULL || pref == NULL || oldbase == NULL) {
(void) fprintf(stderr, "%s: malloc: out of memory\n", myname);
exit (1);
}
}
int
machine_init(struct statics *statics)
{
struct oldproc *op, *endbase;
int pcnt = 0;
struct utsname utsname;
char tmpbuf[20];
uname(&utsname);
irix_ver = (float) atof((const char *)utsname.release);
strncpy(tmpbuf, utsname.release, 9);
tmpbuf[9] = '\0';
sprintf(uname_str, "%s %-.14s %s %s",
utsname.sysname, utsname.nodename,
tmpbuf, utsname.machine);
pagesize = getpagesize();
if ((kmem = open(KMEM, O_RDONLY)) == -1) {
perror(KMEM);
return -1;
}
if (chdir(_PATH_PROCFSPI)) {
/* handy for later on when we're reading it */
(void) fprintf(stderr, "%s: Unable to chdir to %s\n",
myname, _PATH_PROCFSPI);
return -1;
}
if ((procdir = opendir(".")) == NULL) {
(void) fprintf(stderr, "%s: Unable to open %s\n",
myname, _PATH_PROCFSPI);
return -1;
}
if ((avenrun_offset = sysmp(MP_KERNADDR, MPKA_AVENRUN)) == -1) {
perror("sysmp(MP_KERNADDR, MPKA_AVENRUN)");
return -1;
}
allocate_proc_tables();
oldprocs = 2 * nproc;
endbase = oldbase + oldprocs;
for (op = oldbase; op < endbase; op++) {
op->oldpid = -1;
}
statics->cpustate_names = cpustatenames;
statics->memory_names = memorynames;
statics->order_names = ordernames;
statics->procstate_names = procstatenames;
return (0);
}
char *
format_header(register char *uname_field)
{
register char *ptr;
ptr = header + UNAME_START;
while (*uname_field != '\0') {
*ptr++ = *uname_field++;
}
return (header);
}
void
get_system_info(struct system_info *si)
{
int i;
int avenrun[3];
struct rminfo realmem;
struct sysinfo sysinfo;
static time_t cp_old [CPU_STATES];
static time_t cp_diff[CPU_STATES]; /* for cpu state percentages */
off_t fswap; /* current free swap in blocks */
off_t tswap; /* total swap in blocks */
(void) getkval(avenrun_offset, (int *) avenrun, sizeof(avenrun), "avenrun");
for (i = 0; i < 3; i++) {
si->load_avg[i] = loaddouble(avenrun[i]);
si->load_avg[i] /= 1024.0;
}
if ((numcpus = sysmp(MP_NPROCS)) == -1) {
perror("sysmp(MP_NPROCS)");
return;
}
if (sysmp(MP_SAGET, MPSA_RMINFO, &realmem, sizeof(realmem)) == -1) {
perror("sysmp(MP_SAGET,MPSA_RMINFO, ...)");
return;
}
swapctl(SC_GETFREESWAP, &fswap);
swapctl(SC_GETSWAPTOT, &tswap);
memory_stats[0] = pagetok(realmem.physmem);
memory_stats[1] = pagetok(realmem.availrmem);
memory_stats[2] = pagetok(realmem.freemem);
memory_stats[3] = tswap / 2;
memory_stats[4] = fswap / 2;
if (sysmp(MP_SAGET,MPSA_SINFO, &sysinfo,sizeof(struct sysinfo)) == -1) {
perror("sysmp(MP_SAGET,MPSA_SINFO)");
return;
}
(void) percentages(CPU_STATES, cpu_states, sysinfo.cpu, cp_old, cp_diff);
si->cpustates = cpu_states;
si->memory = memory_stats;
si->last_pid = -1;
return;
}
caddr_t
get_process_info(struct system_info *si, struct process_select *sel, int compare_index)
{
int i, total_procs, active_procs;
struct prpsinfo **prefp;
struct prpsinfo *pp;
int show_uid;
static char first_screen = 1;
/* read all the proc structures */
getptable(pbase);
/* get a pointer to the states summary array */
si->procstates = process_states;
/* set up flags which define what we are going to select */
show_uid = sel->uid != -1;
/* count up process states and get pointers to interesting procs */
total_procs = 0;
active_procs = 0;
(void) memset(process_states, 0, sizeof(process_states));
prefp = pref;
for (pp = pbase, i = 0; i < nproc; pp++, i++) {
/*
* Place pointers to each valid proc structure in pref[].
* Process slots that are actually in use have a non-zero
* status field. Processes with SSYS set are system
* processes---these get ignored unless show_system is set.
* Ariel: IRIX 6.4 had to redefine "system processes"
* They do not exist outside the kernel in new kernels.
* Now defining as uid==0 and ppid==1 (init children)
*/
if (pp->pr_state &&
(sel->system || !(pp->pr_uid==0 && pp->pr_ppid==1))) {
total_procs++;
process_states[proc_state(pp)]++;
/*
* zombies are actually interesting (to avoid)
* although they are not active, so I leave them
* displayed.
*/
if (/* (! pp->pr_zomb) && */
(sel->idle || IS_ACTIVE(pp)) &&
(! show_uid || pp->pr_uid == (uid_t) sel->uid)) {
*prefp++ = pp;
active_procs++;
}
}
}
first_screen = 0;
/* if requested, sort the "interesting" processes */
qsort((char *) pref, active_procs, sizeof(struct prpsinfo *),
proc_compares[compare_index]);
/* remember active and total counts */
si->p_total = total_procs;
si->p_active = active_procs;
/* pass back a handle */
handle.next_proc = pref;
handle.remaining = active_procs;
return ((caddr_t) &handle);
}
/*
* Added cpu_id to running processes, add 'ready' (to run) state
*/
static char *
format_state(struct prpsinfo *pp)
{
static char state_str[16];
int state = proc_state(pp);
if (state == S_RUNNING) {
/*
* Alert: 6.2 (MP only?) binary incompatibility
* pp->pr_sonproc apparently (?) has a different
* offset on 6.2 machines... I've seen cases where
* a 6.4 compiled top running on 6.2 printed
* a garbage CPU-id. To be safe, I print the CPU-id
* only if it falls within range [0..numcpus-1]
*/
sprintf(state_str, "run/%d", pp->pr_sonproc);
return state_str;
}
/* default */
return state_abbrev[state];
}
static char *
format_prio(struct prpsinfo *pp)
{
static char prio_str[10];
if (irix_ver < 6.4) {
/*
* Note: this is _compiled_ on 6.x where x >= 4 but I would like
* it to run on 6.2 6.3 as well (backward binary compatibility).
* Scheduling is completely different between these IRIX versions
* and some scheduling classes may even have different names.
*
* The solution: have more than one style of 'priority' depending
* on the OS version.
*
* See npri(1) + nice(2) + realtime(5) for scheduling classes,
* and priority values.
*/
if (pp->pr_pri <= NDPHIMIN) /* real time? */
sprintf(prio_str, "+%d", pp->pr_pri);
else if (pp->pr_pri <= NDPNORMMIN) /* normal interactive */
sprintf(prio_str, "%d", pp->pr_pri);
else /* batch: low prio */
sprintf(prio_str, "b%d", pp->pr_pri);
} else {
/* copied from Kostadis's code */
if (strcmp(pp->pr_clname, "RT") == 0) /* real time */
sprintf(prio_str, "+%d", pp->pr_pri);
else if (strcmp(pp->pr_clname, "DL") == 0) /* unsupported ? */
sprintf(prio_str, "d%d", pp->pr_pri);
else if (strcmp(pp->pr_clname, "GN") == 0)
sprintf(prio_str, "g%d", pp->pr_pri);
else if (strcmp(pp->pr_clname, "GB") == 0)
sprintf(prio_str, "p%d", pp->pr_pri);
else if (strcmp(pp->pr_clname, "WL") == 0) /* weightless */
return "w";
else if (strcmp(pp->pr_clname, "BC") == 0)
return "bc"; /* batch critical */
else if (strcmp(pp->pr_clname, "B") == 0)
return "b"; /* batch */
else
sprintf(prio_str, "%d", pp->pr_pri);
}
return prio_str;
}
static double
clip_percent(double pct)
{
if (pct < 0) {
return 0.0;
} else if (pct >= 100) {
return 99.99;
}
return pct;
}
char *
format_next_process(caddr_t handle, char *(*get_userid)())
{
struct prpsinfo *pp;
struct handle *hp;
long cputime;
/* find and remember the next proc structure */
hp = (struct handle *) handle;
pp = *(hp->next_proc++);
hp->remaining--;
/* get the process cpu usage since startup */
cputime = pp->pr_time.tv_sec;
/* format this entry */
sprintf(fmt,
Proc_format,
pp->pr_pid,
pp->pr_pgrp,
(*get_userid) (pp->pr_uid),
format_prio(pp),
format_k(pagetok(pp->pr_size)),
format_k(pagetok(pp->pr_rssize)),
format_state(pp),
format_time(cputime),
clip_percent(weighted_cpu(pp)),
clip_percent(percent_cpu(pp)),
printable(pp->pr_fname));
/* return the result */
return (fmt);
}
/*
* getkval(offset, ptr, size, refstr) - get a value out of the kernel.
* "offset" is the byte offset into the kernel for the desired value,
* "ptr" points to a buffer into which the value is retrieved,
* "size" is the size of the buffer (and the object to retrieve),
* "refstr" is a reference string used when printing error meessages,
* if "refstr" starts with a '!', then a failure on read will not
* be fatal (this may seem like a silly way to do things, but I
* really didn't want the overhead of another argument).
*
*/
int
getkval(unsigned long offset, int *ptr, int size, char *refstr)
{
if (lseek(kmem, (long) offset, SEEK_SET) == -1) {
if (*refstr == '!')
refstr++;
(void) fprintf(stderr, "%s: %s: lseek to %s: %s\n",
myname, KMEM, refstr, strerror(errno));
exit(0);
}
if (read(kmem, (char *) ptr, size) == -1) {
if (*refstr == '!')
return (0);
else {
(void) fprintf(stderr, "%s: %s: reading %s: %s\n",
myname, KMEM, refstr, strerror(errno));
exit(0);
}
}
return (1);
}
/*
* compare_K - comparison functions for "qsort"
* Compares the resource consumption of two processes using five
* distinct keys. The keys are:
* percent cpu, cpu ticks, state, resident set size, total virtual
* memory usage. The process states are ordered as follows (from least
* to most important): WAIT, zombie, sleep, stop, idle, run.
* Different comparison functions are used for different orderings.
*/
/* these are names given to allowed sorting orders -- first is default */
char *ordernames[] = {
/*
* Aliases for user convenience/friendliness:
* mem == size
* rss == res
*/
"cpu", "size", "mem", "res", "rss",
"time", "state", "command", "prio", NULL
};
/* forward definitions for comparison functions */
int compare_cpu(struct prpsinfo **pp1, struct prpsinfo **pp2);
int compare_size(struct prpsinfo **pp1, struct prpsinfo **pp2);
int compare_res(struct prpsinfo **pp1, struct prpsinfo **pp2);
int compare_time(struct prpsinfo **pp1, struct prpsinfo **pp2);
int compare_state(struct prpsinfo **pp1, struct prpsinfo **pp2);
int compare_cmd(struct prpsinfo **pp1, struct prpsinfo **pp2);
int compare_prio(struct prpsinfo **pp1, struct prpsinfo **pp2);
int (*proc_compares[])() = {
compare_cpu,
compare_size,
compare_size,
compare_res,
compare_res,
compare_time,
compare_state,
compare_cmd,
compare_prio,
NULL
};
/*
* The possible comparison expressions. These are defined in such a way
* that they can be merely listed in the source code to define the actual
* desired ordering.
*/
#define ORDERKEY_PCTCPU \
if (dresult = percent_cpu(p2) - percent_cpu(p1),\
(result = dresult > 0.0 ? 1 : dresult < 0.0 ? -1 : 0) == 0)
#define ORDERKEY_CPTICKS \
if ((result = p2->pr_time.tv_sec - p1->pr_time.tv_sec) == 0)
#define ORDERKEY_STATE if ((result = proc_state(p2) - proc_state(p1)) == 0)
#define ORDERKEY_PRIO if ((result = p2->pr_oldpri - p1->pr_oldpri) == 0)
#define ORDERKEY_RSSIZE if ((result = p2->pr_rssize - p1->pr_rssize) == 0)
#define ORDERKEY_MEM if ((result = (p2->pr_size - p1->pr_size)) == 0)
#define ORDERKEY_CMD if ((result = strcmp(p1->pr_fname,p2->pr_fname)) == 0)
int compare_cpu(struct prpsinfo **pp1, struct prpsinfo **pp2)
{
struct prpsinfo *p1, *p2;
int result;
double dresult;
/* remove one level of indirection */
p1 = *pp1;
p2 = *pp2;
/*
* order by various keys, resorting to the next one
* whenever there's a tie in comparisons
*/
ORDERKEY_PCTCPU
ORDERKEY_CPTICKS
ORDERKEY_STATE
ORDERKEY_PRIO
ORDERKEY_RSSIZE
ORDERKEY_MEM
;
return (result);
}
int compare_size(struct prpsinfo **pp1, struct prpsinfo **pp2)
{
struct prpsinfo *p1, *p2;
int result;
double dresult;
/* remove one level of indirection */
p1 = *pp1;
p2 = *pp2;
/*
* order by various keys, resorting to the next one
* whenever there's a tie in comparisons
*/
ORDERKEY_MEM
ORDERKEY_RSSIZE
ORDERKEY_PCTCPU
ORDERKEY_CPTICKS
ORDERKEY_STATE
ORDERKEY_PRIO
;
return (result);
}
int compare_res(struct prpsinfo **pp1, struct prpsinfo **pp2)
{
struct prpsinfo *p1, *p2;
int result;
double dresult;
/* remove one level of indirection */
p1 = *pp1;
p2 = *pp2;
/*
* order by various keys, resorting to the next one
* whenever there's a tie in comparisons
*/
ORDERKEY_RSSIZE
ORDERKEY_MEM
ORDERKEY_PCTCPU
ORDERKEY_CPTICKS
ORDERKEY_STATE
ORDERKEY_PRIO
;
return (result);
}
int compare_time(struct prpsinfo **pp1, struct prpsinfo **pp2)
{
struct prpsinfo *p1, *p2;
int result;
double dresult;
/* remove one level of indirection */
p1 = *pp1;
p2 = *pp2;
/*
* order by various keys, resorting to the next one
* whenever there's a tie in comparisons
*/
ORDERKEY_CPTICKS
ORDERKEY_RSSIZE
ORDERKEY_MEM
ORDERKEY_PCTCPU
ORDERKEY_STATE
ORDERKEY_PRIO
;
return (result);
}
int compare_cmd(struct prpsinfo **pp1, struct prpsinfo **pp2)
{
struct prpsinfo *p1, *p2;
int result;
double dresult;
/* remove one level of indirection */
p1 = *pp1;
p2 = *pp2;
/*
* order by various keys, resorting to the next one
* whenever there's a tie in comparisons
*/
ORDERKEY_CMD
ORDERKEY_PCTCPU
ORDERKEY_CPTICKS
ORDERKEY_RSSIZE
;
return (result);
}
int compare_state(struct prpsinfo **pp1, struct prpsinfo **pp2)
{
struct prpsinfo *p1, *p2;
int result;
double dresult;
/* remove one level of indirection */
p1 = *pp1;
p2 = *pp2;
/*
* order by various keys, resorting to the next one
* whenever there's a tie in comparisons
*/
ORDERKEY_STATE
ORDERKEY_PCTCPU
ORDERKEY_CPTICKS
ORDERKEY_RSSIZE
;
return (result);
}
int compare_prio(struct prpsinfo **pp1, struct prpsinfo **pp2)
{
struct prpsinfo *p1, *p2;
int result;
double dresult;
/* remove one level of indirection */
p1 = *pp1;
p2 = *pp2;
/*
* order by various keys, resorting to the next one
* whenever there's a tie in comparisons
*/
ORDERKEY_PRIO
ORDERKEY_PCTCPU
;
return (result);
}
/* return the owner of the specified process. */
uid_t
proc_owner(pid_t pid)
{
register struct prpsinfo *p;
int i;
for (i = 0, p = pbase; i < nproc; i++, p++)
if (p->pr_pid == pid)
return (p->pr_uid);
return (-1);
}
#ifdef DO_MAPSIZE
static void
size(int fd, struct prpsinfo *ps)
{
prmap_sgi_arg_t maparg;
struct prmap_sgi maps[256];
int nmaps;
double sz;
int i;
maparg.pr_vaddr = (caddr_t) maps;
maparg.pr_size = sizeof maps;
if ((nmaps = ioctl(fd, PIOCMAP_SGI, &maparg)) == -1) {
/* XXX - this will be confusing */
return;
}
for (i = 0, sz = 0; i < nmaps; ++i) {
sz += (double) maps[i].pr_wsize / MA_WSIZE_FRAC;
}
ps->pr_rssize = (long) sz;
}
#endif
/* get process table */
void
getptable(struct prpsinfo *baseptr)
{
struct prpsinfo *currproc; /* ptr to current proc struct */
int i, numprocs;
struct dirent *direntp;
struct oldproc *op, *endbase;
static struct timeval lasttime, thistime;
static double timediff, alpha, beta;
/* measure time between last call to getptable and current call */
gettimeofday (&thistime, NULL);
/*
* To avoid divides, we keep times in nanoseconds. This is
* scaled by 1e7 rather than 1e9 so that when we divide we
* get percent.
*/
timediff = ((double) thistime.tv_sec * 1.0e7 -
(double) lasttime.tv_sec * 1.0e7)
+
((double) thistime.tv_usec * 10 -
(double) lasttime.tv_usec * 10);
/*
* Under extreme load conditions, sca has experienced
* an assert(timediff > 0) failure here. His guess is that
* sometimes timed resets the time backwards and gettimeofday
* returns a lower number on a later call.
* To be on the safe side I fix it here by setting timediff
* to some arbitrary small value (in nanoseconds).
*/
if (timediff <= 0.0) timediff = 100.0;
lasttime = thistime; /* prepare for next round */
/*
* constants for exponential decaying average.
* avg = alpha * new + beta * avg
* The goal is 50% decay in 30 sec. However if the sample period
* is greater than 30 sec, there's not a lot we can do.
*/
if (timediff < 30.0e7) {
alpha = 0.5 * (timediff / 15.0e7);
beta = 1.0 - alpha;
} else {
alpha = 0.5;
beta = 0.5;
}
assert(alpha >= 0); assert(alpha <= 1);
assert(beta >= 0); assert(beta <= 1);
endbase = oldbase + oldprocs;
currproc = baseptr;
for (numprocs = 0, rewinddir(procdir); direntp = readdir(procdir);) {
int fd;
if ((fd = open(direntp->d_name, O_RDONLY)) < 0)
continue;
currproc = baseptr + numprocs;
if (ioctl(fd, PIOCPSINFO, currproc) < 0) {
(void) close(fd);
continue;
}
/*
* SVR4 doesn't keep track of CPU% in the kernel,
* so we have to do our own.
* See if we've heard of this process before.
* If so, compute % based on CPU since last time.
*/
op = oldbase + HASH (currproc->pr_pid);
for (;;) {
if (op->oldpid == -1) /* not there */
break;
if (op->oldpid == currproc->pr_pid) {
/* found old data */
percent_cpu(currproc) =
((currproc->pr_time.tv_sec * 1.0e9 +
currproc->pr_time.tv_nsec)
- op->oldtime) / timediff;
weighted_cpu(currproc) =
op->oldpct * beta +
percent_cpu(currproc) * alpha;
break;
}
op++; /* try next entry in hash table */
if (op == endbase) /* table wrap around */
op = oldbase;
}
/* Otherwise, it's new, so use all of its CPU time */
if (op->oldpid == -1) {
if (lasttime.tv_sec) {
percent_cpu(currproc) =
(currproc->pr_time.tv_sec * 1.0e9 +
currproc->pr_time.tv_nsec) / timediff;
weighted_cpu(currproc) = percent_cpu(currproc);
} else {
/* first screen -- no difference is possible */
percent_cpu(currproc) = 0.0;
weighted_cpu(currproc) = 0.0;
}
}
#ifdef DO_MAPSIZE
size(fd, currproc);
#endif
numprocs++;
(void) close(fd);
/*
* Bug: in case process count grew so dramatically
* as to exceed to table size. We give up on a full scan.
* the chances of this to happen are extremely slim due to
* the big factor we're using. getting nproc from nlist
* is not worth the headache. realloc wouldn't work either
* because we have pointers to the proc table so we cannot
* move it around.
*/
if (numprocs >= ptable_size) {
fprintf(stderr,
"preallocated proc table size (%d) exceeded, "
"skipping some processes\n", ptable_size);
break;
}
}
nproc = numprocs;
/*
* Save current CPU time for next time around
* For the moment recreate the hash table each time, as the code
* is easier that way.
*/
oldprocs = 2 * nproc;
endbase = oldbase + oldprocs;
for (op = oldbase; op < endbase; op++)
op->oldpid = -1;
for (i = 0, currproc = baseptr; i < nproc; i++, currproc++) {
/* find an empty spot */
op = oldbase + HASH (currproc->pr_pid);
for (;;) {
if (op->oldpid == -1)
break;
op++;
if (op == endbase)
op = oldbase;
}
op->oldpid = currproc->pr_pid;
op->oldtime = (currproc->pr_time.tv_sec * 1.0e9 +
currproc->pr_time.tv_nsec);
op->oldpct = weighted_cpu(currproc);
}
}