David van Moolenbroek 00b67f09dd Import NetBSD named(8)
Also known as ISC bind.  This import adds utilities such as host(1),
dig(1), and nslookup(1), as well as many other tools and libraries.

Change-Id: I035ca46e64f1965d57019e773f4ff0ef035e4aa3
2017-03-21 22:00:06 +00:00

1288 lines
29 KiB
C

/* $NetBSD: entropy.c,v 1.5 2014/12/10 04:37:59 christos Exp $ */
/*
* Copyright (C) 2004-2007, 2009, 2010, 2014 Internet Systems Consortium, Inc. ("ISC")
* Copyright (C) 2000-2003 Internet Software Consortium.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND ISC DISCLAIMS ALL WARRANTIES WITH
* REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
* AND FITNESS. IN NO EVENT SHALL ISC BE LIABLE FOR ANY SPECIAL, DIRECT,
* INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
* LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE
* OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
* PERFORMANCE OF THIS SOFTWARE.
*/
/* Id: entropy.c,v 1.22 2010/08/10 23:48:19 tbox Exp */
/*! \file
* \brief
* This is the system independent part of the entropy module. It is
* compiled via inclusion from the relevant OS source file, ie,
* \link unix/entropy.c unix/entropy.c \endlink or win32/entropy.c.
*
* \author Much of this code is modeled after the NetBSD /dev/random implementation,
* written by Michael Graff <explorer@netbsd.org>.
*/
#include <errno.h>
#include <fcntl.h>
#include <stdio.h>
#include <isc/buffer.h>
#include <isc/entropy.h>
#include <isc/keyboard.h>
#include <isc/list.h>
#include <isc/magic.h>
#include <isc/mem.h>
#include <isc/msgs.h>
#include <isc/mutex.h>
#include <isc/platform.h>
#include <isc/region.h>
#include <isc/sha1.h>
#include <isc/string.h>
#include <isc/time.h>
#include <isc/util.h>
#ifdef PKCS11CRYPTO
#include <pk11/pk11.h>
#endif
#define ENTROPY_MAGIC ISC_MAGIC('E', 'n', 't', 'e')
#define SOURCE_MAGIC ISC_MAGIC('E', 'n', 't', 's')
#define VALID_ENTROPY(e) ISC_MAGIC_VALID(e, ENTROPY_MAGIC)
#define VALID_SOURCE(s) ISC_MAGIC_VALID(s, SOURCE_MAGIC)
/***
*** "constants." Do not change these unless you _really_ know what
*** you are doing.
***/
/*%
* Size of entropy pool in 32-bit words. This _MUST_ be a power of 2.
*/
#define RND_POOLWORDS 128
/*% Pool in bytes. */
#define RND_POOLBYTES (RND_POOLWORDS * 4)
/*% Pool in bits. */
#define RND_POOLBITS (RND_POOLWORDS * 32)
/*%
* Number of bytes returned per hash. This must be true:
* threshold * 2 <= digest_size_in_bytes
*/
#define RND_ENTROPY_THRESHOLD 10
#define THRESHOLD_BITS (RND_ENTROPY_THRESHOLD * 8)
/*%
* Size of the input event queue in samples.
*/
#define RND_EVENTQSIZE 32
/*%
* The number of times we'll "reseed" for pseudorandom seeds. This is an
* extremely weak pseudorandom seed. If the caller is using lots of
* pseudorandom data and they cannot provide a stronger random source,
* there is little we can do other than hope they're smart enough to
* call _adddata() with something better than we can come up with.
*/
#define RND_INITIALIZE 128
/*% Entropy Pool */
typedef struct {
isc_uint32_t cursor; /*%< current add point in the pool */
isc_uint32_t entropy; /*%< current entropy estimate in bits */
isc_uint32_t pseudo; /*%< bits extracted in pseudorandom */
isc_uint32_t rotate; /*%< how many bits to rotate by */
isc_uint32_t pool[RND_POOLWORDS]; /*%< random pool data */
} isc_entropypool_t;
struct isc_entropy {
unsigned int magic;
isc_mem_t *mctx;
isc_mutex_t lock;
unsigned int refcnt;
isc_uint32_t initialized;
isc_uint32_t initcount;
isc_entropypool_t pool;
unsigned int nsources;
isc_entropysource_t *nextsource;
ISC_LIST(isc_entropysource_t) sources;
};
/*% Sample Queue */
typedef struct {
isc_uint32_t last_time; /*%< last time recorded */
isc_uint32_t last_delta; /*%< last delta value */
isc_uint32_t last_delta2; /*%< last delta2 value */
isc_uint32_t nsamples; /*%< number of samples filled in */
isc_uint32_t *samples; /*%< the samples */
isc_uint32_t *extra; /*%< extra samples added in */
} sample_queue_t;
typedef struct {
sample_queue_t samplequeue;
} isc_entropysamplesource_t;
typedef struct {
isc_boolean_t start_called;
isc_entropystart_t startfunc;
isc_entropyget_t getfunc;
isc_entropystop_t stopfunc;
void *arg;
sample_queue_t samplequeue;
} isc_cbsource_t;
typedef struct {
FILESOURCE_HANDLE_TYPE handle;
} isc_entropyfilesource_t;
struct isc_entropysource {
unsigned int magic;
unsigned int type;
isc_entropy_t *ent;
isc_uint32_t total; /*%< entropy from this source */
ISC_LINK(isc_entropysource_t) link;
char name[32];
isc_boolean_t bad;
isc_boolean_t warn_keyboard;
isc_keyboard_t kbd;
union {
isc_entropysamplesource_t sample;
isc_entropyfilesource_t file;
isc_cbsource_t callback;
isc_entropyusocketsource_t usocket;
} sources;
};
#define ENTROPY_SOURCETYPE_SAMPLE 1 /*%< Type is a sample source */
#define ENTROPY_SOURCETYPE_FILE 2 /*%< Type is a file source */
#define ENTROPY_SOURCETYPE_CALLBACK 3 /*%< Type is a callback source */
#define ENTROPY_SOURCETYPE_USOCKET 4 /*%< Type is a Unix socket source */
/*@{*/
/*%
* The random pool "taps"
*/
#define TAP1 99
#define TAP2 59
#define TAP3 31
#define TAP4 9
#define TAP5 7
/*@}*/
/*@{*/
/*%
* Declarations for function provided by the system dependent sources that
* include this file.
*/
static void
fillpool(isc_entropy_t *, unsigned int, isc_boolean_t);
static int
wait_for_sources(isc_entropy_t *);
static void
destroyfilesource(isc_entropyfilesource_t *source);
static void
destroyusocketsource(isc_entropyusocketsource_t *source);
/*@}*/
static void
samplequeue_release(isc_entropy_t *ent, sample_queue_t *sq) {
REQUIRE(sq->samples != NULL);
REQUIRE(sq->extra != NULL);
isc_mem_put(ent->mctx, sq->samples, RND_EVENTQSIZE * 4);
isc_mem_put(ent->mctx, sq->extra, RND_EVENTQSIZE * 4);
sq->samples = NULL;
sq->extra = NULL;
}
static isc_result_t
samplesource_allocate(isc_entropy_t *ent, sample_queue_t *sq) {
sq->samples = isc_mem_get(ent->mctx, RND_EVENTQSIZE * 4);
if (sq->samples == NULL)
return (ISC_R_NOMEMORY);
sq->extra = isc_mem_get(ent->mctx, RND_EVENTQSIZE * 4);
if (sq->extra == NULL) {
isc_mem_put(ent->mctx, sq->samples, RND_EVENTQSIZE * 4);
sq->samples = NULL;
return (ISC_R_NOMEMORY);
}
sq->nsamples = 0;
return (ISC_R_SUCCESS);
}
/*%
* Add in entropy, even when the value we're adding in could be
* very large.
*/
static inline void
add_entropy(isc_entropy_t *ent, isc_uint32_t entropy) {
/* clamp input. Yes, this must be done. */
entropy = ISC_MIN(entropy, RND_POOLBITS);
/* Add in the entropy we already have. */
entropy += ent->pool.entropy;
/* Clamp. */
ent->pool.entropy = ISC_MIN(entropy, RND_POOLBITS);
}
/*%
* Decrement the amount of entropy the pool has.
*/
static inline void
subtract_entropy(isc_entropy_t *ent, isc_uint32_t entropy) {
entropy = ISC_MIN(entropy, ent->pool.entropy);
ent->pool.entropy -= entropy;
}
/*!
* Add in entropy, even when the value we're adding in could be
* very large.
*/
static inline void
add_pseudo(isc_entropy_t *ent, isc_uint32_t pseudo) {
/* clamp input. Yes, this must be done. */
pseudo = ISC_MIN(pseudo, RND_POOLBITS * 8);
/* Add in the pseudo we already have. */
pseudo += ent->pool.pseudo;
/* Clamp. */
ent->pool.pseudo = ISC_MIN(pseudo, RND_POOLBITS * 8);
}
/*!
* Decrement the amount of pseudo the pool has.
*/
static inline void
subtract_pseudo(isc_entropy_t *ent, isc_uint32_t pseudo) {
pseudo = ISC_MIN(pseudo, ent->pool.pseudo);
ent->pool.pseudo -= pseudo;
}
/*!
* Add one word to the pool, rotating the input as needed.
*/
static inline void
entropypool_add_word(isc_entropypool_t *rp, isc_uint32_t val) {
/*
* Steal some values out of the pool, and xor them into the
* word we were given.
*
* Mix the new value into the pool using xor. This will
* prevent the actual values from being known to the caller
* since the previous values are assumed to be unknown as well.
*/
val ^= rp->pool[(rp->cursor + TAP1) & (RND_POOLWORDS - 1)];
val ^= rp->pool[(rp->cursor + TAP2) & (RND_POOLWORDS - 1)];
val ^= rp->pool[(rp->cursor + TAP3) & (RND_POOLWORDS - 1)];
val ^= rp->pool[(rp->cursor + TAP4) & (RND_POOLWORDS - 1)];
val ^= rp->pool[(rp->cursor + TAP5) & (RND_POOLWORDS - 1)];
if (rp->rotate == 0)
rp->pool[rp->cursor++] ^= val;
else
rp->pool[rp->cursor++] ^=
((val << rp->rotate) | (val >> (32 - rp->rotate)));
/*
* If we have looped around the pool, increment the rotate
* variable so the next value will get xored in rotated to
* a different position.
* Increment by a value that is relatively prime to the word size
* to try to spread the bits throughout the pool quickly when the
* pool is empty.
*/
if (rp->cursor == RND_POOLWORDS) {
rp->cursor = 0;
rp->rotate = (rp->rotate + 7) & 31;
}
}
/*!
* Add a buffer's worth of data to the pool.
*
* Requires that the lock is held on the entropy pool.
*/
static void
entropypool_adddata(isc_entropy_t *ent, void *p, unsigned int len,
isc_uint32_t entropy)
{
isc_uint32_t val;
unsigned long addr;
isc_uint8_t *buf;
addr = (unsigned long)p;
buf = p;
if ((addr & 0x03U) != 0U) {
val = 0;
switch (len) {
case 3:
val = *buf++;
len--;
case 2:
val = val << 8 | *buf++;
len--;
case 1:
val = val << 8 | *buf++;
len--;
}
entropypool_add_word(&ent->pool, val);
}
for (; len > 3; len -= 4) {
val = *((isc_uint32_t *)buf);
entropypool_add_word(&ent->pool, val);
buf += 4;
}
if (len != 0) {
val = 0;
switch (len) {
case 3:
val = *buf++;
case 2:
val = val << 8 | *buf++;
case 1:
val = val << 8 | *buf++;
}
entropypool_add_word(&ent->pool, val);
}
add_entropy(ent, entropy);
subtract_pseudo(ent, entropy);
}
static inline void
reseed(isc_entropy_t *ent) {
isc_time_t t;
pid_t pid;
if (ent->initcount == 0) {
pid = getpid();
entropypool_adddata(ent, &pid, sizeof(pid), 0);
pid = getppid();
entropypool_adddata(ent, &pid, sizeof(pid), 0);
}
/*!
* After we've reseeded 100 times, only add new timing info every
* 50 requests. This will keep us from using lots and lots of
* CPU just to return bad pseudorandom data anyway.
*/
if (ent->initcount > 100)
if ((ent->initcount % 50) != 0)
return;
TIME_NOW(&t);
entropypool_adddata(ent, &t, sizeof(t), 0);
ent->initcount++;
}
static inline unsigned int
estimate_entropy(sample_queue_t *sq, isc_uint32_t t) {
isc_int32_t delta;
isc_int32_t delta2;
isc_int32_t delta3;
/*!
* If the time counter has overflowed, calculate the real difference.
* If it has not, it is simpler.
*/
if (t < sq->last_time)
delta = UINT_MAX - sq->last_time + t;
else
delta = sq->last_time - t;
if (delta < 0)
delta = -delta;
/*
* Calculate the second and third order differentials
*/
delta2 = sq->last_delta - delta;
if (delta2 < 0)
delta2 = -delta2;
delta3 = sq->last_delta2 - delta2;
if (delta3 < 0)
delta3 = -delta3;
sq->last_time = t;
sq->last_delta = delta;
sq->last_delta2 = delta2;
/*
* If any delta is 0, we got no entropy. If all are non-zero, we
* might have something.
*/
if (delta == 0 || delta2 == 0 || delta3 == 0)
return 0;
/*
* We could find the smallest delta and claim we got log2(delta)
* bits, but for now return that we found 1 bit.
*/
return 1;
}
static unsigned int
crunchsamples(isc_entropy_t *ent, sample_queue_t *sq) {
unsigned int ns;
unsigned int added;
if (sq->nsamples < 6)
return (0);
added = 0;
sq->last_time = sq->samples[0];
sq->last_delta = 0;
sq->last_delta2 = 0;
/*
* Prime the values by adding in the first 4 samples in. This
* should completely initialize the delta calculations.
*/
for (ns = 0; ns < 4; ns++)
(void)estimate_entropy(sq, sq->samples[ns]);
for (ns = 4; ns < sq->nsamples; ns++)
added += estimate_entropy(sq, sq->samples[ns]);
entropypool_adddata(ent, sq->samples, sq->nsamples * 4, added);
entropypool_adddata(ent, sq->extra, sq->nsamples * 4, 0);
/*
* Move the last 4 samples into the first 4 positions, and start
* adding new samples from that point.
*/
for (ns = 0; ns < 4; ns++) {
sq->samples[ns] = sq->samples[sq->nsamples - 4 + ns];
sq->extra[ns] = sq->extra[sq->nsamples - 4 + ns];
}
sq->nsamples = 4;
return (added);
}
static unsigned int
get_from_callback(isc_entropysource_t *source, unsigned int desired,
isc_boolean_t blocking)
{
isc_entropy_t *ent = source->ent;
isc_cbsource_t *cbs = &source->sources.callback;
unsigned int added;
unsigned int got;
isc_result_t result;
if (desired == 0)
return (0);
if (source->bad)
return (0);
if (!cbs->start_called && cbs->startfunc != NULL) {
result = cbs->startfunc(source, cbs->arg, blocking);
if (result != ISC_R_SUCCESS)
return (0);
cbs->start_called = ISC_TRUE;
}
added = 0;
result = ISC_R_SUCCESS;
while (desired > 0 && result == ISC_R_SUCCESS) {
result = cbs->getfunc(source, cbs->arg, blocking);
if (result == ISC_R_QUEUEFULL) {
got = crunchsamples(ent, &cbs->samplequeue);
added += got;
desired -= ISC_MIN(got, desired);
result = ISC_R_SUCCESS;
} else if (result != ISC_R_SUCCESS &&
result != ISC_R_NOTBLOCKING)
source->bad = ISC_TRUE;
}
return (added);
}
/*
* Extract some number of bytes from the random pool, decreasing the
* estimate of randomness as each byte is extracted.
*
* Do this by stiring the pool and returning a part of hash as randomness.
* Note that no secrets are given away here since parts of the hash are
* xored together before returned.
*
* Honor the request from the caller to only return good data, any data,
* etc.
*/
isc_result_t
isc_entropy_getdata(isc_entropy_t *ent, void *data, unsigned int length,
unsigned int *returned, unsigned int flags)
{
unsigned int i;
isc_sha1_t hash;
unsigned char digest[ISC_SHA1_DIGESTLENGTH];
isc_uint32_t remain, deltae, count, total;
isc_uint8_t *buf;
isc_boolean_t goodonly, partial, blocking;
REQUIRE(VALID_ENTROPY(ent));
REQUIRE(data != NULL);
REQUIRE(length > 0);
goodonly = ISC_TF((flags & ISC_ENTROPY_GOODONLY) != 0);
partial = ISC_TF((flags & ISC_ENTROPY_PARTIAL) != 0);
blocking = ISC_TF((flags & ISC_ENTROPY_BLOCKING) != 0);
REQUIRE(!partial || returned != NULL);
LOCK(&ent->lock);
remain = length;
buf = data;
total = 0;
while (remain != 0) {
count = ISC_MIN(remain, RND_ENTROPY_THRESHOLD);
/*
* If we are extracting good data only, make certain we
* have enough data in our pool for this pass. If we don't,
* get some, and fail if we can't, and partial returns
* are not ok.
*/
if (goodonly) {
unsigned int fillcount;
fillcount = ISC_MAX(remain * 8, count * 8);
/*
* If, however, we have at least THRESHOLD_BITS
* of entropy in the pool, don't block here. It is
* better to drain the pool once in a while and
* then refill it than it is to constantly keep the
* pool full.
*/
if (ent->pool.entropy >= THRESHOLD_BITS)
fillpool(ent, fillcount, ISC_FALSE);
else
fillpool(ent, fillcount, blocking);
/*
* Verify that we got enough entropy to do one
* extraction. If we didn't, bail.
*/
if (ent->pool.entropy < THRESHOLD_BITS) {
if (!partial)
goto zeroize;
else
goto partial_output;
}
} else {
/*
* If we've extracted half our pool size in bits
* since the last refresh, try to refresh here.
*/
if (ent->initialized < THRESHOLD_BITS)
fillpool(ent, THRESHOLD_BITS, blocking);
else
fillpool(ent, 0, ISC_FALSE);
/*
* If we've not initialized with enough good random
* data, seed with our crappy code.
*/
if (ent->initialized < THRESHOLD_BITS)
reseed(ent);
}
isc_sha1_init(&hash);
isc_sha1_update(&hash, (void *)(ent->pool.pool),
RND_POOLBYTES);
isc_sha1_final(&hash, digest);
/*
* Stir the extracted data (all of it) back into the pool.
*/
entropypool_adddata(ent, digest, ISC_SHA1_DIGESTLENGTH, 0);
for (i = 0; i < count; i++)
buf[i] = digest[i] ^ digest[i + RND_ENTROPY_THRESHOLD];
buf += count;
remain -= count;
deltae = count * 8;
deltae = ISC_MIN(deltae, ent->pool.entropy);
total += deltae;
subtract_entropy(ent, deltae);
add_pseudo(ent, count * 8);
}
partial_output:
memset(digest, 0, sizeof(digest));
if (returned != NULL)
*returned = (length - remain);
UNLOCK(&ent->lock);
return (ISC_R_SUCCESS);
zeroize:
/* put the entropy we almost extracted back */
add_entropy(ent, total);
memset(data, 0, length);
memset(digest, 0, sizeof(digest));
if (returned != NULL)
*returned = 0;
UNLOCK(&ent->lock);
return (ISC_R_NOENTROPY);
}
static void
isc_entropypool_init(isc_entropypool_t *pool) {
pool->cursor = RND_POOLWORDS - 1;
pool->entropy = 0;
pool->pseudo = 0;
pool->rotate = 0;
memset(pool->pool, 0, RND_POOLBYTES);
}
static void
isc_entropypool_invalidate(isc_entropypool_t *pool) {
pool->cursor = 0;
pool->entropy = 0;
pool->pseudo = 0;
pool->rotate = 0;
memset(pool->pool, 0, RND_POOLBYTES);
}
isc_result_t
isc_entropy_create(isc_mem_t *mctx, isc_entropy_t **entp) {
isc_result_t result;
isc_entropy_t *ent;
REQUIRE(mctx != NULL);
REQUIRE(entp != NULL && *entp == NULL);
ent = isc_mem_get(mctx, sizeof(isc_entropy_t));
if (ent == NULL)
return (ISC_R_NOMEMORY);
/*
* We need a lock.
*/
result = isc_mutex_init(&ent->lock);
if (result != ISC_R_SUCCESS)
goto errout;
/*
* From here down, no failures will/can occur.
*/
ISC_LIST_INIT(ent->sources);
ent->nextsource = NULL;
ent->nsources = 0;
ent->mctx = NULL;
isc_mem_attach(mctx, &ent->mctx);
ent->refcnt = 1;
ent->initialized = 0;
ent->initcount = 0;
ent->magic = ENTROPY_MAGIC;
isc_entropypool_init(&ent->pool);
*entp = ent;
return (ISC_R_SUCCESS);
errout:
isc_mem_put(mctx, ent, sizeof(isc_entropy_t));
return (result);
}
/*!
* Requires "ent" be locked.
*/
static void
destroysource(isc_entropysource_t **sourcep) {
isc_entropysource_t *source;
isc_entropy_t *ent;
isc_cbsource_t *cbs;
source = *sourcep;
*sourcep = NULL;
ent = source->ent;
ISC_LIST_UNLINK(ent->sources, source, link);
ent->nextsource = NULL;
REQUIRE(ent->nsources > 0);
ent->nsources--;
switch (source->type) {
case ENTROPY_SOURCETYPE_FILE:
if (! source->bad)
destroyfilesource(&source->sources.file);
break;
case ENTROPY_SOURCETYPE_USOCKET:
if (! source->bad)
destroyusocketsource(&source->sources.usocket);
break;
case ENTROPY_SOURCETYPE_SAMPLE:
samplequeue_release(ent, &source->sources.sample.samplequeue);
break;
case ENTROPY_SOURCETYPE_CALLBACK:
cbs = &source->sources.callback;
if (cbs->start_called && cbs->stopfunc != NULL) {
cbs->stopfunc(source, cbs->arg);
cbs->start_called = ISC_FALSE;
}
samplequeue_release(ent, &cbs->samplequeue);
break;
}
memset(source, 0, sizeof(isc_entropysource_t));
isc_mem_put(ent->mctx, source, sizeof(isc_entropysource_t));
}
static inline isc_boolean_t
destroy_check(isc_entropy_t *ent) {
isc_entropysource_t *source;
if (ent->refcnt > 0)
return (ISC_FALSE);
source = ISC_LIST_HEAD(ent->sources);
while (source != NULL) {
switch (source->type) {
case ENTROPY_SOURCETYPE_FILE:
case ENTROPY_SOURCETYPE_USOCKET:
break;
default:
return (ISC_FALSE);
}
source = ISC_LIST_NEXT(source, link);
}
return (ISC_TRUE);
}
static void
destroy(isc_entropy_t **entp) {
isc_entropy_t *ent;
isc_entropysource_t *source;
isc_mem_t *mctx;
REQUIRE(entp != NULL && *entp != NULL);
ent = *entp;
*entp = NULL;
LOCK(&ent->lock);
REQUIRE(ent->refcnt == 0);
/*
* Here, detach non-sample sources.
*/
source = ISC_LIST_HEAD(ent->sources);
while (source != NULL) {
switch(source->type) {
case ENTROPY_SOURCETYPE_FILE:
case ENTROPY_SOURCETYPE_USOCKET:
destroysource(&source);
break;
}
source = ISC_LIST_HEAD(ent->sources);
}
/*
* If there are other types of sources, we've found a bug.
*/
REQUIRE(ISC_LIST_EMPTY(ent->sources));
mctx = ent->mctx;
isc_entropypool_invalidate(&ent->pool);
UNLOCK(&ent->lock);
DESTROYLOCK(&ent->lock);
memset(ent, 0, sizeof(isc_entropy_t));
isc_mem_put(mctx, ent, sizeof(isc_entropy_t));
isc_mem_detach(&mctx);
}
void
isc_entropy_destroysource(isc_entropysource_t **sourcep) {
isc_entropysource_t *source;
isc_entropy_t *ent;
isc_boolean_t killit;
REQUIRE(sourcep != NULL);
REQUIRE(VALID_SOURCE(*sourcep));
source = *sourcep;
*sourcep = NULL;
ent = source->ent;
REQUIRE(VALID_ENTROPY(ent));
LOCK(&ent->lock);
destroysource(&source);
killit = destroy_check(ent);
UNLOCK(&ent->lock);
if (killit)
destroy(&ent);
}
isc_result_t
isc_entropy_createcallbacksource(isc_entropy_t *ent,
isc_entropystart_t start,
isc_entropyget_t get,
isc_entropystop_t stop,
void *arg,
isc_entropysource_t **sourcep)
{
isc_result_t result;
isc_entropysource_t *source;
isc_cbsource_t *cbs;
REQUIRE(VALID_ENTROPY(ent));
REQUIRE(get != NULL);
REQUIRE(sourcep != NULL && *sourcep == NULL);
LOCK(&ent->lock);
source = isc_mem_get(ent->mctx, sizeof(isc_entropysource_t));
if (source == NULL) {
result = ISC_R_NOMEMORY;
goto errout;
}
source->bad = ISC_FALSE;
cbs = &source->sources.callback;
result = samplesource_allocate(ent, &cbs->samplequeue);
if (result != ISC_R_SUCCESS)
goto errout;
cbs->start_called = ISC_FALSE;
cbs->startfunc = start;
cbs->getfunc = get;
cbs->stopfunc = stop;
cbs->arg = arg;
/*
* From here down, no failures can occur.
*/
source->magic = SOURCE_MAGIC;
source->type = ENTROPY_SOURCETYPE_CALLBACK;
source->ent = ent;
source->total = 0;
memset(source->name, 0, sizeof(source->name));
ISC_LINK_INIT(source, link);
/*
* Hook it into the entropy system.
*/
ISC_LIST_APPEND(ent->sources, source, link);
ent->nsources++;
*sourcep = source;
UNLOCK(&ent->lock);
return (ISC_R_SUCCESS);
errout:
if (source != NULL)
isc_mem_put(ent->mctx, source, sizeof(isc_entropysource_t));
UNLOCK(&ent->lock);
return (result);
}
void
isc_entropy_stopcallbacksources(isc_entropy_t *ent) {
isc_entropysource_t *source;
isc_cbsource_t *cbs;
REQUIRE(VALID_ENTROPY(ent));
LOCK(&ent->lock);
source = ISC_LIST_HEAD(ent->sources);
while (source != NULL) {
if (source->type == ENTROPY_SOURCETYPE_CALLBACK) {
cbs = &source->sources.callback;
if (cbs->start_called && cbs->stopfunc != NULL) {
cbs->stopfunc(source, cbs->arg);
cbs->start_called = ISC_FALSE;
}
}
source = ISC_LIST_NEXT(source, link);
}
UNLOCK(&ent->lock);
}
isc_result_t
isc_entropy_createsamplesource(isc_entropy_t *ent,
isc_entropysource_t **sourcep)
{
isc_result_t result;
isc_entropysource_t *source;
sample_queue_t *sq;
REQUIRE(VALID_ENTROPY(ent));
REQUIRE(sourcep != NULL && *sourcep == NULL);
LOCK(&ent->lock);
source = isc_mem_get(ent->mctx, sizeof(isc_entropysource_t));
if (source == NULL) {
result = ISC_R_NOMEMORY;
goto errout;
}
sq = &source->sources.sample.samplequeue;
result = samplesource_allocate(ent, sq);
if (result != ISC_R_SUCCESS)
goto errout;
/*
* From here down, no failures can occur.
*/
source->magic = SOURCE_MAGIC;
source->type = ENTROPY_SOURCETYPE_SAMPLE;
source->ent = ent;
source->total = 0;
memset(source->name, 0, sizeof(source->name));
ISC_LINK_INIT(source, link);
/*
* Hook it into the entropy system.
*/
ISC_LIST_APPEND(ent->sources, source, link);
ent->nsources++;
*sourcep = source;
UNLOCK(&ent->lock);
return (ISC_R_SUCCESS);
errout:
if (source != NULL)
isc_mem_put(ent->mctx, source, sizeof(isc_entropysource_t));
UNLOCK(&ent->lock);
return (result);
}
/*!
* Add a sample, and return ISC_R_SUCCESS if the queue has become full,
* ISC_R_NOENTROPY if it has space remaining, and ISC_R_NOMORE if the
* queue was full when this function was called.
*/
static isc_result_t
addsample(sample_queue_t *sq, isc_uint32_t sample, isc_uint32_t extra) {
if (sq->nsamples >= RND_EVENTQSIZE)
return (ISC_R_NOMORE);
sq->samples[sq->nsamples] = sample;
sq->extra[sq->nsamples] = extra;
sq->nsamples++;
if (sq->nsamples >= RND_EVENTQSIZE)
return (ISC_R_QUEUEFULL);
return (ISC_R_SUCCESS);
}
isc_result_t
isc_entropy_addsample(isc_entropysource_t *source, isc_uint32_t sample,
isc_uint32_t extra)
{
isc_entropy_t *ent;
sample_queue_t *sq;
unsigned int entropy;
isc_result_t result;
REQUIRE(VALID_SOURCE(source));
ent = source->ent;
LOCK(&ent->lock);
sq = &source->sources.sample.samplequeue;
result = addsample(sq, sample, extra);
if (result == ISC_R_QUEUEFULL) {
entropy = crunchsamples(ent, sq);
add_entropy(ent, entropy);
}
UNLOCK(&ent->lock);
return (result);
}
isc_result_t
isc_entropy_addcallbacksample(isc_entropysource_t *source, isc_uint32_t sample,
isc_uint32_t extra)
{
sample_queue_t *sq;
isc_result_t result;
REQUIRE(VALID_SOURCE(source));
REQUIRE(source->type == ENTROPY_SOURCETYPE_CALLBACK);
sq = &source->sources.callback.samplequeue;
result = addsample(sq, sample, extra);
return (result);
}
void
isc_entropy_putdata(isc_entropy_t *ent, void *data, unsigned int length,
isc_uint32_t entropy)
{
REQUIRE(VALID_ENTROPY(ent));
LOCK(&ent->lock);
entropypool_adddata(ent, data, length, entropy);
if (ent->initialized < THRESHOLD_BITS)
ent->initialized = THRESHOLD_BITS;
UNLOCK(&ent->lock);
}
static void
dumpstats(isc_entropy_t *ent, FILE *out) {
fprintf(out,
isc_msgcat_get(isc_msgcat, ISC_MSGSET_ENTROPY,
ISC_MSG_ENTROPYSTATS,
"Entropy pool %p: refcnt %u cursor %u,"
" rotate %u entropy %u pseudo %u nsources %u"
" nextsource %p initialized %u initcount %u\n"),
ent, ent->refcnt,
ent->pool.cursor, ent->pool.rotate,
ent->pool.entropy, ent->pool.pseudo,
ent->nsources, ent->nextsource, ent->initialized,
ent->initcount);
}
/*
* This function ignores locking. Use at your own risk.
*/
void
isc_entropy_stats(isc_entropy_t *ent, FILE *out) {
REQUIRE(VALID_ENTROPY(ent));
LOCK(&ent->lock);
dumpstats(ent, out);
UNLOCK(&ent->lock);
}
unsigned int
isc_entropy_status(isc_entropy_t *ent) {
unsigned int estimate;
LOCK(&ent->lock);
estimate = ent->pool.entropy;
UNLOCK(&ent->lock);
return estimate;
}
void
isc_entropy_attach(isc_entropy_t *ent, isc_entropy_t **entp) {
REQUIRE(VALID_ENTROPY(ent));
REQUIRE(entp != NULL && *entp == NULL);
LOCK(&ent->lock);
ent->refcnt++;
*entp = ent;
UNLOCK(&ent->lock);
}
void
isc_entropy_detach(isc_entropy_t **entp) {
isc_entropy_t *ent;
isc_boolean_t killit;
REQUIRE(entp != NULL && VALID_ENTROPY(*entp));
ent = *entp;
*entp = NULL;
LOCK(&ent->lock);
REQUIRE(ent->refcnt > 0);
ent->refcnt--;
killit = destroy_check(ent);
UNLOCK(&ent->lock);
if (killit)
destroy(&ent);
}
static isc_result_t
kbdstart(isc_entropysource_t *source, void *arg, isc_boolean_t blocking) {
/*
* The intent of "first" is to provide a warning message only once
* during the run of a program that might try to gather keyboard
* entropy multiple times.
*/
static isc_boolean_t first = ISC_TRUE;
UNUSED(arg);
if (! blocking)
return (ISC_R_NOENTROPY);
if (first) {
if (source->warn_keyboard)
fprintf(stderr, "You must use the keyboard to create "
"entropy, since your system is lacking\n"
"/dev/random (or equivalent)\n\n");
first = ISC_FALSE;
}
fprintf(stderr, "start typing:\n");
return (isc_keyboard_open(&source->kbd));
}
static void
kbdstop(isc_entropysource_t *source, void *arg) {
UNUSED(arg);
if (! isc_keyboard_canceled(&source->kbd))
fprintf(stderr, "stop typing.\r\n");
(void)isc_keyboard_close(&source->kbd, 3);
}
static isc_result_t
kbdget(isc_entropysource_t *source, void *arg, isc_boolean_t blocking) {
isc_result_t result;
isc_time_t t;
isc_uint32_t sample;
isc_uint32_t extra;
unsigned char c;
UNUSED(arg);
if (!blocking)
return (ISC_R_NOTBLOCKING);
result = isc_keyboard_getchar(&source->kbd, &c);
if (result != ISC_R_SUCCESS)
return (result);
TIME_NOW(&t);
sample = isc_time_nanoseconds(&t);
extra = c;
result = isc_entropy_addcallbacksample(source, sample, extra);
if (result != ISC_R_SUCCESS) {
fprintf(stderr, "\r\n");
return (result);
}
fprintf(stderr, ".");
fflush(stderr);
return (result);
}
isc_result_t
isc_entropy_usebestsource(isc_entropy_t *ectx, isc_entropysource_t **source,
const char *randomfile, int use_keyboard)
{
isc_result_t result;
isc_result_t final_result = ISC_R_NOENTROPY;
isc_boolean_t userfile = ISC_TRUE;
REQUIRE(VALID_ENTROPY(ectx));
REQUIRE(source != NULL && *source == NULL);
REQUIRE(use_keyboard == ISC_ENTROPY_KEYBOARDYES ||
use_keyboard == ISC_ENTROPY_KEYBOARDNO ||
use_keyboard == ISC_ENTROPY_KEYBOARDMAYBE);
#ifdef PKCS11CRYPTO
if (randomfile != NULL)
pk11_rand_seed_fromfile(randomfile);
#endif
#ifdef PATH_RANDOMDEV
if (randomfile == NULL) {
randomfile = PATH_RANDOMDEV;
userfile = ISC_FALSE;
}
#endif
if (randomfile != NULL && use_keyboard != ISC_ENTROPY_KEYBOARDYES) {
result = isc_entropy_createfilesource(ectx, randomfile);
if (result == ISC_R_SUCCESS &&
use_keyboard == ISC_ENTROPY_KEYBOARDMAYBE)
use_keyboard = ISC_ENTROPY_KEYBOARDNO;
if (result != ISC_R_SUCCESS && userfile)
return (result);
final_result = result;
}
if (use_keyboard != ISC_ENTROPY_KEYBOARDNO) {
result = isc_entropy_createcallbacksource(ectx, kbdstart,
kbdget, kbdstop,
NULL, source);
if (result == ISC_R_SUCCESS)
(*source)->warn_keyboard =
ISC_TF(use_keyboard ==
ISC_ENTROPY_KEYBOARDMAYBE);
if (final_result != ISC_R_SUCCESS)
final_result = result;
}
/*
* final_result is ISC_R_SUCCESS if at least one source of entropy
* could be started, otherwise it is the error from the most recently
* failed operation (or ISC_R_NOENTROPY if PATH_RANDOMDEV is not
* defined and use_keyboard is ISC_ENTROPY_KEYBOARDNO).
*/
return (final_result);
}