David van Moolenbroek b89261ba01 Rename top(1) to mtop(1), import NetBSD top(1)
Due to differences in (mainly) measuring and accumulating CPU times,
the two top programs end up serving different purposes: the NetBSD
top is a system administration tool, while the MINIX3 top (now mtop)
is a performance debugging tool.  Therefore, we keep both.

The newly imported BSD top has a few MINIX3-specific changes.  CPU
statistics separate system time from kernel time, rather than kernel
time from time spent on handling interrupts.  Memory statistics show
numbers that are currently relevant for MINIX3.  Swap statistics are
disabled entirely.  All of these changes effectively bring it closer
to how mtop already worked as well.

Change-Id: I9611917cb03e164ddf012c5def6da0e7fede826d
2016-01-13 20:32:53 +01:00

989 lines
27 KiB
C

/*
* Copyright (c) 1984 through 2008, William LeFebvre
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following disclaimer
* in the documentation and/or other materials provided with the
* distribution.
*
* * Neither the name of William LeFebvre nor the names of other
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* top - a top users display for Unix
*
* SYNOPSIS: OSF/1, Digital Unix 4.0, Compaq Tru64 5.0
*
* DESCRIPTION:
* This is the machine-dependent module for DEC OSF/1 and its descendents
* It is known to work on OSF/1 1.2, 1.3, 2.0-T3, 3.0, Digital Unix V4.0,
* Digital Unix 5.0, and Tru64 5.0.
* WARNING: if you use optimization with the standard "cc" compiler that
* . comes with V3.0 the resulting executable may core dump. If
* . this happens, recompile without optimization.
*
* LIBS: -lmld -lmach
*
* CFLAGS: -DHAVE_GETOPT -DORDER
*
* AUTHOR: Anthony Baxter, <anthony@aaii.oz.au>
* Derived originally from m_ultrix, by David S. Comay <dsc@seismo.css.gov>,
* although by now there is hardly any of the code from m_ultrix left.
* Helped a lot by having the source for syd(1), by Claus Kalle, and
* from several people at DEC who helped with providing information on
* some of the less-documented bits of the kernel interface.
*
* Modified: 31-Oct-94, Pat Welch, tpw@physics.orst.edu
* changed _mpid to pidtab for compatibility with OSF/1 version 3.0
*
* Modified: 13-Dec-94, William LeFebvre, lefebvre@dis.anl.gov
* removed used of pidtab (that was bogus) and changed things to
* automatically detect the absence of _mpid in the nlist and
* recover gracefully---this appears to be the only difference
* with 3.0.
*
* Modified: 3-Mar-00, Rainer Orth <ro@TechFak.Uni-Bielefeld.DE>
* added support for sort ordering.
*/
/*
* Theory of operation:
*
* Use Mach calls to build up a structure that contains all the sorts
* of stuff normally found in a struct proc in a BSD system. Then
* everything else uses this structure. This has major performance wins,
* and also should work for future versions of the O/S.
*/
#include "config.h"
#include <sys/types.h>
#include <sys/signal.h>
#include <sys/param.h>
#include <string.h>
#include <sys/user.h>
#include <stdio.h>
#include <nlist.h>
#include <math.h>
#include <sys/dir.h>
#include <sys/user.h>
#include <sys/proc.h>
#include <sys/dk.h>
#include <sys/vm.h>
#include <sys/file.h>
#include <sys/time.h>
/* #include <machine/pte.h> */
/* forward declarations, needed by <net/if.h> included from <sys/table.h> */
struct rtentry;
struct mbuf;
#include <sys/table.h>
#include <mach.h>
#include <mach/mach_types.h>
#include <mach/vm_statistics.h>
#include <sys/syscall.h> /* for SYS_setpriority, in setpriority(), below */
#include "top.h"
#include "machine.h"
#include "utils.h"
extern int errno, sys_nerr;
extern char *sys_errlist[];
#define strerror(e) (((e) >= 0 && (e) < sys_nerr) ? sys_errlist[(e)] : "Unknown error")
#define VMUNIX "/vmunix"
#define KMEM "/dev/kmem"
#define MEM "/dev/mem"
/* get_process_info passes back a handle. This is what it looks like: */
struct handle
{
struct osf1_top_proc **next_proc; /* points to next valid proc pointer */
int remaining; /* number of pointers remaining */
};
/* declarations for load_avg */
#include "loadavg.h"
/* definitions for indices in the nlist array */
#define X_MPID 0
static struct nlist nlst[] = {
{ "_mpid" }, /* 0 */
{ 0 }
};
/* Some versions of OSF/1 don't support reporting of the last PID.
This flag indicates whether or not we are reporting the last PID. */
static int do_last_pid = 1;
/*
* These definitions control the format of the per-process area
*/
static char header[] =
" PID X PRI NICE SIZE RES STATE TIME CPU COMMAND";
/* 01234567 -- field to fill in starts at header+7 */
#define UNAME_START 7
#define Proc_format \
"%6d %-8.8s %3d %4d %5s %5s %-5s %-6s %5.2f%% %s"
/* process state names for the "STATE" column of the display */
/* the extra nulls in the string "run" are for adding a slash and
* the processor number when needed. Although OSF/1 doesnt support
* multiple processors yet, (and this module _certainly_ doesnt
* support it, either, we may as well plan for the future. :-)
*/
char *state_abbrev[] =
{
"", "run\0\0\0", "WAIT", "sleep", "sleep", "stop", "halt", "???", "zomb"
};
static int kmem, mem;
/* values that we stash away in _init and use in later routines */
static double logcpu;
/* these are retrieved from the kernel in _init */
static unsigned long proc;
static int nproc;
static load_avg ccpu;
typedef long mtime_t;
/* these are offsets obtained via nlist and used in the get_ functions */
static unsigned long mpid_offset;
/* these are for detailing the process states */
int process_states[9];
char *procstatenames[] = {
"", " running, ", " waiting, ", " sleeping, ", " idle, ",
" stopped, ", " halted, ", "", " zombie",
NULL
};
/* these are for detailing the cpu states */
int cpu_states[5];
char *cpustatenames[] = {
"user", "nice", "system", "wio", "idle", NULL
};
long old_cpu_ticks[5];
/* these are for detailing the memory statistics */
long memory_stats[5];
char *memorynames[] = {
"K active, ", "K inactive, ", "K total, ", "K free", NULL
};
long swap_stats[3];
char *swapnames[] = {
"K in use, ", "K total", NULL
};
/* these are names given to allowed sorting orders -- first is default */
char *ordernames[] = {
"cpu", "size", "res", "time", NULL
};
/* forward definitions for comparison functions */
int compare_cpu();
int compare_size();
int compare_res();
int compare_time();
int (*proc_compares[])() = {
compare_cpu,
compare_size,
compare_res,
compare_time,
NULL
};
/* these are for getting the memory statistics */
static int pageshift; /* log base 2 of the pagesize */
/* define pagetok in terms of pageshift */
#define pagetok(size) ((size) << pageshift)
/* take a process, make it a mach task, and grab all the info out */
void do_threads_calculations();
/*
* Because I dont feel like repeatedly grunging through the kernel with
* Mach calls, and I also dont want the horrid performance hit this
* would give, I read the stuff I need out, and put in into my own
* structure, for later use.
*/
struct osf1_top_proc {
size_t p_mach_virt_size;
char p_mach_state;
int p_flag;
fixpt_t p_mach_pct_cpu; /* aka p_pctcpu */
int used_ticks;
size_t process_size;
pid_t p_pid;
uid_t p_ruid;
char p_pri;
char p_nice;
size_t p_rssize;
char u_comm[PI_COMLEN + 1];
} ;
/* these are for keeping track of the proc array */
static int bytes;
static int pref_len;
static struct osf1_top_proc *pbase;
static struct osf1_top_proc **pref;
/* useful externals */
extern int errno;
extern char *sys_errlist[];
long percentages();
machine_init(statics)
struct statics *statics;
{
register int i = 0;
register int pagesize;
struct tbl_sysinfo sibuf;
if ((kmem = open(KMEM, O_RDONLY)) == -1) {
perror(KMEM);
return(-1);
}
if ((mem = open(MEM, O_RDONLY)) == -1) {
perror(MEM);
return(-1);
}
/* get the list of symbols we want to access in the kernel */
if (nlist(VMUNIX, nlst) == -1)
{
perror("TOP(nlist)");
return (-1);
}
if (nlst[X_MPID].n_type == 0)
{
/* this kernel has no _mpid, so go without */
do_last_pid = 0;
}
else
{
/* stash away mpid pointer for later use */
mpid_offset = nlst[X_MPID].n_value;
}
/* get the symbol values out of kmem */
nproc = table(TBL_PROCINFO, 0, (struct tbl_procinfo *)NULL, INT_MAX, 0);
/* allocate space for proc structure array and array of pointers */
bytes = nproc * sizeof(struct osf1_top_proc);
pbase = (struct osf1_top_proc *)malloc(bytes);
pref = (struct osf1_top_proc **)malloc(nproc *
sizeof(struct osf1_top_proc *));
/* Just in case ... */
if (pbase == (struct osf1_top_proc *)NULL ||
pref == (struct osf1_top_proc **)NULL)
{
fprintf(stderr, "top: cannot allocate sufficient memory\n");
return(-1);
}
/* get the page size with "getpagesize" and calculate pageshift from it */
pagesize = getpagesize();
pageshift = 0;
while (pagesize > 1)
{
pageshift++;
pagesize >>= 1;
}
/* we only need the amount of log(2)1024 for our conversion */
pageshift -= LOG1024;
/* fill in the statics information */
statics->procstate_names = procstatenames;
statics->cpustate_names = cpustatenames;
statics->memory_names = memorynames;
statics->order_names = ordernames;
statics->swap_names = swapnames;
/* initialise this, for calculating cpu time */
if (table(TBL_SYSINFO,0,&sibuf,1,sizeof(struct tbl_sysinfo))<0) {
perror("TBL_SYSINFO");
return(-1);
}
old_cpu_ticks[0] = sibuf.si_user;
old_cpu_ticks[1] = sibuf.si_nice;
old_cpu_ticks[2] = sibuf.si_sys;
old_cpu_ticks[3] = sibuf.wait;
old_cpu_ticks[4] = sibuf.si_idle;
/* all done! */
return(0);
}
char *format_header(uname_field)
register char *uname_field;
{
register char *ptr;
ptr = header + UNAME_START;
while (*uname_field != '\0')
{
*ptr++ = *uname_field++;
}
return(header);
}
void get_system_info(si)
struct system_info *si;
{
struct tbl_loadavg labuf;
struct tbl_sysinfo sibuf;
struct tbl_swapinfo swbuf;
vm_statistics_data_t vmstats;
int swap_pages=0,swap_free=0,i;
long new_ticks[5],diff_ticks[5];
long delta_ticks;
if (do_last_pid)
{
/* last pid assigned */
(void) getkval(mpid_offset, &(si->last_pid), sizeof(si->last_pid),
"_mpid");
}
else
{
si->last_pid = -1;
}
/* get load averages */
if (table(TBL_LOADAVG,0,&labuf,1,sizeof(struct tbl_loadavg))<0) {
perror("TBL_LOADAVG");
return;
}
if (labuf.tl_lscale) /* scaled */
for(i=0;i<3;i++)
si->load_avg[i] = ((double)labuf.tl_avenrun.l[i] /
(double)labuf.tl_lscale );
else /* not scaled */
for(i=0;i<3;i++)
si->load_avg[i] = labuf.tl_avenrun.d[i];
/* array of cpu state counters */
if (table(TBL_SYSINFO,0,&sibuf,1,sizeof(struct tbl_sysinfo))<0) {
perror("TBL_SYSINFO");
return;
}
new_ticks[0] = sibuf.si_user ; new_ticks[1] = sibuf.si_nice;
new_ticks[2] = sibuf.si_sys ; new_ticks[3] = sibuf.wait;
new_ticks[4] = sibuf.si_idle;
delta_ticks=0;
for(i=0;i<5;i++) {
diff_ticks[i] = new_ticks[i] - old_cpu_ticks[i];
delta_ticks += diff_ticks[i];
old_cpu_ticks[i] = new_ticks[i];
}
si->cpustates = cpu_states;
if(delta_ticks)
for(i=0;i<5;i++)
si->cpustates[i] = (int)( ( (double)diff_ticks[i] /
(double)delta_ticks ) * 1000 );
/* memory information */
/* this is possibly bogus - we work out total # pages by */
/* adding up the free, active, inactive, wired down, and */
/* zero filled. Anyone who knows a better way, TELL ME! */
/* Change: dont use zero filled. */
(void) vm_statistics(task_self(),&vmstats);
/* thanks DEC for the table() command. No thanks at all for */
/* omitting the man page for it from OSF/1 1.2, and failing */
/* to document SWAPINFO in the 1.3 man page. Lets hear it for */
/* include files. */
i=0;
while(table(TBL_SWAPINFO,i,&swbuf,1,sizeof(struct tbl_swapinfo))>0) {
swap_pages += swbuf.size;
swap_free += swbuf.free;
i++;
}
memory_stats[0] = pagetok(vmstats.active_count);
memory_stats[1] = pagetok(vmstats.inactive_count);
memory_stats[2] = pagetok((vmstats.free_count + vmstats.active_count +
vmstats.inactive_count + vmstats.wire_count));
memory_stats[3] = pagetok(vmstats.free_count);
swap_stats[0] = pagetok(swap_pages - swap_free);
swap_stats[1] = pagetok(swap_pages);
si->memory = memory_stats;
si->swap = swap_stats;
}
static struct handle handle;
caddr_t get_process_info(si, sel, compare_index)
struct system_info *si;
struct process_select *sel;
int compare_index;
{
register int i;
register int total_procs;
register int active_procs;
register struct osf1_top_proc **prefp;
register struct osf1_top_proc *pp;
struct tbl_procinfo p_i[8];
int j,k,r;
/* these are copied out of sel for speed */
int show_idle;
int show_uid;
int show_command;
/* get a pointer to the states summary array */
si->procstates = process_states;
/* set up flags which define what we are going to select */
show_idle = sel->idle;
show_uid = sel->uid != -1;
show_command = sel->command != NULL;
/* count up process states and get pointers to interesting procs */
total_procs = 0;
active_procs = 0;
memset((char *)process_states, 0, sizeof(process_states));
prefp = pref;
pp=pbase;
for (j=0; j<nproc; j += 8)
{
r = table(TBL_PROCINFO, j, (struct tbl_procinfo *)p_i, 8,
sizeof(struct tbl_procinfo));
for (k=0; k < r; k++ , pp++)
{
if(p_i[k].pi_pid == 0)
{
pp->p_pid = 0;
}
else
{
pp->p_pid = p_i[k].pi_pid;
pp->p_ruid = p_i[k].pi_ruid;
pp->p_flag = p_i[k].pi_flag;
pp->p_nice = getpriority(PRIO_PROCESS,p_i[k].pi_pid);
/* Load useful values into the proc structure */
do_threads_calculations(pp);
/*
* Place pointers to each valid proc structure in pref[].
* Process slots that are actually in use have a non-zero
* status field.
*/
#ifdef DEBUG
/*
* Emit debug info about all processes before selection.
*/
fprintf(stderr, "pid = %d ruid = %d comm = %s p_mach_state = %d p_stat = %d p_flag = 0x%x\n",
pp->p_pid, pp->p_ruid, p_i[k].pi_comm,
pp->p_mach_state, p_i[k].pi_status, pp->p_flag);
#endif
if (pp->p_mach_state != 0)
{
total_procs++;
process_states[pp->p_mach_state]++;
if ((pp->p_mach_state != 8) &&
(show_idle || (pp->p_mach_pct_cpu != 0) ||
(pp->p_mach_state == 1)) &&
(!show_uid || pp->p_ruid == (uid_t)sel->uid)) {
*prefp++ = pp;
active_procs++;
}
}
}
}
}
/* if requested, sort the "interesting" processes */
if (proc_compares[compare_index] != NULL)
{
qsort((char *)pref, active_procs, sizeof(struct osf1_top_proc *),
proc_compares[compare_index]);
}
/* remember active and total counts */
si->p_total = total_procs;
si->p_active = pref_len = active_procs;
/* pass back a handle */
handle.next_proc = pref;
handle.remaining = active_procs;
return((caddr_t)&handle);
}
char fmt[MAX_COLS]; /* static area where result is built */
char *format_next_process(handle, get_userid)
caddr_t handle;
char *(*get_userid)();
{
register struct osf1_top_proc *pp;
register long cputime;
register double pct;
struct user u;
struct handle *hp;
/* find and remember the next proc structure */
hp = (struct handle *)handle;
pp = *(hp->next_proc++);
hp->remaining--;
/* get the process's user struct and set cputime */
if (table(TBL_UAREA,pp->p_pid,&u,1,sizeof(struct user))<0) {
/* whoops, it must have died between the read of the proc area
* and now. Oh well, lets just dump some meaningless thing out
* to keep the rest of the program happy
*/
sprintf(fmt,
Proc_format,
pp->p_pid,
(*get_userid)(pp->p_ruid),
0,
0,
"",
"",
"dead",
"",
0.0,
"<dead>");
return(fmt);
}
/* set u_comm for system processes */
if (u.u_comm[0] == '\0')
{
if (pp->p_pid == 0)
{
(void) strcpy(u.u_comm, "[idle]");
}
else if (pp->p_pid == 2)
{
(void) strcpy(u.u_comm, "[execpt.hndlr]");
}
}
/* Check if process is in core */
if (!(pp->p_flag & SLOAD)) {
/*
* Print swapped processes as <pname>
*/
char buf[sizeof(u.u_comm)];
(void) strncpy(buf, u.u_comm, sizeof(u.u_comm));
u.u_comm[0] = '<';
(void) strncpy(&u.u_comm[1], buf, sizeof(u.u_comm) - 2);
u.u_comm[sizeof(u.u_comm) - 2] = '\0';
(void) strncat(u.u_comm, ">", sizeof(u.u_comm) - 1);
u.u_comm[sizeof(u.u_comm) - 1] = '\0';
}
cputime = u.u_ru.ru_utime.tv_sec + u.u_ru.ru_stime.tv_sec;
/* calculate the base for cpu percentages */
pct = pctdouble(pp->p_mach_pct_cpu);
/* format this entry */
sprintf(fmt,
Proc_format,
pp->p_pid,
(*get_userid)(pp->p_ruid),
pp->p_pri,
pp->p_nice,
format_k(pp->p_mach_virt_size/1024),
format_k(pp->p_rssize/1000),
state_abbrev[pp->p_mach_state],
format_time(cputime),
100.0 * ((double)pp->p_mach_pct_cpu / 10000.0),
printable(u.u_comm));
/* return the result */
return(fmt);
}
/*
* getkval(offset, ptr, size, refstr) - get a value out of the kernel.
* "offset" is the byte offset into the kernel for the desired value,
* "ptr" points to a buffer into which the value is retrieved,
* "size" is the size of the buffer (and the object to retrieve),
* "refstr" is a reference string used when printing error meessages,
* if "refstr" starts with a '!', then a failure on read will not
* be fatal (this may seem like a silly way to do things, but I
* really didn't want the overhead of another argument).
*
*/
getkval(offset, ptr, size, refstr)
unsigned long offset;
int *ptr;
int size;
char *refstr;
{
if (lseek(kmem, (long)offset, L_SET) == -1) {
if (*refstr == '!')
refstr++;
(void) fprintf(stderr, "%s: lseek to %s: %s\n", KMEM,
refstr, strerror(errno));
quit(23);
}
if (read(kmem, (char *) ptr, size) == -1) {
if (*refstr == '!')
return(0);
else {
(void) fprintf(stderr, "%s: reading %s: %s\n", KMEM,
refstr, strerror(errno));
quit(23);
}
}
return(1);
}
/* comparison routines for qsort */
/*
* There are currently four possible comparison routines. main selects
* one of these by indexing in to the array proc_compares.
*
* Possible keys are defined as macros below. Currently these keys are
* defined: percent cpu, cpu ticks, process state, resident set size,
* total virtual memory usage. The process states are ordered as follows
* (from least to most important): WAIT, zomb, ???, halt, idle, sleep,
* stop, run. The array declaration below maps a process state index into
* a number that reflects this ordering.
*/
/* First, the possible comparison keys. These are defined in such a way
that they can be merely listed in the source code to define the actual
desired ordering.
*/
#define ORDERKEY_PCTCPU if (lresult = p2->p_mach_pct_cpu - p1->p_mach_pct_cpu,\
(result = lresult > 0 ? 1 : lresult < 0 ? -1 : 0) == 0)
#define ORDERKEY_CPTICKS if ((result = p2->used_ticks - p1->used_ticks) == 0)
#define ORDERKEY_STATE if ((result = sorted_state[p2->p_mach_state] - \
sorted_state[p1->p_mach_state]) == 0)
#define ORDERKEY_PRIO if ((result = p2->p_pri - p1->p_pri) == 0)
#define ORDERKEY_RSSIZE if ((result = p2->p_rssize - p1->p_rssize) == 0)
#define ORDERKEY_MEM if ((result = p2->p_mach_virt_size - p1->p_mach_virt_size) == 0)
/* Now the array that maps process state to a weight */
static unsigned char sorted_state[] =
{
0, /*""*/
8, /*"run"*/
1, /*"WAIT"*/
6, /*"sleep"*/
5, /*"idle"*/
7, /*"stop"*/
4, /*"halt"*/
3, /*"???"*/
2, /*"zomb"*/
};
/* compare_cpu - the comparison function for sorting by cpu percentage */
compare_cpu(pp1, pp2)
struct osf1_top_proc **pp1;
struct osf1_top_proc **pp2;
{
register struct osf1_top_proc *p1;
register struct osf1_top_proc *p2;
register long result;
register pctcpu lresult;
/* remove one level of indirection */
p1 = *pp1;
p2 = *pp2;
ORDERKEY_PCTCPU
ORDERKEY_CPTICKS
ORDERKEY_STATE
ORDERKEY_PRIO
ORDERKEY_RSSIZE
ORDERKEY_MEM
;
return(result);
}
/* compare_size - the comparison function for sorting by total memory usage */
compare_size(pp1, pp2)
struct osf1_top_proc **pp1;
struct osf1_top_proc **pp2;
{
register struct osf1_top_proc *p1;
register struct osf1_top_proc *p2;
register long result;
register pctcpu lresult;
/* remove one level of indirection */
p1 = *pp1;
p2 = *pp2;
ORDERKEY_MEM
ORDERKEY_RSSIZE
ORDERKEY_PCTCPU
ORDERKEY_CPTICKS
ORDERKEY_STATE
ORDERKEY_PRIO
;
return(result);
}
/* compare_res - the comparison function for sorting by resident set size */
compare_res(pp1, pp2)
struct osf1_top_proc **pp1;
struct osf1_top_proc **pp2;
{
register struct osf1_top_proc *p1;
register struct osf1_top_proc *p2;
register long result;
register pctcpu lresult;
/* remove one level of indirection */
p1 = *pp1;
p2 = *pp2;
ORDERKEY_RSSIZE
ORDERKEY_MEM
ORDERKEY_PCTCPU
ORDERKEY_CPTICKS
ORDERKEY_STATE
ORDERKEY_PRIO
;
return(result);
}
/* compare_time - the comparison function for sorting by total cpu time */
compare_time(pp1, pp2)
struct osf1_top_proc **pp1;
struct osf1_top_proc **pp2;
{
register struct osf1_top_proc *p1;
register struct osf1_top_proc *p2;
register long result;
register pctcpu lresult;
/* remove one level of indirection */
p1 = *pp1;
p2 = *pp2;
ORDERKEY_CPTICKS
ORDERKEY_PCTCPU
ORDERKEY_STATE
ORDERKEY_PRIO
ORDERKEY_RSSIZE
ORDERKEY_MEM
;
return(result);
}
/*
* proc_owner(pid) - returns the uid that owns process "pid", or -1 if
* the process does not exist.
* It is EXTREMLY IMPORTANT that this function work correctly.
* If top runs setuid root (as in SVR4), then this function
* is the only thing that stands in the way of a serious
* security problem. It validates requests for the "kill"
* and "renice" commands.
*/
int proc_owner(pid)
int pid;
{
register int cnt;
register struct osf1_top_proc **prefp;
register struct osf1_top_proc *pp;
prefp = pref;
cnt = pref_len;
while (--cnt >= 0)
{
if ((pp = *prefp++)->p_pid == (pid_t)pid)
{
return((int)pp->p_ruid);
}
}
return(-1);
}
/*
* We use the Mach interface, as well as the table(UAREA,,,) call to
* get some more information, then put it into unused fields in our
* copy of the proc structure, to make it faster and easier to get at
* later.
*/
void do_threads_calculations(thisproc)
struct osf1_top_proc *thisproc;
{
int j;
task_t thistask;
task_basic_info_data_t taskinfo;
unsigned int taskinfo_l;
thread_array_t threadarr;
unsigned int threadarr_l;
thread_basic_info_t threadinfo;
thread_basic_info_data_t threadinfodata;
unsigned int threadinfo_l;
int task_tot_cpu=0; /* total cpu usage of threads in a task */
struct user u;
thisproc->p_pri=0;
thisproc->p_rssize=0;
thisproc->p_mach_virt_size=0;
thisproc->p_mach_state=0;
thisproc->p_mach_pct_cpu=0;
if(task_by_unix_pid(task_self(), thisproc->p_pid, &thistask)
!= KERN_SUCCESS){
thisproc->p_mach_state=8; /* (zombie) */
} else {
taskinfo_l=TASK_BASIC_INFO_COUNT;
if(task_info(thistask, TASK_BASIC_INFO, (task_info_t) &taskinfo,
&taskinfo_l)
!= KERN_SUCCESS) {
thisproc->p_mach_state=8; /* (zombie) */
} else {
int minim_state=99,mcurp=1000,mbasp=1000,mslpt=999;
thisproc->p_rssize=taskinfo.resident_size;
thisproc->p_mach_virt_size=taskinfo.virtual_size;
if (task_threads(thistask, &threadarr, &threadarr_l) != KERN_SUCCESS)
return;
threadinfo= &threadinfodata;
for(j=0; j < threadarr_l; j++) {
threadinfo_l=THREAD_BASIC_INFO_COUNT;
if(thread_info(threadarr[j],THREAD_BASIC_INFO,
(thread_info_t) threadinfo, &threadinfo_l) == KERN_SUCCESS) {
task_tot_cpu += threadinfo->cpu_usage;
if(minim_state>threadinfo->run_state)
minim_state=threadinfo->run_state;
if(mcurp>threadinfo->cur_priority)
mcurp=threadinfo->cur_priority;
if(mbasp>threadinfo->base_priority)
mbasp=threadinfo->base_priority;
if(mslpt>threadinfo->sleep_time)
mslpt=threadinfo->sleep_time;
}
}
switch (minim_state) {
case TH_STATE_RUNNING:
thisproc->p_mach_state=1; break;
case TH_STATE_UNINTERRUPTIBLE:
thisproc->p_mach_state=2; break;
case TH_STATE_WAITING:
thisproc->p_mach_state=(threadinfo->sleep_time > 20) ? 4 : 3; break;
case TH_STATE_STOPPED:
thisproc->p_mach_state=5; break;
case TH_STATE_HALTED:
thisproc->p_mach_state=6; break;
default:
thisproc->p_mach_state=7; break;
}
thisproc->p_pri=mcurp;
thisproc->p_mach_pct_cpu=(fixpt_t)(task_tot_cpu*10);
vm_deallocate(task_self(),(vm_address_t)threadarr,threadarr_l);
}
}
if (table(TBL_UAREA,thisproc->p_pid,&u,1,sizeof(struct user))>=0) {
thisproc->used_ticks=(u.u_ru.ru_utime.tv_sec + u.u_ru.ru_stime.tv_sec);
thisproc->process_size=u.u_tsize + u.u_dsize + u.u_ssize;
}
}
/* The reason for this function is that the system call will let
* someone lower their own processes priority (because top is setuid :-(
* Yes, using syscall() is a hack, if you can come up with something
* better, then I'd be thrilled to hear it. I'm not holding my breath,
* though.
* Anthony.
*/
int setpriority(int dummy, int procnum, int niceval)
{
int uid, curprio;
uid=getuid();
if ( (curprio=getpriority(PRIO_PROCESS,procnum) ) == -1)
{
return(-1); /* errno goes back to renice_process() */
}
/* check for not-root - if so, dont allow users to decrease priority */
else if ( uid && (niceval<curprio) )
{
errno=EACCES;
return(-1);
}
return(syscall(SYS_setpriority,PRIO_PROCESS,procnum,niceval));
}