David van Moolenbroek b89261ba01 Rename top(1) to mtop(1), import NetBSD top(1)
Due to differences in (mainly) measuring and accumulating CPU times,
the two top programs end up serving different purposes: the NetBSD
top is a system administration tool, while the MINIX3 top (now mtop)
is a performance debugging tool.  Therefore, we keep both.

The newly imported BSD top has a few MINIX3-specific changes.  CPU
statistics separate system time from kernel time, rather than kernel
time from time spent on handling interrupts.  Memory statistics show
numbers that are currently relevant for MINIX3.  Swap statistics are
disabled entirely.  All of these changes effectively bring it closer
to how mtop already worked as well.

Change-Id: I9611917cb03e164ddf012c5def6da0e7fede826d
2016-01-13 20:32:53 +01:00

753 lines
16 KiB
C

/*
* Copyright (c) 1984 through 2008, William LeFebvre
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following disclaimer
* in the documentation and/or other materials provided with the
* distribution.
*
* * Neither the name of William LeFebvre nor the names of other
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Top users/processes display for Unix
* Version 3
*/
/*
* This file contains various handy utilities used by top.
*/
#include "os.h"
#include <ctype.h>
#ifdef HAVE_STDARG_H
#include <stdarg.h>
#else
#undef DEBUG
#endif
#include "top.h"
#include "utils.h"
static int
alldigits(char *s)
{
int ch;
while ((ch = *s++) != '\0')
{
if (!isdigit(ch))
{
return 0;
}
}
return 1;
}
int
atoiwi(char *str)
{
register int len;
len = strlen(str);
if (len != 0)
{
if (strncmp(str, "infinity", len) == 0 ||
strncmp(str, "all", len) == 0 ||
strncmp(str, "maximum", len) == 0)
{
return(Infinity);
}
else if (alldigits(str))
{
return(atoi(str));
}
else
{
return(Invalid);
}
}
return(0);
}
/*
* itoa - convert integer (decimal) to ascii string for positive numbers
* only (we don't bother with negative numbers since we know we
* don't use them).
*/
/*
* How do we know that 16 will suffice?
* Because the biggest number that we will
* ever convert will be 2^32-1, which is 10
* digits.
*/
char *
itoa(int val)
{
register char *ptr;
static char buffer[16]; /* result is built here */
/* 16 is sufficient since the largest number
we will ever convert will be 2^32-1,
which is 10 digits. */
ptr = buffer + sizeof(buffer);
*--ptr = '\0';
if (val == 0)
{
*--ptr = '0';
}
else while (val != 0)
{
*--ptr = (val % 10) + '0';
val /= 10;
}
return(ptr);
}
/*
* itoa7(val) - like itoa, except the number is right justified in a 7
* character field. This code is a duplication of itoa instead of
* a front end to a more general routine for efficiency.
*/
char *
itoa_w(int val, int w)
{
char *ptr;
char *eptr;
static char buffer[16]; /* result is built here */
/* 16 is sufficient since the largest number
we will ever convert will be 2^32-1,
which is 10 digits. */
if (w > 15)
{
w = 15;
}
eptr = ptr = buffer + sizeof(buffer);
*--ptr = '\0';
if (val == 0)
{
*--ptr = '0';
}
else while (val != 0)
{
*--ptr = (val % 10) + '0';
val /= 10;
}
while (ptr >= eptr - w)
{
*--ptr = ' ';
}
return(ptr);
}
char *
itoa7(int val)
{
return itoa_w(val, 7);
}
/*
* digits(val) - return number of decimal digits in val. Only works for
* positive numbers. If val < 0 then digits(val) == 0, but
* digits(0) == 1.
*/
int
digits(int val)
{
register int cnt = 0;
if (val == 0)
{
return 1;
}
while (val > 0)
{
cnt++;
val /= 10;
}
return(cnt);
}
/*
* printable(char *str) - make the string pointed to by "str" into one that is
* printable (i.e.: all ascii), by converting all non-printable
* characters into '?'. Replacements are done in place and a pointer
* to the original buffer is returned.
*/
char *
printable(char *str)
{
register char *ptr;
register int ch;
ptr = str;
while ((ch = *ptr) != '\0')
{
if (!isprint(ch))
{
*ptr = '?';
}
ptr++;
}
return(str);
}
/*
* strcpyend(to, from) - copy string "from" into "to" and return a pointer
* to the END of the string "to".
*/
char *
strcpyend(char *to, const char *from)
{
while ((*to++ = *from++) != '\0');
return(--to);
}
/*
* char *
* homogenize(const char *str)
*
* Remove unwanted characters from "str" and make everything lower case.
* Newly allocated string is returned: the original is not altered.
*/
char *homogenize(const char *str)
{
char *ans;
char *fr;
char *to;
int ch;
to = fr = ans = estrdup(str);
while ((ch = *fr++) != '\0')
{
if (isalnum(ch))
{
*to++ = tolower(ch);
}
}
*to = '\0';
return ans;
}
/*
* string_index(string, array) - find string in array and return index
*/
int
string_index(const char *string, const char **array)
{
register int i = 0;
while (*array != NULL)
{
if (strcmp(string, *array) == 0)
{
return(i);
}
array++;
i++;
}
return(-1);
}
/*
* char *string_list(char **strings)
*
* Create a comma-separated list of the strings in the NULL-terminated
* "strings". Returned string is malloc-ed and should be freed when the
* caller is done. Note that this is not an efficient function.
*/
char *string_list(const char **strings)
{
int cnt = 0;
const char **pp;
const char *p;
char *result = NULL;
char *resp = NULL;
pp = strings;
while ((p = *pp++) != NULL)
{
cnt += strlen(p) + 2;
}
if (cnt > 0)
{
resp = result = emalloc(cnt);
pp = strings;
while ((p = *pp++) != NULL)
{
resp = strcpyend(resp, p);
if (*pp != NULL)
{
resp = strcpyend(resp, ", ");
}
}
}
return result;
}
/*
* argparse(line, cntp) - parse arguments in string "line", separating them
* out into an argv-like array, and setting *cntp to the number of
* arguments encountered. This is a simple parser that doesn't understand
* squat about quotes.
*/
char **
argparse(char *line, int *cntp)
{
register char *from;
register char *to;
register int cnt;
register int ch;
int length;
int lastch;
register char **argv;
char **argarray;
char *args;
/* unfortunately, the only real way to do this is to go thru the
input string twice. */
/* step thru the string counting the white space sections */
from = line;
lastch = cnt = length = 0;
while ((ch = *from++) != '\0')
{
length++;
if (ch == ' ' && lastch != ' ')
{
cnt++;
}
lastch = ch;
}
/* add three to the count: one for the initial "dummy" argument,
one for the last argument and one for NULL */
cnt += 3;
/* allocate a char * array to hold the pointers */
argarray = emalloc(cnt * sizeof(char *));
/* allocate another array to hold the strings themselves */
args = emalloc(length+2);
/* initialization for main loop */
from = line;
to = args;
argv = argarray;
lastch = '\0';
/* create a dummy argument to keep getopt happy */
*argv++ = to;
*to++ = '\0';
cnt = 2;
/* now build argv while copying characters */
*argv++ = to;
while ((ch = *from++) != '\0')
{
if (ch != ' ')
{
if (lastch == ' ')
{
*to++ = '\0';
*argv++ = to;
cnt++;
}
*to++ = ch;
}
lastch = ch;
}
*to++ = '\0';
/* set cntp and return the allocated array */
*cntp = cnt;
return(argarray);
}
/*
* percentages(cnt, out, new, old, diffs) - calculate percentage change
* between array "old" and "new", putting the percentages i "out".
* "cnt" is size of each array and "diffs" is used for scratch space.
* The array "old" is updated on each call.
* The routine assumes modulo arithmetic. This function is especially
* useful on BSD mchines for calculating cpu state percentages.
*/
long
percentages(int cnt, int *out, long *new, long *old, long *diffs)
{
register int i;
register long change;
register long total_change;
register long *dp;
long half_total;
/* initialization */
total_change = 0;
dp = diffs;
/* calculate changes for each state and the overall change */
for (i = 0; i < cnt; i++)
{
if ((change = *new - *old) < 0)
{
/* this only happens when the counter wraps */
change = (int)
((unsigned long)*new-(unsigned long)*old);
}
total_change += (*dp++ = change);
*old++ = *new++;
}
/* avoid divide by zero potential */
if (total_change == 0)
{
total_change = 1;
}
/* calculate percentages based on overall change, rounding up */
half_total = total_change / 2l;
for (i = 0; i < cnt; i++)
{
*out++ = (int)((*diffs++ * 1000 + half_total) / total_change);
}
/* return the total in case the caller wants to use it */
return(total_change);
}
/*
* errmsg(errnum) - return an error message string appropriate to the
* error number "errnum". This is a substitute for the System V
* function "strerror". There appears to be no reliable way to
* determine if "strerror" exists at compile time, so I make do
* by providing something of similar functionality. For those
* systems that have strerror and NOT errlist, define
* -DHAVE_STRERROR in the module file and this function will
* use strerror.
*/
/* externs referenced by errmsg */
#ifndef HAVE_STRERROR
#if !HAVE_DECL_SYS_ERRLIST
extern char *sys_errlist[];
#endif
extern int sys_nerr;
#endif
const char *
errmsg(int errnum)
{
#ifdef HAVE_STRERROR
char *msg = strerror(errnum);
if (msg != NULL)
{
return msg;
}
#else
if (errnum > 0 && errnum < sys_nerr)
{
return((char *)(sys_errlist[errnum]));
}
#endif
return("No error");
}
/* format_percent(v) - format a double as a percentage in a manner that
* does not exceed 5 characters (excluding any trailing
* percent sign). Since it is possible for the value
* to exceed 100%, we format such values with no fractional
* component to fit within the 5 characters.
*/
char *
format_percent(double v)
{
static char result[10];
/* enumerate the possibilities */
if (v < 0 || v >= 100000.)
{
/* we dont want to try extreme values */
strcpy(result, " ???");
}
else if (v > 99.99)
{
sprintf(result, "%5.0f", v);
}
else
{
sprintf(result, "%5.2f", v);
}
return result;
}
/* format_time(seconds) - format number of seconds into a suitable
* display that will fit within 6 characters. Note that this
* routine builds its string in a static area. If it needs
* to be called more than once without overwriting previous data,
* then we will need to adopt a technique similar to the
* one used for format_k.
*/
/* Explanation:
We want to keep the output within 6 characters. For low values we use
the format mm:ss. For values that exceed 999:59, we switch to a format
that displays hours and fractions: hhh.tH. For values that exceed
999.9, we use hhhh.t and drop the "H" designator. For values that
exceed 9999.9, we use "???".
*/
char *
format_time(long seconds)
{
static char result[10];
/* sanity protection */
if (seconds < 0 || seconds > (99999l * 360l))
{
strcpy(result, " ???");
}
else if (seconds >= (1000l * 60l))
{
/* alternate (slow) method displaying hours and tenths */
sprintf(result, "%5.1fH", (double)seconds / (double)(60l * 60l));
/* It is possible that the sprintf took more than 6 characters.
If so, then the "H" appears as result[6]. If not, then there
is a \0 in result[6]. Either way, it is safe to step on.
*/
result[6] = '\0';
}
else
{
/* standard method produces MMM:SS */
/* we avoid printf as must as possible to make this quick */
sprintf(result, "%3ld:%02ld", seconds / 60l, seconds % 60l);
}
return(result);
}
/*
* format_k(amt) - format a kilobyte memory value, returning a string
* suitable for display. Returns a pointer to a static
* area that changes each call. "amt" is converted to a
* string with a trailing "K". If "amt" is 10000 or greater,
* then it is formatted as megabytes (rounded) with a
* trailing "M".
*/
/*
* Compromise time. We need to return a string, but we don't want the
* caller to have to worry about freeing a dynamically allocated string.
* Unfortunately, we can't just return a pointer to a static area as one
* of the common uses of this function is in a large call to sprintf where
* it might get invoked several times. Our compromise is to maintain an
* array of strings and cycle thru them with each invocation. We make the
* array large enough to handle the above mentioned case. The constant
* NUM_STRINGS defines the number of strings in this array: we can tolerate
* up to NUM_STRINGS calls before we start overwriting old information.
* Keeping NUM_STRINGS a power of two will allow an intelligent optimizer
* to convert the modulo operation into something quicker. What a hack!
*/
#define NUM_STRINGS 8
char *
format_k(long amt)
{
static char retarray[NUM_STRINGS][16];
static int idx = 0;
register char *ret;
register char tag = 'K';
ret = retarray[idx];
idx = (idx + 1) % NUM_STRINGS;
if (amt >= 10000)
{
amt = (amt + 512) / 1024;
tag = 'M';
if (amt >= 10000)
{
amt = (amt + 512) / 1024;
tag = 'G';
}
}
snprintf(ret, sizeof(retarray[idx])-1, "%ld%c", amt, tag);
return(ret);
}
/*
* Time keeping functions.
*/
static struct timeval lasttime = { 0, 0 };
static unsigned int elapsed_msecs = 0;
void
time_get(struct timeval *tv)
{
/* get the current time */
#ifdef HAVE_GETTIMEOFDAY
gettimeofday(tv, NULL);
#else
tv->tv_sec = (long)time(NULL);
tv->tv_usec = 0;
#endif
}
void
time_mark(struct timeval *tv)
{
struct timeval thistime;
struct timeval timediff;
/* if the caller didnt provide one then use our own */
if (tv == NULL)
{
tv = &thistime;
}
/* get the current time */
#ifdef HAVE_GETTIMEOFDAY
gettimeofday(tv, NULL);
#else
tv->tv_sec = (long)time(NULL);
tv->tv_usec = 0;
#endif
/* calculate the difference */
timediff.tv_sec = tv->tv_sec - lasttime.tv_sec;
timediff.tv_usec = tv->tv_usec - lasttime.tv_usec;
if (timediff.tv_usec < 0) {
timediff.tv_sec--;
timediff.tv_usec += 1000000;
}
/* convert to milliseconds */
elapsed_msecs = timediff.tv_sec * 1000 + timediff.tv_usec / 1000;
if (elapsed_msecs == 0)
{
elapsed_msecs = 1;
}
/* save for next time */
lasttime = *tv;
}
unsigned int
time_elapsed()
{
return elapsed_msecs;
}
unsigned int
diff_per_second(unsigned int x, unsigned int y)
{
return (y > x ? UINT_MAX - y + x + 1 : x - y) * 1000 / elapsed_msecs;
}
void
double2tv(struct timeval *tv, double d)
{
tv->tv_sec = (int)d;
tv->tv_usec = (d - tv->tv_sec) * 1000000;
}
static int debug_on = 0;
#ifdef DEBUG
FILE *debugfile;
#endif
void
debug_set(int i)
{
debug_on = i;
#ifdef DEBUG
debugfile = fopen("/tmp/top.debug", "w");
#endif
}
#ifdef DEBUG
void
xdprintf(char *fmt, ...)
{
va_list argp;
va_start(argp, fmt);
if (debug_on)
{
vfprintf(debugfile, fmt, argp);
fflush(debugfile);
}
va_end(argp);
}
#endif