1102 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1102 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*	$NetBSD: dfa.c,v 1.1.1.1 2009/10/26 00:25:56 christos Exp $	*/
 | 
						|
 | 
						|
/* dfa - DFA construction routines */
 | 
						|
 | 
						|
/*  Copyright (c) 1990 The Regents of the University of California. */
 | 
						|
/*  All rights reserved. */
 | 
						|
 | 
						|
/*  This code is derived from software contributed to Berkeley by */
 | 
						|
/*  Vern Paxson. */
 | 
						|
 | 
						|
/*  The United States Government has rights in this work pursuant */
 | 
						|
/*  to contract no. DE-AC03-76SF00098 between the United States */
 | 
						|
/*  Department of Energy and the University of California. */
 | 
						|
 | 
						|
/*  Redistribution and use in source and binary forms, with or without */
 | 
						|
/*  modification, are permitted provided that the following conditions */
 | 
						|
/*  are met: */
 | 
						|
 | 
						|
/*  1. Redistributions of source code must retain the above copyright */
 | 
						|
/*     notice, this list of conditions and the following disclaimer. */
 | 
						|
/*  2. Redistributions in binary form must reproduce the above copyright */
 | 
						|
/*     notice, this list of conditions and the following disclaimer in the */
 | 
						|
/*     documentation and/or other materials provided with the distribution. */
 | 
						|
 | 
						|
/*  Neither the name of the University nor the names of its contributors */
 | 
						|
/*  may be used to endorse or promote products derived from this software */
 | 
						|
/*  without specific prior written permission. */
 | 
						|
 | 
						|
/*  THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR */
 | 
						|
/*  IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED */
 | 
						|
/*  WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR */
 | 
						|
/*  PURPOSE. */
 | 
						|
 | 
						|
#include "flexdef.h"
 | 
						|
#include "tables.h"
 | 
						|
 | 
						|
/* declare functions that have forward references */
 | 
						|
 | 
						|
void dump_associated_rules PROTO ((FILE *, int));
 | 
						|
void dump_transitions PROTO ((FILE *, int[]));
 | 
						|
void sympartition PROTO ((int[], int, int[], int[]));
 | 
						|
int symfollowset PROTO ((int[], int, int, int[]));
 | 
						|
 | 
						|
 | 
						|
/* check_for_backing_up - check a DFA state for backing up
 | 
						|
 *
 | 
						|
 * synopsis
 | 
						|
 *     void check_for_backing_up( int ds, int state[numecs] );
 | 
						|
 *
 | 
						|
 * ds is the number of the state to check and state[] is its out-transitions,
 | 
						|
 * indexed by equivalence class.
 | 
						|
 */
 | 
						|
 | 
						|
void check_for_backing_up (ds, state)
 | 
						|
     int ds;
 | 
						|
     int state[];
 | 
						|
{
 | 
						|
	if ((reject && !dfaacc[ds].dfaacc_set) || (!reject && !dfaacc[ds].dfaacc_state)) {	/* state is non-accepting */
 | 
						|
		++num_backing_up;
 | 
						|
 | 
						|
		if (backing_up_report) {
 | 
						|
			fprintf (backing_up_file,
 | 
						|
				 _("State #%d is non-accepting -\n"), ds);
 | 
						|
 | 
						|
			/* identify the state */
 | 
						|
			dump_associated_rules (backing_up_file, ds);
 | 
						|
 | 
						|
			/* Now identify it further using the out- and
 | 
						|
			 * jam-transitions.
 | 
						|
			 */
 | 
						|
			dump_transitions (backing_up_file, state);
 | 
						|
 | 
						|
			putc ('\n', backing_up_file);
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* check_trailing_context - check to see if NFA state set constitutes
 | 
						|
 *                          "dangerous" trailing context
 | 
						|
 *
 | 
						|
 * synopsis
 | 
						|
 *    void check_trailing_context( int nfa_states[num_states+1], int num_states,
 | 
						|
 *				int accset[nacc+1], int nacc );
 | 
						|
 *
 | 
						|
 * NOTES
 | 
						|
 *  Trailing context is "dangerous" if both the head and the trailing
 | 
						|
 *  part are of variable size \and/ there's a DFA state which contains
 | 
						|
 *  both an accepting state for the head part of the rule and NFA states
 | 
						|
 *  which occur after the beginning of the trailing context.
 | 
						|
 *
 | 
						|
 *  When such a rule is matched, it's impossible to tell if having been
 | 
						|
 *  in the DFA state indicates the beginning of the trailing context or
 | 
						|
 *  further-along scanning of the pattern.  In these cases, a warning
 | 
						|
 *  message is issued.
 | 
						|
 *
 | 
						|
 *    nfa_states[1 .. num_states] is the list of NFA states in the DFA.
 | 
						|
 *    accset[1 .. nacc] is the list of accepting numbers for the DFA state.
 | 
						|
 */
 | 
						|
 | 
						|
void check_trailing_context (nfa_states, num_states, accset, nacc)
 | 
						|
     int    *nfa_states, num_states;
 | 
						|
     int    *accset;
 | 
						|
     int nacc;
 | 
						|
{
 | 
						|
	register int i, j;
 | 
						|
 | 
						|
	for (i = 1; i <= num_states; ++i) {
 | 
						|
		int     ns = nfa_states[i];
 | 
						|
		register int type = state_type[ns];
 | 
						|
		register int ar = assoc_rule[ns];
 | 
						|
 | 
						|
		if (type == STATE_NORMAL || rule_type[ar] != RULE_VARIABLE) {	/* do nothing */
 | 
						|
		}
 | 
						|
 | 
						|
		else if (type == STATE_TRAILING_CONTEXT) {
 | 
						|
			/* Potential trouble.  Scan set of accepting numbers
 | 
						|
			 * for the one marking the end of the "head".  We
 | 
						|
			 * assume that this looping will be fairly cheap
 | 
						|
			 * since it's rare that an accepting number set
 | 
						|
			 * is large.
 | 
						|
			 */
 | 
						|
			for (j = 1; j <= nacc; ++j)
 | 
						|
				if (accset[j] & YY_TRAILING_HEAD_MASK) {
 | 
						|
					line_warning (_
 | 
						|
						      ("dangerous trailing context"),
 | 
						|
						      rule_linenum[ar]);
 | 
						|
					return;
 | 
						|
				}
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* dump_associated_rules - list the rules associated with a DFA state
 | 
						|
 *
 | 
						|
 * Goes through the set of NFA states associated with the DFA and
 | 
						|
 * extracts the first MAX_ASSOC_RULES unique rules, sorts them,
 | 
						|
 * and writes a report to the given file.
 | 
						|
 */
 | 
						|
 | 
						|
void dump_associated_rules (file, ds)
 | 
						|
     FILE   *file;
 | 
						|
     int ds;
 | 
						|
{
 | 
						|
	register int i, j;
 | 
						|
	register int num_associated_rules = 0;
 | 
						|
	int     rule_set[MAX_ASSOC_RULES + 1];
 | 
						|
	int    *dset = dss[ds];
 | 
						|
	int     size = dfasiz[ds];
 | 
						|
 | 
						|
	for (i = 1; i <= size; ++i) {
 | 
						|
		register int rule_num = rule_linenum[assoc_rule[dset[i]]];
 | 
						|
 | 
						|
		for (j = 1; j <= num_associated_rules; ++j)
 | 
						|
			if (rule_num == rule_set[j])
 | 
						|
				break;
 | 
						|
 | 
						|
		if (j > num_associated_rules) {	/* new rule */
 | 
						|
			if (num_associated_rules < MAX_ASSOC_RULES)
 | 
						|
				rule_set[++num_associated_rules] =
 | 
						|
					rule_num;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	bubble (rule_set, num_associated_rules);
 | 
						|
 | 
						|
	fprintf (file, _(" associated rule line numbers:"));
 | 
						|
 | 
						|
	for (i = 1; i <= num_associated_rules; ++i) {
 | 
						|
		if (i % 8 == 1)
 | 
						|
			putc ('\n', file);
 | 
						|
 | 
						|
		fprintf (file, "\t%d", rule_set[i]);
 | 
						|
	}
 | 
						|
 | 
						|
	putc ('\n', file);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* dump_transitions - list the transitions associated with a DFA state
 | 
						|
 *
 | 
						|
 * synopsis
 | 
						|
 *     dump_transitions( FILE *file, int state[numecs] );
 | 
						|
 *
 | 
						|
 * Goes through the set of out-transitions and lists them in human-readable
 | 
						|
 * form (i.e., not as equivalence classes); also lists jam transitions
 | 
						|
 * (i.e., all those which are not out-transitions, plus EOF).  The dump
 | 
						|
 * is done to the given file.
 | 
						|
 */
 | 
						|
 | 
						|
void dump_transitions (file, state)
 | 
						|
     FILE   *file;
 | 
						|
     int state[];
 | 
						|
{
 | 
						|
	register int i, ec;
 | 
						|
	int     out_char_set[CSIZE];
 | 
						|
 | 
						|
	for (i = 0; i < csize; ++i) {
 | 
						|
		ec = ABS (ecgroup[i]);
 | 
						|
		out_char_set[i] = state[ec];
 | 
						|
	}
 | 
						|
 | 
						|
	fprintf (file, _(" out-transitions: "));
 | 
						|
 | 
						|
	list_character_set (file, out_char_set);
 | 
						|
 | 
						|
	/* now invert the members of the set to get the jam transitions */
 | 
						|
	for (i = 0; i < csize; ++i)
 | 
						|
		out_char_set[i] = !out_char_set[i];
 | 
						|
 | 
						|
	fprintf (file, _("\n jam-transitions: EOF "));
 | 
						|
 | 
						|
	list_character_set (file, out_char_set);
 | 
						|
 | 
						|
	putc ('\n', file);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* epsclosure - construct the epsilon closure of a set of ndfa states
 | 
						|
 *
 | 
						|
 * synopsis
 | 
						|
 *    int *epsclosure( int t[num_states], int *numstates_addr,
 | 
						|
 *			int accset[num_rules+1], int *nacc_addr,
 | 
						|
 *			int *hashval_addr );
 | 
						|
 *
 | 
						|
 * NOTES
 | 
						|
 *  The epsilon closure is the set of all states reachable by an arbitrary
 | 
						|
 *  number of epsilon transitions, which themselves do not have epsilon
 | 
						|
 *  transitions going out, unioned with the set of states which have non-null
 | 
						|
 *  accepting numbers.  t is an array of size numstates of nfa state numbers.
 | 
						|
 *  Upon return, t holds the epsilon closure and *numstates_addr is updated.
 | 
						|
 *  accset holds a list of the accepting numbers, and the size of accset is
 | 
						|
 *  given by *nacc_addr.  t may be subjected to reallocation if it is not
 | 
						|
 *  large enough to hold the epsilon closure.
 | 
						|
 *
 | 
						|
 *  hashval is the hash value for the dfa corresponding to the state set.
 | 
						|
 */
 | 
						|
 | 
						|
int    *epsclosure (t, ns_addr, accset, nacc_addr, hv_addr)
 | 
						|
     int    *t, *ns_addr, accset[], *nacc_addr, *hv_addr;
 | 
						|
{
 | 
						|
	register int stkpos, ns, tsp;
 | 
						|
	int     numstates = *ns_addr, nacc, hashval, transsym, nfaccnum;
 | 
						|
	int     stkend, nstate;
 | 
						|
	static int did_stk_init = false, *stk;
 | 
						|
 | 
						|
#define MARK_STATE(state) \
 | 
						|
do{ trans1[state] = trans1[state] - MARKER_DIFFERENCE;} while(0)
 | 
						|
 | 
						|
#define IS_MARKED(state) (trans1[state] < 0)
 | 
						|
 | 
						|
#define UNMARK_STATE(state) \
 | 
						|
do{ trans1[state] = trans1[state] + MARKER_DIFFERENCE;} while(0)
 | 
						|
 | 
						|
#define CHECK_ACCEPT(state) \
 | 
						|
do{ \
 | 
						|
nfaccnum = accptnum[state]; \
 | 
						|
if ( nfaccnum != NIL ) \
 | 
						|
accset[++nacc] = nfaccnum; \
 | 
						|
}while(0)
 | 
						|
 | 
						|
#define DO_REALLOCATION() \
 | 
						|
do { \
 | 
						|
current_max_dfa_size += MAX_DFA_SIZE_INCREMENT; \
 | 
						|
++num_reallocs; \
 | 
						|
t = reallocate_integer_array( t, current_max_dfa_size ); \
 | 
						|
stk = reallocate_integer_array( stk, current_max_dfa_size ); \
 | 
						|
}while(0) \
 | 
						|
 | 
						|
#define PUT_ON_STACK(state) \
 | 
						|
do { \
 | 
						|
if ( ++stkend >= current_max_dfa_size ) \
 | 
						|
DO_REALLOCATION(); \
 | 
						|
stk[stkend] = state; \
 | 
						|
MARK_STATE(state); \
 | 
						|
}while(0)
 | 
						|
 | 
						|
#define ADD_STATE(state) \
 | 
						|
do { \
 | 
						|
if ( ++numstates >= current_max_dfa_size ) \
 | 
						|
DO_REALLOCATION(); \
 | 
						|
t[numstates] = state; \
 | 
						|
hashval += state; \
 | 
						|
}while(0)
 | 
						|
 | 
						|
#define STACK_STATE(state) \
 | 
						|
do { \
 | 
						|
PUT_ON_STACK(state); \
 | 
						|
CHECK_ACCEPT(state); \
 | 
						|
if ( nfaccnum != NIL || transchar[state] != SYM_EPSILON ) \
 | 
						|
ADD_STATE(state); \
 | 
						|
}while(0)
 | 
						|
 | 
						|
 | 
						|
	if (!did_stk_init) {
 | 
						|
		stk = allocate_integer_array (current_max_dfa_size);
 | 
						|
		did_stk_init = true;
 | 
						|
	}
 | 
						|
 | 
						|
	nacc = stkend = hashval = 0;
 | 
						|
 | 
						|
	for (nstate = 1; nstate <= numstates; ++nstate) {
 | 
						|
		ns = t[nstate];
 | 
						|
 | 
						|
		/* The state could be marked if we've already pushed it onto
 | 
						|
		 * the stack.
 | 
						|
		 */
 | 
						|
		if (!IS_MARKED (ns)) {
 | 
						|
			PUT_ON_STACK (ns);
 | 
						|
			CHECK_ACCEPT (ns);
 | 
						|
			hashval += ns;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	for (stkpos = 1; stkpos <= stkend; ++stkpos) {
 | 
						|
		ns = stk[stkpos];
 | 
						|
		transsym = transchar[ns];
 | 
						|
 | 
						|
		if (transsym == SYM_EPSILON) {
 | 
						|
			tsp = trans1[ns] + MARKER_DIFFERENCE;
 | 
						|
 | 
						|
			if (tsp != NO_TRANSITION) {
 | 
						|
				if (!IS_MARKED (tsp))
 | 
						|
					STACK_STATE (tsp);
 | 
						|
 | 
						|
				tsp = trans2[ns];
 | 
						|
 | 
						|
				if (tsp != NO_TRANSITION
 | 
						|
				    && !IS_MARKED (tsp))
 | 
						|
					STACK_STATE (tsp);
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/* Clear out "visit" markers. */
 | 
						|
 | 
						|
	for (stkpos = 1; stkpos <= stkend; ++stkpos) {
 | 
						|
		if (IS_MARKED (stk[stkpos]))
 | 
						|
			UNMARK_STATE (stk[stkpos]);
 | 
						|
		else
 | 
						|
			flexfatal (_
 | 
						|
				   ("consistency check failed in epsclosure()"));
 | 
						|
	}
 | 
						|
 | 
						|
	*ns_addr = numstates;
 | 
						|
	*hv_addr = hashval;
 | 
						|
	*nacc_addr = nacc;
 | 
						|
 | 
						|
	return t;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* increase_max_dfas - increase the maximum number of DFAs */
 | 
						|
 | 
						|
void increase_max_dfas ()
 | 
						|
{
 | 
						|
	current_max_dfas += MAX_DFAS_INCREMENT;
 | 
						|
 | 
						|
	++num_reallocs;
 | 
						|
 | 
						|
	base = reallocate_integer_array (base, current_max_dfas);
 | 
						|
	def = reallocate_integer_array (def, current_max_dfas);
 | 
						|
	dfasiz = reallocate_integer_array (dfasiz, current_max_dfas);
 | 
						|
	accsiz = reallocate_integer_array (accsiz, current_max_dfas);
 | 
						|
	dhash = reallocate_integer_array (dhash, current_max_dfas);
 | 
						|
	dss = reallocate_int_ptr_array (dss, current_max_dfas);
 | 
						|
	dfaacc = reallocate_dfaacc_union (dfaacc, current_max_dfas);
 | 
						|
 | 
						|
	if (nultrans)
 | 
						|
		nultrans =
 | 
						|
			reallocate_integer_array (nultrans,
 | 
						|
						  current_max_dfas);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* ntod - convert an ndfa to a dfa
 | 
						|
 *
 | 
						|
 * Creates the dfa corresponding to the ndfa we've constructed.  The
 | 
						|
 * dfa starts out in state #1.
 | 
						|
 */
 | 
						|
 | 
						|
void ntod ()
 | 
						|
{
 | 
						|
	int    *accset, ds, nacc, newds;
 | 
						|
	int     sym, hashval, numstates, dsize;
 | 
						|
	int     num_full_table_rows=0;	/* used only for -f */
 | 
						|
	int    *nset, *dset;
 | 
						|
	int     targptr, totaltrans, i, comstate, comfreq, targ;
 | 
						|
	int     symlist[CSIZE + 1];
 | 
						|
	int     num_start_states;
 | 
						|
	int     todo_head, todo_next;
 | 
						|
 | 
						|
	struct yytbl_data *yynxt_tbl = 0;
 | 
						|
	flex_int32_t *yynxt_data = 0, yynxt_curr = 0;
 | 
						|
 | 
						|
	/* Note that the following are indexed by *equivalence classes*
 | 
						|
	 * and not by characters.  Since equivalence classes are indexed
 | 
						|
	 * beginning with 1, even if the scanner accepts NUL's, this
 | 
						|
	 * means that (since every character is potentially in its own
 | 
						|
	 * equivalence class) these arrays must have room for indices
 | 
						|
	 * from 1 to CSIZE, so their size must be CSIZE + 1.
 | 
						|
	 */
 | 
						|
	int     duplist[CSIZE + 1], state[CSIZE + 1];
 | 
						|
	int     targfreq[CSIZE + 1], targstate[CSIZE + 1];
 | 
						|
 | 
						|
	/* accset needs to be large enough to hold all of the rules present
 | 
						|
	 * in the input, *plus* their YY_TRAILING_HEAD_MASK variants.
 | 
						|
	 */
 | 
						|
	accset = allocate_integer_array ((num_rules + 1) * 2);
 | 
						|
	nset = allocate_integer_array (current_max_dfa_size);
 | 
						|
 | 
						|
	/* The "todo" queue is represented by the head, which is the DFA
 | 
						|
	 * state currently being processed, and the "next", which is the
 | 
						|
	 * next DFA state number available (not in use).  We depend on the
 | 
						|
	 * fact that snstods() returns DFA's \in increasing order/, and thus
 | 
						|
	 * need only know the bounds of the dfas to be processed.
 | 
						|
	 */
 | 
						|
	todo_head = todo_next = 0;
 | 
						|
 | 
						|
	for (i = 0; i <= csize; ++i) {
 | 
						|
		duplist[i] = NIL;
 | 
						|
		symlist[i] = false;
 | 
						|
	}
 | 
						|
 | 
						|
	for (i = 0; i <= num_rules; ++i)
 | 
						|
		accset[i] = NIL;
 | 
						|
 | 
						|
	if (trace) {
 | 
						|
		dumpnfa (scset[1]);
 | 
						|
		fputs (_("\n\nDFA Dump:\n\n"), stderr);
 | 
						|
	}
 | 
						|
 | 
						|
	inittbl ();
 | 
						|
 | 
						|
	/* Check to see whether we should build a separate table for
 | 
						|
	 * transitions on NUL characters.  We don't do this for full-speed
 | 
						|
	 * (-F) scanners, since for them we don't have a simple state
 | 
						|
	 * number lying around with which to index the table.  We also
 | 
						|
	 * don't bother doing it for scanners unless (1) NUL is in its own
 | 
						|
	 * equivalence class (indicated by a positive value of
 | 
						|
	 * ecgroup[NUL]), (2) NUL's equivalence class is the last
 | 
						|
	 * equivalence class, and (3) the number of equivalence classes is
 | 
						|
	 * the same as the number of characters.  This latter case comes
 | 
						|
	 * about when useecs is false or when it's true but every character
 | 
						|
	 * still manages to land in its own class (unlikely, but it's
 | 
						|
	 * cheap to check for).  If all these things are true then the
 | 
						|
	 * character code needed to represent NUL's equivalence class for
 | 
						|
	 * indexing the tables is going to take one more bit than the
 | 
						|
	 * number of characters, and therefore we won't be assured of
 | 
						|
	 * being able to fit it into a YY_CHAR variable.  This rules out
 | 
						|
	 * storing the transitions in a compressed table, since the code
 | 
						|
	 * for interpreting them uses a YY_CHAR variable (perhaps it
 | 
						|
	 * should just use an integer, though; this is worth pondering ...
 | 
						|
	 * ###).
 | 
						|
	 *
 | 
						|
	 * Finally, for full tables, we want the number of entries in the
 | 
						|
	 * table to be a power of two so the array references go fast (it
 | 
						|
	 * will just take a shift to compute the major index).  If
 | 
						|
	 * encoding NUL's transitions in the table will spoil this, we
 | 
						|
	 * give it its own table (note that this will be the case if we're
 | 
						|
	 * not using equivalence classes).
 | 
						|
	 */
 | 
						|
 | 
						|
	/* Note that the test for ecgroup[0] == numecs below accomplishes
 | 
						|
	 * both (1) and (2) above
 | 
						|
	 */
 | 
						|
	if (!fullspd && ecgroup[0] == numecs) {
 | 
						|
		/* NUL is alone in its equivalence class, which is the
 | 
						|
		 * last one.
 | 
						|
		 */
 | 
						|
		int     use_NUL_table = (numecs == csize);
 | 
						|
 | 
						|
		if (fulltbl && !use_NUL_table) {
 | 
						|
			/* We still may want to use the table if numecs
 | 
						|
			 * is a power of 2.
 | 
						|
			 */
 | 
						|
			int     power_of_two;
 | 
						|
 | 
						|
			for (power_of_two = 1; power_of_two <= csize;
 | 
						|
			     power_of_two *= 2)
 | 
						|
				if (numecs == power_of_two) {
 | 
						|
					use_NUL_table = true;
 | 
						|
					break;
 | 
						|
				}
 | 
						|
		}
 | 
						|
 | 
						|
		if (use_NUL_table)
 | 
						|
			nultrans =
 | 
						|
				allocate_integer_array (current_max_dfas);
 | 
						|
 | 
						|
		/* From now on, nultrans != nil indicates that we're
 | 
						|
		 * saving null transitions for later, separate encoding.
 | 
						|
		 */
 | 
						|
	}
 | 
						|
 | 
						|
 | 
						|
	if (fullspd) {
 | 
						|
		for (i = 0; i <= numecs; ++i)
 | 
						|
			state[i] = 0;
 | 
						|
 | 
						|
		place_state (state, 0, 0);
 | 
						|
		dfaacc[0].dfaacc_state = 0;
 | 
						|
	}
 | 
						|
 | 
						|
	else if (fulltbl) {
 | 
						|
		if (nultrans)
 | 
						|
			/* We won't be including NUL's transitions in the
 | 
						|
			 * table, so build it for entries from 0 .. numecs - 1.
 | 
						|
			 */
 | 
						|
			num_full_table_rows = numecs;
 | 
						|
 | 
						|
		else
 | 
						|
			/* Take into account the fact that we'll be including
 | 
						|
			 * the NUL entries in the transition table.  Build it
 | 
						|
			 * from 0 .. numecs.
 | 
						|
			 */
 | 
						|
			num_full_table_rows = numecs + 1;
 | 
						|
 | 
						|
		/* Begin generating yy_nxt[][]
 | 
						|
		 * This spans the entire LONG function.
 | 
						|
		 * This table is tricky because we don't know how big it will be.
 | 
						|
		 * So we'll have to realloc() on the way...
 | 
						|
		 * we'll wait until we can calculate yynxt_tbl->td_hilen.
 | 
						|
		 */
 | 
						|
		yynxt_tbl =
 | 
						|
			(struct yytbl_data *) calloc (1,
 | 
						|
						      sizeof (struct
 | 
						|
							      yytbl_data));
 | 
						|
		yytbl_data_init (yynxt_tbl, YYTD_ID_NXT);
 | 
						|
		yynxt_tbl->td_hilen = 1;
 | 
						|
		yynxt_tbl->td_lolen = num_full_table_rows;
 | 
						|
		yynxt_tbl->td_data = yynxt_data =
 | 
						|
			(flex_int32_t *) calloc (yynxt_tbl->td_lolen *
 | 
						|
					    yynxt_tbl->td_hilen,
 | 
						|
					    sizeof (flex_int32_t));
 | 
						|
		yynxt_curr = 0;
 | 
						|
 | 
						|
		buf_prints (&yydmap_buf,
 | 
						|
			    "\t{YYTD_ID_NXT, (void**)&yy_nxt, sizeof(%s)},\n",
 | 
						|
			    long_align ? "flex_int32_t" : "flex_int16_t");
 | 
						|
 | 
						|
		/* Unless -Ca, declare it "short" because it's a real
 | 
						|
		 * long-shot that that won't be large enough.
 | 
						|
		 */
 | 
						|
		if (gentables)
 | 
						|
			out_str_dec
 | 
						|
				("static yyconst %s yy_nxt[][%d] =\n    {\n",
 | 
						|
				 long_align ? "flex_int32_t" : "flex_int16_t",
 | 
						|
				 num_full_table_rows);
 | 
						|
		else {
 | 
						|
			out_dec ("#undef YY_NXT_LOLEN\n#define YY_NXT_LOLEN (%d)\n", num_full_table_rows);
 | 
						|
			out_str ("static yyconst %s *yy_nxt =0;\n",
 | 
						|
				 long_align ? "flex_int32_t" : "flex_int16_t");
 | 
						|
		}
 | 
						|
 | 
						|
 | 
						|
		if (gentables)
 | 
						|
			outn ("    {");
 | 
						|
 | 
						|
		/* Generate 0 entries for state #0. */
 | 
						|
		for (i = 0; i < num_full_table_rows; ++i) {
 | 
						|
			mk2data (0);
 | 
						|
			yynxt_data[yynxt_curr++] = 0;
 | 
						|
		}
 | 
						|
 | 
						|
		dataflush ();
 | 
						|
		if (gentables)
 | 
						|
			outn ("    },\n");
 | 
						|
	}
 | 
						|
 | 
						|
	/* Create the first states. */
 | 
						|
 | 
						|
	num_start_states = lastsc * 2;
 | 
						|
 | 
						|
	for (i = 1; i <= num_start_states; ++i) {
 | 
						|
		numstates = 1;
 | 
						|
 | 
						|
		/* For each start condition, make one state for the case when
 | 
						|
		 * we're at the beginning of the line (the '^' operator) and
 | 
						|
		 * one for the case when we're not.
 | 
						|
		 */
 | 
						|
		if (i % 2 == 1)
 | 
						|
			nset[numstates] = scset[(i / 2) + 1];
 | 
						|
		else
 | 
						|
			nset[numstates] =
 | 
						|
				mkbranch (scbol[i / 2], scset[i / 2]);
 | 
						|
 | 
						|
		nset = epsclosure (nset, &numstates, accset, &nacc,
 | 
						|
				   &hashval);
 | 
						|
 | 
						|
		if (snstods (nset, numstates, accset, nacc, hashval, &ds)) {
 | 
						|
			numas += nacc;
 | 
						|
			totnst += numstates;
 | 
						|
			++todo_next;
 | 
						|
 | 
						|
			if (variable_trailing_context_rules && nacc > 0)
 | 
						|
				check_trailing_context (nset, numstates,
 | 
						|
							accset, nacc);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (!fullspd) {
 | 
						|
		if (!snstods (nset, 0, accset, 0, 0, &end_of_buffer_state))
 | 
						|
			flexfatal (_
 | 
						|
				   ("could not create unique end-of-buffer state"));
 | 
						|
 | 
						|
		++numas;
 | 
						|
		++num_start_states;
 | 
						|
		++todo_next;
 | 
						|
	}
 | 
						|
 | 
						|
 | 
						|
	while (todo_head < todo_next) {
 | 
						|
		targptr = 0;
 | 
						|
		totaltrans = 0;
 | 
						|
 | 
						|
		for (i = 1; i <= numecs; ++i)
 | 
						|
			state[i] = 0;
 | 
						|
 | 
						|
		ds = ++todo_head;
 | 
						|
 | 
						|
		dset = dss[ds];
 | 
						|
		dsize = dfasiz[ds];
 | 
						|
 | 
						|
		if (trace)
 | 
						|
			fprintf (stderr, _("state # %d:\n"), ds);
 | 
						|
 | 
						|
		sympartition (dset, dsize, symlist, duplist);
 | 
						|
 | 
						|
		for (sym = 1; sym <= numecs; ++sym) {
 | 
						|
			if (symlist[sym]) {
 | 
						|
				symlist[sym] = 0;
 | 
						|
 | 
						|
				if (duplist[sym] == NIL) {
 | 
						|
					/* Symbol has unique out-transitions. */
 | 
						|
					numstates =
 | 
						|
						symfollowset (dset, dsize,
 | 
						|
							      sym, nset);
 | 
						|
					nset = epsclosure (nset,
 | 
						|
							   &numstates,
 | 
						|
							   accset, &nacc,
 | 
						|
							   &hashval);
 | 
						|
 | 
						|
					if (snstods
 | 
						|
					    (nset, numstates, accset, nacc,
 | 
						|
					     hashval, &newds)) {
 | 
						|
						totnst = totnst +
 | 
						|
							numstates;
 | 
						|
						++todo_next;
 | 
						|
						numas += nacc;
 | 
						|
 | 
						|
						if (variable_trailing_context_rules && nacc > 0)
 | 
						|
							check_trailing_context
 | 
						|
								(nset,
 | 
						|
								 numstates,
 | 
						|
								 accset,
 | 
						|
								 nacc);
 | 
						|
					}
 | 
						|
 | 
						|
					state[sym] = newds;
 | 
						|
 | 
						|
					if (trace)
 | 
						|
						fprintf (stderr,
 | 
						|
							 "\t%d\t%d\n", sym,
 | 
						|
							 newds);
 | 
						|
 | 
						|
					targfreq[++targptr] = 1;
 | 
						|
					targstate[targptr] = newds;
 | 
						|
					++numuniq;
 | 
						|
				}
 | 
						|
 | 
						|
				else {
 | 
						|
					/* sym's equivalence class has the same
 | 
						|
					 * transitions as duplist(sym)'s
 | 
						|
					 * equivalence class.
 | 
						|
					 */
 | 
						|
					targ = state[duplist[sym]];
 | 
						|
					state[sym] = targ;
 | 
						|
 | 
						|
					if (trace)
 | 
						|
						fprintf (stderr,
 | 
						|
							 "\t%d\t%d\n", sym,
 | 
						|
							 targ);
 | 
						|
 | 
						|
					/* Update frequency count for
 | 
						|
					 * destination state.
 | 
						|
					 */
 | 
						|
 | 
						|
					i = 0;
 | 
						|
					while (targstate[++i] != targ) ;
 | 
						|
 | 
						|
					++targfreq[i];
 | 
						|
					++numdup;
 | 
						|
				}
 | 
						|
 | 
						|
				++totaltrans;
 | 
						|
				duplist[sym] = NIL;
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
 | 
						|
		numsnpairs += totaltrans;
 | 
						|
 | 
						|
		if (ds > num_start_states)
 | 
						|
			check_for_backing_up (ds, state);
 | 
						|
 | 
						|
		if (nultrans) {
 | 
						|
			nultrans[ds] = state[NUL_ec];
 | 
						|
			state[NUL_ec] = 0;	/* remove transition */
 | 
						|
		}
 | 
						|
 | 
						|
		if (fulltbl) {
 | 
						|
 | 
						|
			/* Each time we hit here, it's another td_hilen, so we realloc. */
 | 
						|
			yynxt_tbl->td_hilen++;
 | 
						|
			yynxt_tbl->td_data = yynxt_data =
 | 
						|
				(flex_int32_t *) realloc (yynxt_data,
 | 
						|
						     yynxt_tbl->td_hilen *
 | 
						|
						     yynxt_tbl->td_lolen *
 | 
						|
						     sizeof (flex_int32_t));
 | 
						|
 | 
						|
 | 
						|
			if (gentables)
 | 
						|
				outn ("    {");
 | 
						|
 | 
						|
			/* Supply array's 0-element. */
 | 
						|
			if (ds == end_of_buffer_state) {
 | 
						|
				mk2data (-end_of_buffer_state);
 | 
						|
				yynxt_data[yynxt_curr++] =
 | 
						|
					-end_of_buffer_state;
 | 
						|
			}
 | 
						|
			else {
 | 
						|
				mk2data (end_of_buffer_state);
 | 
						|
				yynxt_data[yynxt_curr++] =
 | 
						|
					end_of_buffer_state;
 | 
						|
			}
 | 
						|
 | 
						|
			for (i = 1; i < num_full_table_rows; ++i) {
 | 
						|
				/* Jams are marked by negative of state
 | 
						|
				 * number.
 | 
						|
				 */
 | 
						|
				mk2data (state[i] ? state[i] : -ds);
 | 
						|
				yynxt_data[yynxt_curr++] =
 | 
						|
					state[i] ? state[i] : -ds;
 | 
						|
			}
 | 
						|
 | 
						|
			dataflush ();
 | 
						|
			if (gentables)
 | 
						|
				outn ("    },\n");
 | 
						|
		}
 | 
						|
 | 
						|
		else if (fullspd)
 | 
						|
			place_state (state, ds, totaltrans);
 | 
						|
 | 
						|
		else if (ds == end_of_buffer_state)
 | 
						|
			/* Special case this state to make sure it does what
 | 
						|
			 * it's supposed to, i.e., jam on end-of-buffer.
 | 
						|
			 */
 | 
						|
			stack1 (ds, 0, 0, JAMSTATE);
 | 
						|
 | 
						|
		else {		/* normal, compressed state */
 | 
						|
 | 
						|
			/* Determine which destination state is the most
 | 
						|
			 * common, and how many transitions to it there are.
 | 
						|
			 */
 | 
						|
 | 
						|
			comfreq = 0;
 | 
						|
			comstate = 0;
 | 
						|
 | 
						|
			for (i = 1; i <= targptr; ++i)
 | 
						|
				if (targfreq[i] > comfreq) {
 | 
						|
					comfreq = targfreq[i];
 | 
						|
					comstate = targstate[i];
 | 
						|
				}
 | 
						|
 | 
						|
			bldtbl (state, ds, totaltrans, comstate, comfreq);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (fulltbl) {
 | 
						|
		dataend ();
 | 
						|
		if (tablesext) {
 | 
						|
			yytbl_data_compress (yynxt_tbl);
 | 
						|
			if (yytbl_data_fwrite (&tableswr, yynxt_tbl) < 0)
 | 
						|
				flexerror (_
 | 
						|
					   ("Could not write yynxt_tbl[][]"));
 | 
						|
		}
 | 
						|
		if (yynxt_tbl) {
 | 
						|
			yytbl_data_destroy (yynxt_tbl);
 | 
						|
			yynxt_tbl = 0;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	else if (!fullspd) {
 | 
						|
		cmptmps ();	/* create compressed template entries */
 | 
						|
 | 
						|
		/* Create tables for all the states with only one
 | 
						|
		 * out-transition.
 | 
						|
		 */
 | 
						|
		while (onesp > 0) {
 | 
						|
			mk1tbl (onestate[onesp], onesym[onesp],
 | 
						|
				onenext[onesp], onedef[onesp]);
 | 
						|
			--onesp;
 | 
						|
		}
 | 
						|
 | 
						|
		mkdeftbl ();
 | 
						|
	}
 | 
						|
 | 
						|
	flex_free ((void *) accset);
 | 
						|
	flex_free ((void *) nset);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* snstods - converts a set of ndfa states into a dfa state
 | 
						|
 *
 | 
						|
 * synopsis
 | 
						|
 *    is_new_state = snstods( int sns[numstates], int numstates,
 | 
						|
 *				int accset[num_rules+1], int nacc,
 | 
						|
 *				int hashval, int *newds_addr );
 | 
						|
 *
 | 
						|
 * On return, the dfa state number is in newds.
 | 
						|
 */
 | 
						|
 | 
						|
int snstods (sns, numstates, accset, nacc, hashval, newds_addr)
 | 
						|
     int sns[], numstates, accset[], nacc, hashval, *newds_addr;
 | 
						|
{
 | 
						|
	int     didsort = 0;
 | 
						|
	register int i, j;
 | 
						|
	int     newds, *oldsns;
 | 
						|
 | 
						|
	for (i = 1; i <= lastdfa; ++i)
 | 
						|
		if (hashval == dhash[i]) {
 | 
						|
			if (numstates == dfasiz[i]) {
 | 
						|
				oldsns = dss[i];
 | 
						|
 | 
						|
				if (!didsort) {
 | 
						|
					/* We sort the states in sns so we
 | 
						|
					 * can compare it to oldsns quickly.
 | 
						|
					 * We use bubble because there probably
 | 
						|
					 * aren't very many states.
 | 
						|
					 */
 | 
						|
					bubble (sns, numstates);
 | 
						|
					didsort = 1;
 | 
						|
				}
 | 
						|
 | 
						|
				for (j = 1; j <= numstates; ++j)
 | 
						|
					if (sns[j] != oldsns[j])
 | 
						|
						break;
 | 
						|
 | 
						|
				if (j > numstates) {
 | 
						|
					++dfaeql;
 | 
						|
					*newds_addr = i;
 | 
						|
					return 0;
 | 
						|
				}
 | 
						|
 | 
						|
				++hshcol;
 | 
						|
			}
 | 
						|
 | 
						|
			else
 | 
						|
				++hshsave;
 | 
						|
		}
 | 
						|
 | 
						|
	/* Make a new dfa. */
 | 
						|
 | 
						|
	if (++lastdfa >= current_max_dfas)
 | 
						|
		increase_max_dfas ();
 | 
						|
 | 
						|
	newds = lastdfa;
 | 
						|
 | 
						|
	dss[newds] = allocate_integer_array (numstates + 1);
 | 
						|
 | 
						|
	/* If we haven't already sorted the states in sns, we do so now,
 | 
						|
	 * so that future comparisons with it can be made quickly.
 | 
						|
	 */
 | 
						|
 | 
						|
	if (!didsort)
 | 
						|
		bubble (sns, numstates);
 | 
						|
 | 
						|
	for (i = 1; i <= numstates; ++i)
 | 
						|
		dss[newds][i] = sns[i];
 | 
						|
 | 
						|
	dfasiz[newds] = numstates;
 | 
						|
	dhash[newds] = hashval;
 | 
						|
 | 
						|
	if (nacc == 0) {
 | 
						|
		if (reject)
 | 
						|
			dfaacc[newds].dfaacc_set = (int *) 0;
 | 
						|
		else
 | 
						|
			dfaacc[newds].dfaacc_state = 0;
 | 
						|
 | 
						|
		accsiz[newds] = 0;
 | 
						|
	}
 | 
						|
 | 
						|
	else if (reject) {
 | 
						|
		/* We sort the accepting set in increasing order so the
 | 
						|
		 * disambiguating rule that the first rule listed is considered
 | 
						|
		 * match in the event of ties will work.  We use a bubble
 | 
						|
		 * sort since the list is probably quite small.
 | 
						|
		 */
 | 
						|
 | 
						|
		bubble (accset, nacc);
 | 
						|
 | 
						|
		dfaacc[newds].dfaacc_set =
 | 
						|
			allocate_integer_array (nacc + 1);
 | 
						|
 | 
						|
		/* Save the accepting set for later */
 | 
						|
		for (i = 1; i <= nacc; ++i) {
 | 
						|
			dfaacc[newds].dfaacc_set[i] = accset[i];
 | 
						|
 | 
						|
			if (accset[i] <= num_rules)
 | 
						|
				/* Who knows, perhaps a REJECT can yield
 | 
						|
				 * this rule.
 | 
						|
				 */
 | 
						|
				rule_useful[accset[i]] = true;
 | 
						|
		}
 | 
						|
 | 
						|
		accsiz[newds] = nacc;
 | 
						|
	}
 | 
						|
 | 
						|
	else {
 | 
						|
		/* Find lowest numbered rule so the disambiguating rule
 | 
						|
		 * will work.
 | 
						|
		 */
 | 
						|
		j = num_rules + 1;
 | 
						|
 | 
						|
		for (i = 1; i <= nacc; ++i)
 | 
						|
			if (accset[i] < j)
 | 
						|
				j = accset[i];
 | 
						|
 | 
						|
		dfaacc[newds].dfaacc_state = j;
 | 
						|
 | 
						|
		if (j <= num_rules)
 | 
						|
			rule_useful[j] = true;
 | 
						|
	}
 | 
						|
 | 
						|
	*newds_addr = newds;
 | 
						|
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* symfollowset - follow the symbol transitions one step
 | 
						|
 *
 | 
						|
 * synopsis
 | 
						|
 *    numstates = symfollowset( int ds[current_max_dfa_size], int dsize,
 | 
						|
 *				int transsym, int nset[current_max_dfa_size] );
 | 
						|
 */
 | 
						|
 | 
						|
int symfollowset (ds, dsize, transsym, nset)
 | 
						|
     int ds[], dsize, transsym, nset[];
 | 
						|
{
 | 
						|
	int     ns, tsp, sym, i, j, lenccl, ch, numstates, ccllist;
 | 
						|
 | 
						|
	numstates = 0;
 | 
						|
 | 
						|
	for (i = 1; i <= dsize; ++i) {	/* for each nfa state ns in the state set of ds */
 | 
						|
		ns = ds[i];
 | 
						|
		sym = transchar[ns];
 | 
						|
		tsp = trans1[ns];
 | 
						|
 | 
						|
		if (sym < 0) {	/* it's a character class */
 | 
						|
			sym = -sym;
 | 
						|
			ccllist = cclmap[sym];
 | 
						|
			lenccl = ccllen[sym];
 | 
						|
 | 
						|
			if (cclng[sym]) {
 | 
						|
				for (j = 0; j < lenccl; ++j) {
 | 
						|
					/* Loop through negated character
 | 
						|
					 * class.
 | 
						|
					 */
 | 
						|
					ch = ccltbl[ccllist + j];
 | 
						|
 | 
						|
					if (ch == 0)
 | 
						|
						ch = NUL_ec;
 | 
						|
 | 
						|
					if (ch > transsym)
 | 
						|
						/* Transsym isn't in negated
 | 
						|
						 * ccl.
 | 
						|
						 */
 | 
						|
						break;
 | 
						|
 | 
						|
					else if (ch == transsym)
 | 
						|
						/* next 2 */
 | 
						|
						goto bottom;
 | 
						|
				}
 | 
						|
 | 
						|
				/* Didn't find transsym in ccl. */
 | 
						|
				nset[++numstates] = tsp;
 | 
						|
			}
 | 
						|
 | 
						|
			else
 | 
						|
				for (j = 0; j < lenccl; ++j) {
 | 
						|
					ch = ccltbl[ccllist + j];
 | 
						|
 | 
						|
					if (ch == 0)
 | 
						|
						ch = NUL_ec;
 | 
						|
 | 
						|
					if (ch > transsym)
 | 
						|
						break;
 | 
						|
					else if (ch == transsym) {
 | 
						|
						nset[++numstates] = tsp;
 | 
						|
						break;
 | 
						|
					}
 | 
						|
				}
 | 
						|
		}
 | 
						|
 | 
						|
		else if (sym == SYM_EPSILON) {	/* do nothing */
 | 
						|
		}
 | 
						|
 | 
						|
		else if (ABS (ecgroup[sym]) == transsym)
 | 
						|
			nset[++numstates] = tsp;
 | 
						|
 | 
						|
	      bottom:;
 | 
						|
	}
 | 
						|
 | 
						|
	return numstates;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* sympartition - partition characters with same out-transitions
 | 
						|
 *
 | 
						|
 * synopsis
 | 
						|
 *    sympartition( int ds[current_max_dfa_size], int numstates,
 | 
						|
 *			int symlist[numecs], int duplist[numecs] );
 | 
						|
 */
 | 
						|
 | 
						|
void sympartition (ds, numstates, symlist, duplist)
 | 
						|
     int ds[], numstates;
 | 
						|
     int symlist[], duplist[];
 | 
						|
{
 | 
						|
	int     tch, i, j, k, ns, dupfwd[CSIZE + 1], lenccl, cclp, ich;
 | 
						|
 | 
						|
	/* Partitioning is done by creating equivalence classes for those
 | 
						|
	 * characters which have out-transitions from the given state.  Thus
 | 
						|
	 * we are really creating equivalence classes of equivalence classes.
 | 
						|
	 */
 | 
						|
 | 
						|
	for (i = 1; i <= numecs; ++i) {	/* initialize equivalence class list */
 | 
						|
		duplist[i] = i - 1;
 | 
						|
		dupfwd[i] = i + 1;
 | 
						|
	}
 | 
						|
 | 
						|
	duplist[1] = NIL;
 | 
						|
	dupfwd[numecs] = NIL;
 | 
						|
 | 
						|
	for (i = 1; i <= numstates; ++i) {
 | 
						|
		ns = ds[i];
 | 
						|
		tch = transchar[ns];
 | 
						|
 | 
						|
		if (tch != SYM_EPSILON) {
 | 
						|
			if (tch < -lastccl || tch >= csize) {
 | 
						|
				flexfatal (_
 | 
						|
					   ("bad transition character detected in sympartition()"));
 | 
						|
			}
 | 
						|
 | 
						|
			if (tch >= 0) {	/* character transition */
 | 
						|
				int     ec = ecgroup[tch];
 | 
						|
 | 
						|
				mkechar (ec, dupfwd, duplist);
 | 
						|
				symlist[ec] = 1;
 | 
						|
			}
 | 
						|
 | 
						|
			else {	/* character class */
 | 
						|
				tch = -tch;
 | 
						|
 | 
						|
				lenccl = ccllen[tch];
 | 
						|
				cclp = cclmap[tch];
 | 
						|
				mkeccl (ccltbl + cclp, lenccl, dupfwd,
 | 
						|
					duplist, numecs, NUL_ec);
 | 
						|
 | 
						|
				if (cclng[tch]) {
 | 
						|
					j = 0;
 | 
						|
 | 
						|
					for (k = 0; k < lenccl; ++k) {
 | 
						|
						ich = ccltbl[cclp + k];
 | 
						|
 | 
						|
						if (ich == 0)
 | 
						|
							ich = NUL_ec;
 | 
						|
 | 
						|
						for (++j; j < ich; ++j)
 | 
						|
							symlist[j] = 1;
 | 
						|
					}
 | 
						|
 | 
						|
					for (++j; j <= numecs; ++j)
 | 
						|
						symlist[j] = 1;
 | 
						|
				}
 | 
						|
 | 
						|
				else
 | 
						|
					for (k = 0; k < lenccl; ++k) {
 | 
						|
						ich = ccltbl[cclp + k];
 | 
						|
 | 
						|
						if (ich == 0)
 | 
						|
							ich = NUL_ec;
 | 
						|
 | 
						|
						symlist[ich] = 1;
 | 
						|
					}
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 |