252 lines
		
	
	
		
			7.2 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			252 lines
		
	
	
		
			7.2 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| 
 | |
| #define UNPAGED 1	/* for proper kmain() prototype */
 | |
| 
 | |
| #include "kernel/kernel.h"
 | |
| #include <assert.h>
 | |
| #include <stdlib.h>
 | |
| #include <minix/minlib.h>
 | |
| #include <minix/const.h>
 | |
| #include <minix/type.h>
 | |
| #include <minix/board.h>
 | |
| #include <minix/com.h>
 | |
| #include <sys/types.h>
 | |
| #include <sys/param.h>
 | |
| #include <sys/reboot.h>
 | |
| #include <machine/partition.h>
 | |
| #include "string.h"
 | |
| #include "arch_proto.h"
 | |
| #include "direct_utils.h"
 | |
| #include "serial.h"
 | |
| #include "glo.h"
 | |
| #include <machine/multiboot.h>
 | |
| 
 | |
| #if USE_SYSDEBUG
 | |
| #define MULTIBOOT_VERBOSE 1
 | |
| #endif
 | |
| 
 | |
| /* to-be-built kinfo struct, diagnostics buffer */
 | |
| kinfo_t kinfo;
 | |
| struct kmessages kmessages;
 | |
| 
 | |
| /* pg_utils.c uses this; in this phase, there is a 1:1 mapping. */
 | |
| phys_bytes vir2phys(void *addr) { return (phys_bytes) addr; } 
 | |
| 
 | |
| /* mb_utils.c uses this; we can reach it directly */
 | |
| char *video_mem = (char *) MULTIBOOT_VIDEO_BUFFER;
 | |
| 
 | |
| /* String length used for mb_itoa */
 | |
| #define ITOA_BUFFER_SIZE 20
 | |
| 
 | |
| /* Kernel may use memory */
 | |
| int kernel_may_alloc = 1;
 | |
| 
 | |
| static int mb_set_param(char *bigbuf, char *name, char *value, kinfo_t *cbi) 
 | |
| {
 | |
| 	char *p = bigbuf;
 | |
| 	char *bufend = bigbuf + MULTIBOOT_PARAM_BUF_SIZE;
 | |
| 	char *q;
 | |
| 	int namelen = strlen(name);
 | |
| 	int valuelen = strlen(value);
 | |
| 
 | |
| 	/* Some variables we recognize */
 | |
| 	if(!strcmp(name, SERVARNAME)) { cbi->do_serial_debug = 1; }
 | |
| 	if(!strcmp(name, SERBAUDVARNAME)) { cbi->serial_debug_baud = atoi(value); }
 | |
| 
 | |
| 	/* Delete the item if already exists */
 | |
| 	while (*p) {
 | |
| 		if (strncmp(p, name, namelen) == 0 && p[namelen] == '=') {
 | |
| 			q = p;
 | |
| 			while (*q) q++;
 | |
| 			for (q++; q < bufend; q++, p++)
 | |
| 				*p = *q;
 | |
| 			break;
 | |
| 		}
 | |
| 		while (*p++)
 | |
| 			;
 | |
| 		p++;
 | |
| 	}
 | |
| 	
 | |
| 	for (p = bigbuf; p < bufend && (*p || *(p + 1)); p++)
 | |
| 		;
 | |
| 	if (p > bigbuf) p++;
 | |
| 	
 | |
| 	/* Make sure there's enough space for the new parameter */
 | |
| 	if (p + namelen + valuelen + 3 > bufend)
 | |
| 		return -1;
 | |
| 	
 | |
| 	strcpy(p, name);
 | |
| 	p[namelen] = '=';
 | |
| 	strcpy(p + namelen + 1, value);
 | |
| 	p[namelen + valuelen + 1] = 0;
 | |
| 	p[namelen + valuelen + 2] = 0;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int overlaps(multiboot_module_t *mod, int n, int cmp_mod)
 | |
| {
 | |
| 	multiboot_module_t *cmp = &mod[cmp_mod];
 | |
| 	int m;
 | |
| 
 | |
| #define INRANGE(mod, v) ((v) >= mod->mod_start && (v) < mod->mod_end)
 | |
| #define OVERLAP(mod1, mod2) (INRANGE(mod1, mod2->mod_start) || \
 | |
| 			INRANGE(mod1, mod2->mod_end-1))
 | |
| 	for(m = 0; m < n; m++) {
 | |
| 		multiboot_module_t *thismod = &mod[m];
 | |
| 		if(m == cmp_mod) continue;
 | |
| 		if(OVERLAP(thismod, cmp))
 | |
| 			return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void get_parameters(u32_t ebx, kinfo_t *cbi) 
 | |
| {
 | |
| 	multiboot_memory_map_t *mmap;
 | |
| 	multiboot_info_t *mbi = &cbi->mbi;
 | |
| 	int var_i,value_i, m, k;
 | |
| 	char *p;
 | |
| 	extern char _kern_phys_base, _kern_vir_base, _kern_size,
 | |
| 		_kern_unpaged_start, _kern_unpaged_end;
 | |
| 	phys_bytes kernbase = (phys_bytes) &_kern_phys_base,
 | |
| 		kernsize = (phys_bytes) &_kern_size;
 | |
| #define BUF 1024
 | |
| 	static char cmdline[BUF];
 | |
| 
 | |
| 	/* get our own copy of the multiboot info struct and module list */
 | |
| 	memcpy((void *) mbi, (void *) ebx, sizeof(*mbi));
 | |
| 
 | |
| 	/* Set various bits of info for the higher-level kernel. */
 | |
| 	cbi->mem_high_phys = 0;
 | |
| 	cbi->user_sp = (vir_bytes) &_kern_vir_base;
 | |
| 	cbi->vir_kern_start = (vir_bytes) &_kern_vir_base;
 | |
| 	cbi->bootstrap_start = (vir_bytes) &_kern_unpaged_start;
 | |
| 	cbi->bootstrap_len = (vir_bytes) &_kern_unpaged_end -
 | |
| 		cbi->bootstrap_start;
 | |
| 	cbi->kmess = &kmess;
 | |
| 
 | |
| 	/* set some configurable defaults */
 | |
| 	cbi->do_serial_debug = 0;
 | |
| 	cbi->serial_debug_baud = 115200;
 | |
| 
 | |
| 	/* parse boot command line */
 | |
| 	if (mbi->mi_flags & MULTIBOOT_INFO_HAS_CMDLINE) {
 | |
| 		static char var[BUF];
 | |
| 		static char value[BUF];
 | |
| 
 | |
| 		/* Override values with cmdline argument */
 | |
| 		memcpy(cmdline, (void *) mbi->mi_cmdline, BUF);
 | |
| 		p = cmdline;
 | |
| 		while (*p) {
 | |
| 			var_i = 0;
 | |
| 			value_i = 0;
 | |
| 			while (*p == ' ') p++;
 | |
| 			if (!*p) break;
 | |
| 			while (*p && *p != '=' && *p != ' ' && var_i < BUF - 1) 
 | |
| 				var[var_i++] = *p++ ;
 | |
| 			var[var_i] = 0;
 | |
| 			if (*p++ != '=') continue; /* skip if not name=value */
 | |
| 			while (*p && *p != ' ' && value_i < BUF - 1) 
 | |
| 				value[value_i++] = *p++ ;
 | |
| 			value[value_i] = 0;
 | |
| 			
 | |
| 			mb_set_param(cbi->param_buf, var, value, cbi);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
|         /* let higher levels know what we are booting on */
 | |
|         mb_set_param(cbi->param_buf, ARCHVARNAME, (char *)get_board_arch_name(BOARD_ID_INTEL), cbi);
 | |
| 	mb_set_param(cbi->param_buf, BOARDVARNAME,(char *)get_board_name(BOARD_ID_INTEL) , cbi);
 | |
| 
 | |
| 	/* round user stack down to leave a gap to catch kernel
 | |
| 	 * stack overflow; and to distinguish kernel and user addresses
 | |
| 	 * at a glance (0xf.. vs 0xe..) 
 | |
| 	 */
 | |
| 	cbi->user_sp &= 0xF0000000;
 | |
| 	cbi->user_end = cbi->user_sp;
 | |
| 
 | |
| 	/* kernel bytes without bootstrap code/data that is currently
 | |
| 	 * still needed but will be freed after bootstrapping.
 | |
| 	 */
 | |
| 	kinfo.kernel_allocated_bytes = (phys_bytes) &_kern_size;
 | |
| 	kinfo.kernel_allocated_bytes -= cbi->bootstrap_len;
 | |
| 
 | |
| 	assert(!(cbi->bootstrap_start % I386_PAGE_SIZE));
 | |
| 	cbi->bootstrap_len = rounddown(cbi->bootstrap_len, I386_PAGE_SIZE);
 | |
| 	assert(mbi->mi_flags & MULTIBOOT_INFO_HAS_MODS);
 | |
| 	assert(mbi->mi_mods_count < MULTIBOOT_MAX_MODS);
 | |
| 	assert(mbi->mi_mods_count > 0);
 | |
| 	memcpy(&cbi->module_list, (void *) mbi->mi_mods_addr,
 | |
| 		mbi->mi_mods_count * sizeof(multiboot_module_t));
 | |
| 	
 | |
| 	memset(cbi->memmap, 0, sizeof(cbi->memmap));
 | |
| 	/* mem_map has a variable layout */
 | |
| 	if(mbi->mi_flags & MULTIBOOT_INFO_HAS_MMAP) {
 | |
| 		cbi->mmap_size = 0;
 | |
| 	        for (mmap = (multiboot_memory_map_t *) mbi->mmap_addr;
 | |
|        	     (unsigned long) mmap < mbi->mmap_addr + mbi->mmap_length;
 | |
|        	       mmap = (multiboot_memory_map_t *) 
 | |
| 		      	((unsigned long) mmap + mmap->mm_size + sizeof(mmap->mm_size))) {
 | |
| 			if(mmap->mm_type != MULTIBOOT_MEMORY_AVAILABLE) continue;
 | |
| 			add_memmap(cbi, mmap->mm_base_addr, mmap->mm_length);
 | |
| 		}
 | |
| 	} else {
 | |
| 		assert(mbi->mi_flags & MULTIBOOT_INFO_HAS_MEMORY);
 | |
| 		add_memmap(cbi, 0, mbi->mi_mem_lower*1024);
 | |
| 		add_memmap(cbi, 0x100000, mbi->mi_mem_upper*1024);
 | |
| 	}
 | |
| 
 | |
| 	/* Sanity check: the kernel nor any of the modules may overlap
 | |
| 	 * with each other. Pretend the kernel is an extra module for a
 | |
| 	 * second.
 | |
| 	 */
 | |
| 	k = mbi->mi_mods_count;
 | |
| 	assert(k < MULTIBOOT_MAX_MODS);
 | |
| 	cbi->module_list[k].mod_start = kernbase;
 | |
| 	cbi->module_list[k].mod_end = kernbase + kernsize;
 | |
| 	cbi->mods_with_kernel = mbi->mi_mods_count+1;
 | |
| 	cbi->kern_mod = k;
 | |
| 
 | |
| 	for(m = 0; m < cbi->mods_with_kernel; m++) {
 | |
| #if 0
 | |
| 		printf("checking overlap of module %08lx-%08lx\n",
 | |
| 		  cbi->module_list[m].mod_start, cbi->module_list[m].mod_end);
 | |
| #endif
 | |
| 		if(overlaps(cbi->module_list, cbi->mods_with_kernel, m))
 | |
| 			panic("overlapping boot modules/kernel");
 | |
| 		/* We cut out the bits of memory that we know are
 | |
| 		 * occupied by the kernel and boot modules.
 | |
| 		 */
 | |
| 		cut_memmap(cbi,
 | |
| 			cbi->module_list[m].mod_start, 
 | |
| 			cbi->module_list[m].mod_end);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| kinfo_t *pre_init(u32_t magic, u32_t ebx)
 | |
| {
 | |
| 	/* Get our own copy boot params pointed to by ebx.
 | |
| 	 * Here we find out whether we should do serial output.
 | |
| 	 */
 | |
| 	get_parameters(ebx, &kinfo);
 | |
| 
 | |
| 	assert(magic == MULTIBOOT_INFO_MAGIC);
 | |
| 
 | |
| 	/* Make and load a pagetable that will map the kernel
 | |
| 	 * to where it should be; but first a 1:1 mapping so
 | |
| 	 * this code stays where it should be.
 | |
| 	 */
 | |
| 	pg_clear();
 | |
| 	pg_identity(&kinfo);
 | |
| 	kinfo.freepde_start = pg_mapkernel();
 | |
| 	pg_load();
 | |
| 	vm_enable_paging();
 | |
| 
 | |
| 	/* Done, return boot info so it can be passed to kmain(). */
 | |
| 	return &kinfo;
 | |
| }
 | |
| 
 | |
| void send_diag_sig(void) { }
 | |
| void minix_shutdown(minix_timer_t *t) { arch_shutdown(0); }
 | |
| void busy_delay_ms(int x) { }
 | |
| int raise(int sig) { panic("raise(%d)\n", sig); }
 | 
