 84d9c625bf
			
		
	
	
		84d9c625bf
		
	
	
	
	
		
			
			- Fix for possible unset uid/gid in toproto
 - Fix for default mtree style
 - Update libelf
 - Importing libexecinfo
 - Resynchronize GCC, mpc, gmp, mpfr
 - build.sh: Replace params with show-params.
     This has been done as the make target has been renamed in the same
     way, while a new target named params has been added. This new
     target generates a file containing all the parameters, instead of
     printing it on the console.
 - Update test48 with new etc/services (Fix by Ben Gras <ben@minix3.org)
     get getservbyport() out of the inner loop
Change-Id: Ie6ad5226fa2621ff9f0dee8782ea48f9443d2091
		
	
			
		
			
				
	
	
		
			967 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			967 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* $NetBSD: sha2.c,v 1.24 2013/06/09 19:46:56 christos Exp $ */
 | |
| /*	$KAME: sha2.c,v 1.9 2003/07/20 00:28:38 itojun Exp $	*/
 | |
| 
 | |
| /*
 | |
|  * sha2.c
 | |
|  *
 | |
|  * Version 1.0.0beta1
 | |
|  *
 | |
|  * Written by Aaron D. Gifford <me@aarongifford.com>
 | |
|  *
 | |
|  * Copyright 2000 Aaron D. Gifford.  All rights reserved.
 | |
|  *
 | |
|  * Redistribution and use in source and binary forms, with or without
 | |
|  * modification, are permitted provided that the following conditions
 | |
|  * are met:
 | |
|  * 1. Redistributions of source code must retain the above copyright
 | |
|  *    notice, this list of conditions and the following disclaimer.
 | |
|  * 2. Redistributions in binary form must reproduce the above copyright
 | |
|  *    notice, this list of conditions and the following disclaimer in the
 | |
|  *    documentation and/or other materials provided with the distribution.
 | |
|  * 3. Neither the name of the copyright holder nor the names of contributors
 | |
|  *    may be used to endorse or promote products derived from this software
 | |
|  *    without specific prior written permission.
 | |
|  *
 | |
|  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) AND CONTRIBUTOR(S) ``AS IS'' AND
 | |
|  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 | |
|  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 | |
|  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR(S) OR CONTRIBUTOR(S) BE LIABLE
 | |
|  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 | |
|  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 | |
|  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 | |
|  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 | |
|  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 | |
|  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 | |
|  * SUCH DAMAGE.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #if HAVE_NBTOOL_CONFIG_H
 | |
| #include "nbtool_config.h"
 | |
| #endif
 | |
| 
 | |
| #include <sys/cdefs.h>
 | |
| 
 | |
| #if defined(_KERNEL) || defined(_STANDALONE)
 | |
| __KERNEL_RCSID(0, "$NetBSD: sha2.c,v 1.24 2013/06/09 19:46:56 christos Exp $");
 | |
| 
 | |
| #include <sys/param.h>	/* XXX: to pull <machine/macros.h> for vax memset(9) */
 | |
| #include <lib/libkern/libkern.h>
 | |
| 
 | |
| #else
 | |
| 
 | |
| #if defined(LIBC_SCCS) && !defined(lint)
 | |
| __RCSID("$NetBSD: sha2.c,v 1.24 2013/06/09 19:46:56 christos Exp $");
 | |
| #endif /* LIBC_SCCS and not lint */
 | |
| 
 | |
| #include "namespace.h"
 | |
| #include <string.h>
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #include <sys/types.h>
 | |
| #include <sys/sha2.h>
 | |
| 
 | |
| #if HAVE_SYS_ENDIAN_H
 | |
| # include <sys/endian.h>
 | |
| #endif
 | |
| 
 | |
| /*** SHA-256/384/512 Various Length Definitions ***********************/
 | |
| /* NOTE: Most of these are in sha2.h */
 | |
| #define SHA256_SHORT_BLOCK_LENGTH	(SHA256_BLOCK_LENGTH - 8)
 | |
| #define SHA384_SHORT_BLOCK_LENGTH	(SHA384_BLOCK_LENGTH - 16)
 | |
| #define SHA512_SHORT_BLOCK_LENGTH	(SHA512_BLOCK_LENGTH - 16)
 | |
| 
 | |
| /*
 | |
|  * Macro for incrementally adding the unsigned 64-bit integer n to the
 | |
|  * unsigned 128-bit integer (represented using a two-element array of
 | |
|  * 64-bit words):
 | |
|  */
 | |
| #define ADDINC128(w,n)	{ \
 | |
| 	(w)[0] += (uint64_t)(n); \
 | |
| 	if ((w)[0] < (n)) { \
 | |
| 		(w)[1]++; \
 | |
| 	} \
 | |
| }
 | |
| 
 | |
| /*** THE SIX LOGICAL FUNCTIONS ****************************************/
 | |
| /*
 | |
|  * Bit shifting and rotation (used by the six SHA-XYZ logical functions:
 | |
|  *
 | |
|  *   NOTE:  The naming of R and S appears backwards here (R is a SHIFT and
 | |
|  *   S is a ROTATION) because the SHA-256/384/512 description document
 | |
|  *   (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this
 | |
|  *   same "backwards" definition.
 | |
|  */
 | |
| /* Shift-right (used in SHA-256, SHA-384, and SHA-512): */
 | |
| #define R(b,x) 		((x) >> (b))
 | |
| /* 32-bit Rotate-right (used in SHA-256): */
 | |
| #define S32(b,x)	(((x) >> (b)) | ((x) << (32 - (b))))
 | |
| /* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
 | |
| #define S64(b,x)	(((x) >> (b)) | ((x) << (64 - (b))))
 | |
| 
 | |
| /* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */
 | |
| #define Ch(x,y,z)	(((x) & (y)) ^ ((~(x)) & (z)))
 | |
| #define Maj(x,y,z)	(((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
 | |
| 
 | |
| /* Four of six logical functions used in SHA-256: */
 | |
| #define Sigma0_256(x)	(S32(2,  (x)) ^ S32(13, (x)) ^ S32(22, (x)))
 | |
| #define Sigma1_256(x)	(S32(6,  (x)) ^ S32(11, (x)) ^ S32(25, (x)))
 | |
| #define sigma0_256(x)	(S32(7,  (x)) ^ S32(18, (x)) ^ R(3 ,   (x)))
 | |
| #define sigma1_256(x)	(S32(17, (x)) ^ S32(19, (x)) ^ R(10,   (x)))
 | |
| 
 | |
| /* Four of six logical functions used in SHA-384 and SHA-512: */
 | |
| #define Sigma0_512(x)	(S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
 | |
| #define Sigma1_512(x)	(S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
 | |
| #define sigma0_512(x)	(S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7,   (x)))
 | |
| #define sigma1_512(x)	(S64(19, (x)) ^ S64(61, (x)) ^ R( 6,   (x)))
 | |
| 
 | |
| /*** INTERNAL FUNCTION PROTOTYPES *************************************/
 | |
| /* NOTE: These should not be accessed directly from outside this
 | |
|  * library -- they are intended for private internal visibility/use
 | |
|  * only.
 | |
|  */
 | |
| static void SHA512_Last(SHA512_CTX *);
 | |
| void SHA224_Transform(SHA224_CTX *, const uint32_t*);
 | |
| void SHA256_Transform(SHA256_CTX *, const uint32_t*);
 | |
| void SHA384_Transform(SHA384_CTX *, const uint64_t*);
 | |
| void SHA512_Transform(SHA512_CTX *, const uint64_t*);
 | |
| 
 | |
| 
 | |
| /*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
 | |
| /* Hash constant words K for SHA-256: */
 | |
| static const uint32_t K256[64] = {
 | |
| 	0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
 | |
| 	0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
 | |
| 	0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
 | |
| 	0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
 | |
| 	0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
 | |
| 	0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
 | |
| 	0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
 | |
| 	0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
 | |
| 	0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
 | |
| 	0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
 | |
| 	0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
 | |
| 	0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
 | |
| 	0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
 | |
| 	0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
 | |
| 	0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
 | |
| 	0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
 | |
| };
 | |
| 
 | |
| /* Initial hash value H for SHA-224: */
 | |
| static const uint32_t sha224_initial_hash_value[8] = {
 | |
| 	0xc1059ed8UL,
 | |
| 	0x367cd507UL,
 | |
| 	0x3070dd17UL,
 | |
| 	0xf70e5939UL,
 | |
| 	0xffc00b31UL,
 | |
| 	0x68581511UL,
 | |
| 	0x64f98fa7UL,
 | |
| 	0xbefa4fa4UL
 | |
| };
 | |
| 
 | |
| /* Initial hash value H for SHA-256: */
 | |
| static const uint32_t sha256_initial_hash_value[8] = {
 | |
| 	0x6a09e667UL,
 | |
| 	0xbb67ae85UL,
 | |
| 	0x3c6ef372UL,
 | |
| 	0xa54ff53aUL,
 | |
| 	0x510e527fUL,
 | |
| 	0x9b05688cUL,
 | |
| 	0x1f83d9abUL,
 | |
| 	0x5be0cd19UL
 | |
| };
 | |
| 
 | |
| /* Hash constant words K for SHA-384 and SHA-512: */
 | |
| static const uint64_t K512[80] = {
 | |
| 	0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
 | |
| 	0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
 | |
| 	0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
 | |
| 	0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
 | |
| 	0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
 | |
| 	0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
 | |
| 	0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
 | |
| 	0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
 | |
| 	0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
 | |
| 	0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
 | |
| 	0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
 | |
| 	0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
 | |
| 	0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
 | |
| 	0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
 | |
| 	0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
 | |
| 	0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
 | |
| 	0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
 | |
| 	0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
 | |
| 	0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
 | |
| 	0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
 | |
| 	0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
 | |
| 	0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
 | |
| 	0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
 | |
| 	0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
 | |
| 	0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
 | |
| 	0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
 | |
| 	0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
 | |
| 	0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
 | |
| 	0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
 | |
| 	0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
 | |
| 	0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
 | |
| 	0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
 | |
| 	0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
 | |
| 	0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
 | |
| 	0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
 | |
| 	0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
 | |
| 	0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
 | |
| 	0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
 | |
| 	0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
 | |
| 	0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
 | |
| };
 | |
| 
 | |
| /* Initial hash value H for SHA-384 */
 | |
| static const uint64_t sha384_initial_hash_value[8] = {
 | |
| 	0xcbbb9d5dc1059ed8ULL,
 | |
| 	0x629a292a367cd507ULL,
 | |
| 	0x9159015a3070dd17ULL,
 | |
| 	0x152fecd8f70e5939ULL,
 | |
| 	0x67332667ffc00b31ULL,
 | |
| 	0x8eb44a8768581511ULL,
 | |
| 	0xdb0c2e0d64f98fa7ULL,
 | |
| 	0x47b5481dbefa4fa4ULL
 | |
| };
 | |
| 
 | |
| /* Initial hash value H for SHA-512 */
 | |
| static const uint64_t sha512_initial_hash_value[8] = {
 | |
| 	0x6a09e667f3bcc908ULL,
 | |
| 	0xbb67ae8584caa73bULL,
 | |
| 	0x3c6ef372fe94f82bULL,
 | |
| 	0xa54ff53a5f1d36f1ULL,
 | |
| 	0x510e527fade682d1ULL,
 | |
| 	0x9b05688c2b3e6c1fULL,
 | |
| 	0x1f83d9abfb41bd6bULL,
 | |
| 	0x5be0cd19137e2179ULL
 | |
| };
 | |
| 
 | |
| #if !defined(_KERNEL) && !defined(_STANDALONE)
 | |
| #if defined(__weak_alias)
 | |
| __weak_alias(SHA224_Init,_SHA224_Init) 
 | |
| __weak_alias(SHA224_Update,_SHA224_Update)
 | |
| __weak_alias(SHA224_Final,_SHA224_Final)
 | |
| __weak_alias(SHA224_Transform,_SHA224_Transform)
 | |
| 
 | |
| __weak_alias(SHA256_Init,_SHA256_Init) 
 | |
| __weak_alias(SHA256_Update,_SHA256_Update)
 | |
| __weak_alias(SHA256_Final,_SHA256_Final)
 | |
| __weak_alias(SHA256_Transform,_SHA256_Transform)
 | |
| 
 | |
| __weak_alias(SHA384_Init,_SHA384_Init) 
 | |
| __weak_alias(SHA384_Update,_SHA384_Update)
 | |
| __weak_alias(SHA384_Final,_SHA384_Final)
 | |
| __weak_alias(SHA384_Transform,_SHA384_Transform)
 | |
| 
 | |
| __weak_alias(SHA512_Init,_SHA512_Init) 
 | |
| __weak_alias(SHA512_Update,_SHA512_Update)
 | |
| __weak_alias(SHA512_Final,_SHA512_Final)
 | |
| __weak_alias(SHA512_Transform,_SHA512_Transform)
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| /*** SHA-256: *********************************************************/
 | |
| int
 | |
| SHA256_Init(SHA256_CTX *context)
 | |
| {
 | |
| 	if (context == NULL)
 | |
| 		return 1;
 | |
| 
 | |
| 	memcpy(context->state, sha256_initial_hash_value,
 | |
| 	    (size_t)(SHA256_DIGEST_LENGTH));
 | |
| 	memset(context->buffer, 0, (size_t)(SHA256_BLOCK_LENGTH));
 | |
| 	context->bitcount = 0;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| #ifdef SHA2_UNROLL_TRANSFORM
 | |
| 
 | |
| /* Unrolled SHA-256 round macros: */
 | |
| 
 | |
| #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h)	\
 | |
| 	W256[j] = be32dec(data);		\
 | |
| 	++data;					\
 | |
| 	T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
 | |
|              K256[j] + W256[j]; \
 | |
| 	(d) += T1; \
 | |
| 	(h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
 | |
| 	j++
 | |
| 
 | |
| #define ROUND256(a,b,c,d,e,f,g,h)	\
 | |
| 	s0 = W256[(j+1)&0x0f]; \
 | |
| 	s0 = sigma0_256(s0); \
 | |
| 	s1 = W256[(j+14)&0x0f]; \
 | |
| 	s1 = sigma1_256(s1); \
 | |
| 	T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + \
 | |
| 	     (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \
 | |
| 	(d) += T1; \
 | |
| 	(h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
 | |
| 	j++
 | |
| 
 | |
| void 
 | |
| SHA256_Transform(SHA256_CTX *context, const uint32_t *data)
 | |
| {
 | |
| 	uint32_t	a, b, c, d, e, f, g, h, s0, s1;
 | |
| 	uint32_t	T1, *W256;
 | |
| 	int		j;
 | |
| 
 | |
| 	W256 = (uint32_t *)context->buffer;
 | |
| 
 | |
| 	/* Initialize registers with the prev. intermediate value */
 | |
| 	a = context->state[0];
 | |
| 	b = context->state[1];
 | |
| 	c = context->state[2];
 | |
| 	d = context->state[3];
 | |
| 	e = context->state[4];
 | |
| 	f = context->state[5];
 | |
| 	g = context->state[6];
 | |
| 	h = context->state[7];
 | |
| 
 | |
| 	j = 0;
 | |
| 	do {
 | |
| 		/* Rounds 0 to 15 (unrolled): */
 | |
| 		ROUND256_0_TO_15(a,b,c,d,e,f,g,h);
 | |
| 		ROUND256_0_TO_15(h,a,b,c,d,e,f,g);
 | |
| 		ROUND256_0_TO_15(g,h,a,b,c,d,e,f);
 | |
| 		ROUND256_0_TO_15(f,g,h,a,b,c,d,e);
 | |
| 		ROUND256_0_TO_15(e,f,g,h,a,b,c,d);
 | |
| 		ROUND256_0_TO_15(d,e,f,g,h,a,b,c);
 | |
| 		ROUND256_0_TO_15(c,d,e,f,g,h,a,b);
 | |
| 		ROUND256_0_TO_15(b,c,d,e,f,g,h,a);
 | |
| 	} while (j < 16);
 | |
| 
 | |
| 	/* Now for the remaining rounds to 64: */
 | |
| 	do {
 | |
| 		ROUND256(a,b,c,d,e,f,g,h);
 | |
| 		ROUND256(h,a,b,c,d,e,f,g);
 | |
| 		ROUND256(g,h,a,b,c,d,e,f);
 | |
| 		ROUND256(f,g,h,a,b,c,d,e);
 | |
| 		ROUND256(e,f,g,h,a,b,c,d);
 | |
| 		ROUND256(d,e,f,g,h,a,b,c);
 | |
| 		ROUND256(c,d,e,f,g,h,a,b);
 | |
| 		ROUND256(b,c,d,e,f,g,h,a);
 | |
| 	} while (j < 64);
 | |
| 
 | |
| 	/* Compute the current intermediate hash value */
 | |
| 	context->state[0] += a;
 | |
| 	context->state[1] += b;
 | |
| 	context->state[2] += c;
 | |
| 	context->state[3] += d;
 | |
| 	context->state[4] += e;
 | |
| 	context->state[5] += f;
 | |
| 	context->state[6] += g;
 | |
| 	context->state[7] += h;
 | |
| 
 | |
| 	/* Clean up */
 | |
| 	a = b = c = d = e = f = g = h = T1 = 0;
 | |
| }
 | |
| 
 | |
| #else /* SHA2_UNROLL_TRANSFORM */
 | |
| 
 | |
| void
 | |
| SHA256_Transform(SHA256_CTX *context, const uint32_t *data)
 | |
| {
 | |
| 	uint32_t	a, b, c, d, e, f, g, h, s0, s1;
 | |
| 	uint32_t	T1, T2, *W256;
 | |
| 	int		j;
 | |
| 
 | |
| 	W256 = (uint32_t *)(void *)context->buffer;
 | |
| 
 | |
| 	/* Initialize registers with the prev. intermediate value */
 | |
| 	a = context->state[0];
 | |
| 	b = context->state[1];
 | |
| 	c = context->state[2];
 | |
| 	d = context->state[3];
 | |
| 	e = context->state[4];
 | |
| 	f = context->state[5];
 | |
| 	g = context->state[6];
 | |
| 	h = context->state[7];
 | |
| 
 | |
| 	j = 0;
 | |
| 	do {
 | |
| 		W256[j] = be32dec(data);
 | |
| 		++data;
 | |
| 		/* Apply the SHA-256 compression function to update a..h */
 | |
| 		T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j];
 | |
| 		T2 = Sigma0_256(a) + Maj(a, b, c);
 | |
| 		h = g;
 | |
| 		g = f;
 | |
| 		f = e;
 | |
| 		e = d + T1;
 | |
| 		d = c;
 | |
| 		c = b;
 | |
| 		b = a;
 | |
| 		a = T1 + T2;
 | |
| 
 | |
| 		j++;
 | |
| 	} while (j < 16);
 | |
| 
 | |
| 	do {
 | |
| 		/* Part of the message block expansion: */
 | |
| 		s0 = W256[(j+1)&0x0f];
 | |
| 		s0 = sigma0_256(s0);
 | |
| 		s1 = W256[(j+14)&0x0f];
 | |
| 		s1 = sigma1_256(s1);
 | |
| 
 | |
| 		/* Apply the SHA-256 compression function to update a..h */
 | |
| 		T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] +
 | |
| 		     (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);
 | |
| 		T2 = Sigma0_256(a) + Maj(a, b, c);
 | |
| 		h = g;
 | |
| 		g = f;
 | |
| 		f = e;
 | |
| 		e = d + T1;
 | |
| 		d = c;
 | |
| 		c = b;
 | |
| 		b = a;
 | |
| 		a = T1 + T2;
 | |
| 
 | |
| 		j++;
 | |
| 	} while (j < 64);
 | |
| 
 | |
| 	/* Compute the current intermediate hash value */
 | |
| 	context->state[0] += a;
 | |
| 	context->state[1] += b;
 | |
| 	context->state[2] += c;
 | |
| 	context->state[3] += d;
 | |
| 	context->state[4] += e;
 | |
| 	context->state[5] += f;
 | |
| 	context->state[6] += g;
 | |
| 	context->state[7] += h;
 | |
| 
 | |
| 	/* Clean up */
 | |
| 	a = b = c = d = e = f = g = h = T1 = T2 = 0;
 | |
| }
 | |
| 
 | |
| #endif /* SHA2_UNROLL_TRANSFORM */
 | |
| 
 | |
| int
 | |
| SHA256_Update(SHA256_CTX *context, const uint8_t *data, size_t len)
 | |
| {
 | |
| 	unsigned int	freespace, usedspace;
 | |
| 
 | |
| 	if (len == 0) {
 | |
| 		/* Calling with no data is valid - we do nothing */
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	usedspace = (unsigned int)((context->bitcount >> 3) %
 | |
| 				    SHA256_BLOCK_LENGTH);
 | |
| 	if (usedspace > 0) {
 | |
| 		/* Calculate how much free space is available in the buffer */
 | |
| 		freespace = SHA256_BLOCK_LENGTH - usedspace;
 | |
| 
 | |
| 		if (len >= freespace) {
 | |
| 			/* Fill the buffer completely and process it */
 | |
| 			memcpy(&context->buffer[usedspace], data,
 | |
| 			    (size_t)(freespace));
 | |
| 			context->bitcount += freespace << 3;
 | |
| 			len -= freespace;
 | |
| 			data += freespace;
 | |
| 			SHA256_Transform(context,
 | |
| 			    (uint32_t *)(void *)context->buffer);
 | |
| 		} else {
 | |
| 			/* The buffer is not yet full */
 | |
| 			memcpy(&context->buffer[usedspace], data, len);
 | |
| 			context->bitcount += len << 3;
 | |
| 			/* Clean up: */
 | |
| 			usedspace = freespace = 0;
 | |
| 			return 1;
 | |
| 		}
 | |
| 	}
 | |
| 	/*
 | |
| 	 * Process as many complete blocks as possible.
 | |
| 	 *
 | |
| 	 * Check alignment of the data pointer. If it is 32bit aligned,
 | |
| 	 * SHA256_Transform can be called directly on the data stream,
 | |
| 	 * otherwise enforce the alignment by copy into the buffer.
 | |
| 	 */
 | |
| 	if ((uintptr_t)data % 4 == 0) {
 | |
| 		while (len >= SHA256_BLOCK_LENGTH) {
 | |
| 			SHA256_Transform(context,
 | |
| 			    (const uint32_t *)(const void *)data);
 | |
| 			context->bitcount += SHA256_BLOCK_LENGTH << 3;
 | |
| 			len -= SHA256_BLOCK_LENGTH;
 | |
| 			data += SHA256_BLOCK_LENGTH;
 | |
| 		}
 | |
| 	} else {
 | |
| 		while (len >= SHA256_BLOCK_LENGTH) {
 | |
| 			memcpy(context->buffer, data, SHA256_BLOCK_LENGTH);
 | |
| 			SHA256_Transform(context,
 | |
| 			    (const uint32_t *)(const void *)context->buffer);
 | |
| 			context->bitcount += SHA256_BLOCK_LENGTH << 3;
 | |
| 			len -= SHA256_BLOCK_LENGTH;
 | |
| 			data += SHA256_BLOCK_LENGTH;
 | |
| 		}
 | |
| 	}
 | |
| 	if (len > 0) {
 | |
| 		/* There's left-overs, so save 'em */
 | |
| 		memcpy(context->buffer, data, len);
 | |
| 		context->bitcount += len << 3;
 | |
| 	}
 | |
| 	/* Clean up: */
 | |
| 	usedspace = freespace = 0;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int
 | |
| SHA224_256_Final(uint8_t digest[], SHA256_CTX *context, size_t len)
 | |
| {
 | |
| 	unsigned int	usedspace;
 | |
| 	size_t i;
 | |
| 
 | |
| 	/* If no digest buffer is passed, we don't bother doing this: */
 | |
| 	if (digest != NULL) {
 | |
| 		usedspace = (unsigned int)((context->bitcount >> 3) %
 | |
| 		    SHA256_BLOCK_LENGTH);
 | |
| 		context->bitcount = htobe64(context->bitcount);
 | |
| 		if (usedspace > 0) {
 | |
| 			/* Begin padding with a 1 bit: */
 | |
| 			context->buffer[usedspace++] = 0x80;
 | |
| 
 | |
| 			if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) {
 | |
| 				/* Set-up for the last transform: */
 | |
| 				memset(&context->buffer[usedspace], 0,
 | |
| 				    (size_t)(SHA256_SHORT_BLOCK_LENGTH -
 | |
| 				    usedspace));
 | |
| 			} else {
 | |
| 				if (usedspace < SHA256_BLOCK_LENGTH) {
 | |
| 					memset(&context->buffer[usedspace], 0,
 | |
| 					    (size_t)(SHA256_BLOCK_LENGTH -
 | |
| 					    usedspace));
 | |
| 				}
 | |
| 				/* Do second-to-last transform: */
 | |
| 				SHA256_Transform(context,
 | |
| 				    (uint32_t *)(void *)context->buffer);
 | |
| 
 | |
| 				/* And set-up for the last transform: */
 | |
| 				memset(context->buffer, 0,
 | |
| 				    (size_t)(SHA256_SHORT_BLOCK_LENGTH));
 | |
| 			}
 | |
| 		} else {
 | |
| 			/* Set-up for the last transform: */
 | |
| 			memset(context->buffer, 0,
 | |
| 			    (size_t)(SHA256_SHORT_BLOCK_LENGTH));
 | |
| 
 | |
| 			/* Begin padding with a 1 bit: */
 | |
| 			*context->buffer = 0x80;
 | |
| 		}
 | |
| 		/* Set the bit count: */
 | |
| 		memcpy(&context->buffer[SHA256_SHORT_BLOCK_LENGTH],
 | |
| 		    &context->bitcount, sizeof(context->bitcount));
 | |
| 
 | |
| 		/* Final transform: */
 | |
| 		SHA256_Transform(context, (uint32_t *)(void *)context->buffer);
 | |
| 
 | |
| 		for (i = 0; i < len / 4; i++)
 | |
| 			be32enc(digest + 4 * i, context->state[i]);
 | |
| 	}
 | |
| 
 | |
| 	/* Clean up state data: */
 | |
| 	memset(context, 0, sizeof(*context));
 | |
| 	usedspace = 0;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| int
 | |
| SHA256_Final(uint8_t digest[], SHA256_CTX *context)
 | |
| {
 | |
| 	return SHA224_256_Final(digest, context, SHA256_DIGEST_LENGTH);
 | |
| }
 | |
| 
 | |
| /*** SHA-224: *********************************************************/
 | |
| int 
 | |
| SHA224_Init(SHA224_CTX *context)
 | |
| {
 | |
| 	if (context == NULL)
 | |
| 		return 1;
 | |
| 
 | |
| 	/* The state and buffer size are driven by SHA256, not by SHA224. */
 | |
| 	memcpy(context->state, sha224_initial_hash_value,
 | |
| 	    (size_t)(SHA256_DIGEST_LENGTH));
 | |
| 	memset(context->buffer, 0, (size_t)(SHA256_BLOCK_LENGTH));
 | |
| 	context->bitcount = 0;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| int
 | |
| SHA224_Update(SHA224_CTX *context, const uint8_t *data, size_t len)
 | |
| {
 | |
| 	return SHA256_Update((SHA256_CTX *)context, data, len);
 | |
| }
 | |
| 
 | |
| void
 | |
| SHA224_Transform(SHA224_CTX *context, const uint32_t *data)
 | |
| {
 | |
| 	SHA256_Transform((SHA256_CTX *)context, data);
 | |
| }
 | |
| 
 | |
| int
 | |
| SHA224_Final(uint8_t digest[], SHA224_CTX *context)
 | |
| {
 | |
| 	return SHA224_256_Final(digest, (SHA256_CTX *)context,
 | |
| 	    SHA224_DIGEST_LENGTH);
 | |
| }
 | |
| 
 | |
| /*** SHA-512: *********************************************************/
 | |
| int
 | |
| SHA512_Init(SHA512_CTX *context)
 | |
| {
 | |
| 	if (context == NULL)
 | |
| 		return 1;
 | |
| 
 | |
| 	memcpy(context->state, sha512_initial_hash_value,
 | |
| 	    (size_t)(SHA512_DIGEST_LENGTH));
 | |
| 	memset(context->buffer, 0, (size_t)(SHA512_BLOCK_LENGTH));
 | |
| 	context->bitcount[0] = context->bitcount[1] =  0;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| #ifdef SHA2_UNROLL_TRANSFORM
 | |
| 
 | |
| /* Unrolled SHA-512 round macros: */
 | |
| #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h)	\
 | |
| 	W512[j] = be64dec(data);		\
 | |
| 	++data;					\
 | |
| 	T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
 | |
|              K512[j] + W512[j]; \
 | |
| 	(d) += T1, \
 | |
| 	(h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)), \
 | |
| 	j++
 | |
| 
 | |
| #define ROUND512(a,b,c,d,e,f,g,h)	\
 | |
| 	s0 = W512[(j+1)&0x0f]; \
 | |
| 	s0 = sigma0_512(s0); \
 | |
| 	s1 = W512[(j+14)&0x0f]; \
 | |
| 	s1 = sigma1_512(s1); \
 | |
| 	T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + K512[j] + \
 | |
|              (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \
 | |
| 	(d) += T1; \
 | |
| 	(h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
 | |
| 	j++
 | |
| 
 | |
| void
 | |
| SHA512_Transform(SHA512_CTX *context, const uint64_t *data)
 | |
| {
 | |
| 	uint64_t	a, b, c, d, e, f, g, h, s0, s1;
 | |
| 	uint64_t	T1, *W512 = (uint64_t *)context->buffer;
 | |
| 	int		j;
 | |
| 
 | |
| 	/* Initialize registers with the prev. intermediate value */
 | |
| 	a = context->state[0];
 | |
| 	b = context->state[1];
 | |
| 	c = context->state[2];
 | |
| 	d = context->state[3];
 | |
| 	e = context->state[4];
 | |
| 	f = context->state[5];
 | |
| 	g = context->state[6];
 | |
| 	h = context->state[7];
 | |
| 
 | |
| 	j = 0;
 | |
| 	do {
 | |
| 		ROUND512_0_TO_15(a,b,c,d,e,f,g,h);
 | |
| 		ROUND512_0_TO_15(h,a,b,c,d,e,f,g);
 | |
| 		ROUND512_0_TO_15(g,h,a,b,c,d,e,f);
 | |
| 		ROUND512_0_TO_15(f,g,h,a,b,c,d,e);
 | |
| 		ROUND512_0_TO_15(e,f,g,h,a,b,c,d);
 | |
| 		ROUND512_0_TO_15(d,e,f,g,h,a,b,c);
 | |
| 		ROUND512_0_TO_15(c,d,e,f,g,h,a,b);
 | |
| 		ROUND512_0_TO_15(b,c,d,e,f,g,h,a);
 | |
| 	} while (j < 16);
 | |
| 
 | |
| 	/* Now for the remaining rounds up to 79: */
 | |
| 	do {
 | |
| 		ROUND512(a,b,c,d,e,f,g,h);
 | |
| 		ROUND512(h,a,b,c,d,e,f,g);
 | |
| 		ROUND512(g,h,a,b,c,d,e,f);
 | |
| 		ROUND512(f,g,h,a,b,c,d,e);
 | |
| 		ROUND512(e,f,g,h,a,b,c,d);
 | |
| 		ROUND512(d,e,f,g,h,a,b,c);
 | |
| 		ROUND512(c,d,e,f,g,h,a,b);
 | |
| 		ROUND512(b,c,d,e,f,g,h,a);
 | |
| 	} while (j < 80);
 | |
| 
 | |
| 	/* Compute the current intermediate hash value */
 | |
| 	context->state[0] += a;
 | |
| 	context->state[1] += b;
 | |
| 	context->state[2] += c;
 | |
| 	context->state[3] += d;
 | |
| 	context->state[4] += e;
 | |
| 	context->state[5] += f;
 | |
| 	context->state[6] += g;
 | |
| 	context->state[7] += h;
 | |
| 
 | |
| 	/* Clean up */
 | |
| 	a = b = c = d = e = f = g = h = T1 = 0;
 | |
| }
 | |
| 
 | |
| #else /* SHA2_UNROLL_TRANSFORM */
 | |
| 
 | |
| void
 | |
| SHA512_Transform(SHA512_CTX *context, const uint64_t *data)
 | |
| {
 | |
| 	uint64_t	a, b, c, d, e, f, g, h, s0, s1;
 | |
| 	uint64_t	T1, T2, *W512 = (void *)context->buffer;
 | |
| 	int		j;
 | |
| 
 | |
| 	/* Initialize registers with the prev. intermediate value */
 | |
| 	a = context->state[0];
 | |
| 	b = context->state[1];
 | |
| 	c = context->state[2];
 | |
| 	d = context->state[3];
 | |
| 	e = context->state[4];
 | |
| 	f = context->state[5];
 | |
| 	g = context->state[6];
 | |
| 	h = context->state[7];
 | |
| 
 | |
| 	j = 0;
 | |
| 	do {
 | |
| 		W512[j] = be64dec(data);
 | |
| 		++data;
 | |
| 		/* Apply the SHA-512 compression function to update a..h */
 | |
| 		T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j];
 | |
| 		T2 = Sigma0_512(a) + Maj(a, b, c);
 | |
| 		h = g;
 | |
| 		g = f;
 | |
| 		f = e;
 | |
| 		e = d + T1;
 | |
| 		d = c;
 | |
| 		c = b;
 | |
| 		b = a;
 | |
| 		a = T1 + T2;
 | |
| 
 | |
| 		j++;
 | |
| 	} while (j < 16);
 | |
| 
 | |
| 	do {
 | |
| 		/* Part of the message block expansion: */
 | |
| 		s0 = W512[(j+1)&0x0f];
 | |
| 		s0 = sigma0_512(s0);
 | |
| 		s1 = W512[(j+14)&0x0f];
 | |
| 		s1 =  sigma1_512(s1);
 | |
| 
 | |
| 		/* Apply the SHA-512 compression function to update a..h */
 | |
| 		T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] +
 | |
| 		     (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);
 | |
| 		T2 = Sigma0_512(a) + Maj(a, b, c);
 | |
| 		h = g;
 | |
| 		g = f;
 | |
| 		f = e;
 | |
| 		e = d + T1;
 | |
| 		d = c;
 | |
| 		c = b;
 | |
| 		b = a;
 | |
| 		a = T1 + T2;
 | |
| 
 | |
| 		j++;
 | |
| 	} while (j < 80);
 | |
| 
 | |
| 	/* Compute the current intermediate hash value */
 | |
| 	context->state[0] += a;
 | |
| 	context->state[1] += b;
 | |
| 	context->state[2] += c;
 | |
| 	context->state[3] += d;
 | |
| 	context->state[4] += e;
 | |
| 	context->state[5] += f;
 | |
| 	context->state[6] += g;
 | |
| 	context->state[7] += h;
 | |
| 
 | |
| 	/* Clean up */
 | |
| 	a = b = c = d = e = f = g = h = T1 = T2 = 0;
 | |
| }
 | |
| 
 | |
| #endif /* SHA2_UNROLL_TRANSFORM */
 | |
| 
 | |
| int
 | |
| SHA512_Update(SHA512_CTX *context, const uint8_t *data, size_t len)
 | |
| {
 | |
| 	unsigned int	freespace, usedspace;
 | |
| 
 | |
| 	if (len == 0) {
 | |
| 		/* Calling with no data is valid - we do nothing */
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	usedspace = (unsigned int)((context->bitcount[0] >> 3) %
 | |
| 	    SHA512_BLOCK_LENGTH);
 | |
| 	if (usedspace > 0) {
 | |
| 		/* Calculate how much free space is available in the buffer */
 | |
| 		freespace = SHA512_BLOCK_LENGTH - usedspace;
 | |
| 
 | |
| 		if (len >= freespace) {
 | |
| 			/* Fill the buffer completely and process it */
 | |
| 			memcpy(&context->buffer[usedspace], data,
 | |
| 			    (size_t)(freespace));
 | |
| 			ADDINC128(context->bitcount, freespace << 3);
 | |
| 			len -= freespace;
 | |
| 			data += freespace;
 | |
| 			SHA512_Transform(context,
 | |
| 			    (uint64_t *)(void *)context->buffer);
 | |
| 		} else {
 | |
| 			/* The buffer is not yet full */
 | |
| 			memcpy(&context->buffer[usedspace], data, len);
 | |
| 			ADDINC128(context->bitcount, len << 3);
 | |
| 			/* Clean up: */
 | |
| 			usedspace = freespace = 0;
 | |
| 			return 1;
 | |
| 		}
 | |
| 	}
 | |
| 	/*
 | |
| 	 * Process as many complete blocks as possible.
 | |
| 	 *
 | |
| 	 * Check alignment of the data pointer. If it is 64bit aligned,
 | |
| 	 * SHA512_Transform can be called directly on the data stream,
 | |
| 	 * otherwise enforce the alignment by copy into the buffer.
 | |
| 	 */
 | |
| 	if ((uintptr_t)data % 8 == 0) {
 | |
| 		while (len >= SHA512_BLOCK_LENGTH) {
 | |
| 			SHA512_Transform(context,
 | |
| 			    (const uint64_t*)(const void *)data);
 | |
| 			ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3);
 | |
| 			len -= SHA512_BLOCK_LENGTH;
 | |
| 			data += SHA512_BLOCK_LENGTH;
 | |
| 		}
 | |
| 	} else {
 | |
| 		while (len >= SHA512_BLOCK_LENGTH) {
 | |
| 			memcpy(context->buffer, data, SHA512_BLOCK_LENGTH);
 | |
| 			SHA512_Transform(context,
 | |
| 			    (const void *)context->buffer);
 | |
| 			ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3);
 | |
| 			len -= SHA512_BLOCK_LENGTH;
 | |
| 			data += SHA512_BLOCK_LENGTH;
 | |
| 		}
 | |
| 	}
 | |
| 	if (len > 0) {
 | |
| 		/* There's left-overs, so save 'em */
 | |
| 		memcpy(context->buffer, data, len);
 | |
| 		ADDINC128(context->bitcount, len << 3);
 | |
| 	}
 | |
| 	/* Clean up: */
 | |
| 	usedspace = freespace = 0;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static void
 | |
| SHA512_Last(SHA512_CTX *context)
 | |
| {
 | |
| 	unsigned int	usedspace;
 | |
| 
 | |
| 	usedspace = (unsigned int)((context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH);
 | |
| 	context->bitcount[0] = htobe64(context->bitcount[0]);
 | |
| 	context->bitcount[1] = htobe64(context->bitcount[1]);
 | |
| 	if (usedspace > 0) {
 | |
| 		/* Begin padding with a 1 bit: */
 | |
| 		context->buffer[usedspace++] = 0x80;
 | |
| 
 | |
| 		if (usedspace <= SHA512_SHORT_BLOCK_LENGTH) {
 | |
| 			/* Set-up for the last transform: */
 | |
| 			memset(&context->buffer[usedspace], 0,
 | |
| 			    (size_t)(SHA512_SHORT_BLOCK_LENGTH - usedspace));
 | |
| 		} else {
 | |
| 			if (usedspace < SHA512_BLOCK_LENGTH) {
 | |
| 				memset(&context->buffer[usedspace], 0,
 | |
| 				    (size_t)(SHA512_BLOCK_LENGTH - usedspace));
 | |
| 			}
 | |
| 			/* Do second-to-last transform: */
 | |
| 			SHA512_Transform(context,
 | |
| 			    (uint64_t *)(void *)context->buffer);
 | |
| 
 | |
| 			/* And set-up for the last transform: */
 | |
| 			memset(context->buffer, 0,
 | |
| 			    (size_t)(SHA512_BLOCK_LENGTH - 2));
 | |
| 		}
 | |
| 	} else {
 | |
| 		/* Prepare for final transform: */
 | |
| 		memset(context->buffer, 0, (size_t)(SHA512_SHORT_BLOCK_LENGTH));
 | |
| 
 | |
| 		/* Begin padding with a 1 bit: */
 | |
| 		*context->buffer = 0x80;
 | |
| 	}
 | |
| 	/* Store the length of input data (in bits): */
 | |
| 	memcpy(&context->buffer[SHA512_SHORT_BLOCK_LENGTH],
 | |
| 	    &context->bitcount[1], sizeof(context->bitcount[1]));
 | |
| 	memcpy(&context->buffer[SHA512_SHORT_BLOCK_LENGTH + 8],
 | |
| 	    &context->bitcount[0], sizeof(context->bitcount[0]));
 | |
| 
 | |
| 	/* Final transform: */
 | |
| 	SHA512_Transform(context, (uint64_t *)(void *)context->buffer);
 | |
| }
 | |
| 
 | |
| int
 | |
| SHA512_Final(uint8_t digest[], SHA512_CTX *context)
 | |
| {
 | |
| 	size_t i;
 | |
| 
 | |
| 	/* If no digest buffer is passed, we don't bother doing this: */
 | |
| 	if (digest != NULL) {
 | |
| 		SHA512_Last(context);
 | |
| 
 | |
| 		/* Save the hash data for output: */
 | |
| 		for (i = 0; i < 8; ++i)
 | |
| 			be64enc(digest + 8 * i, context->state[i]);
 | |
| 	}
 | |
| 
 | |
| 	/* Zero out state data */
 | |
| 	memset(context, 0, sizeof(*context));
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*** SHA-384: *********************************************************/
 | |
| int
 | |
| SHA384_Init(SHA384_CTX *context)
 | |
| {
 | |
| 	if (context == NULL)
 | |
| 		return 1;
 | |
| 
 | |
| 	memcpy(context->state, sha384_initial_hash_value,
 | |
| 	    (size_t)(SHA512_DIGEST_LENGTH));
 | |
| 	memset(context->buffer, 0, (size_t)(SHA384_BLOCK_LENGTH));
 | |
| 	context->bitcount[0] = context->bitcount[1] = 0;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| int
 | |
| SHA384_Update(SHA384_CTX *context, const uint8_t *data, size_t len)
 | |
| {
 | |
| 	return SHA512_Update((SHA512_CTX *)context, data, len);
 | |
| }
 | |
| 
 | |
| void
 | |
| SHA384_Transform(SHA512_CTX *context, const uint64_t *data)
 | |
| {
 | |
| 	SHA512_Transform((SHA512_CTX *)context, data);
 | |
| }
 | |
| 
 | |
| int
 | |
| SHA384_Final(uint8_t digest[], SHA384_CTX *context)
 | |
| {
 | |
| 	size_t i;
 | |
| 
 | |
| 	/* If no digest buffer is passed, we don't bother doing this: */
 | |
| 	if (digest != NULL) {
 | |
| 		SHA512_Last((SHA512_CTX *)context);
 | |
| 
 | |
| 		/* Save the hash data for output: */
 | |
| 		for (i = 0; i < 6; ++i)
 | |
| 			be64enc(digest + 8 * i, context->state[i]);
 | |
| 	}
 | |
| 
 | |
| 	/* Zero out state data */
 | |
| 	memset(context, 0, sizeof(*context));
 | |
| 
 | |
| 	return 1;
 | |
| }
 |