 0a6a1f1d05
			
		
	
	
		0a6a1f1d05
		
	
	
	
	
		
			
			This brings our tree to NetBSD 7.0, as found on -current on the 10-10-2015. This updates: - LLVM to 3.6.1 - GCC to GCC 5.1 - Replace minix/commands/zdump with usr.bin/zdump - external/bsd/libelf has moved to /external/bsd/elftoolchain/ - Import ctwm - Drop sprintf from libminc Change-Id: I149836ac18e9326be9353958bab9b266efb056f0
		
			
				
	
	
		
			681 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			681 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* $NetBSD: udf_strat_sequential.c,v 1.14 2015/10/06 08:57:34 hannken Exp $ */
 | |
| 
 | |
| /*
 | |
|  * Copyright (c) 2006, 2008 Reinoud Zandijk
 | |
|  * All rights reserved.
 | |
|  * 
 | |
|  * Redistribution and use in source and binary forms, with or without
 | |
|  * modification, are permitted provided that the following conditions
 | |
|  * are met:
 | |
|  * 1. Redistributions of source code must retain the above copyright
 | |
|  *    notice, this list of conditions and the following disclaimer.
 | |
|  * 2. Redistributions in binary form must reproduce the above copyright
 | |
|  *    notice, this list of conditions and the following disclaimer in the
 | |
|  *    documentation and/or other materials provided with the distribution.
 | |
|  * 
 | |
|  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
 | |
|  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 | |
|  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 | |
|  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
 | |
|  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 | |
|  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 | |
|  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 | |
|  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 | |
|  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 | |
|  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 | |
|  * 
 | |
|  */
 | |
| 
 | |
| #include <sys/cdefs.h>
 | |
| #ifndef lint
 | |
| __KERNEL_RCSID(0, "$NetBSD: udf_strat_sequential.c,v 1.14 2015/10/06 08:57:34 hannken Exp $");
 | |
| #endif /* not lint */
 | |
| 
 | |
| 
 | |
| #if defined(_KERNEL_OPT)
 | |
| #include "opt_compat_netbsd.h"
 | |
| #endif
 | |
| 
 | |
| #include <sys/param.h>
 | |
| #include <sys/systm.h>
 | |
| #include <sys/sysctl.h>
 | |
| #include <sys/namei.h>
 | |
| #include <sys/proc.h>
 | |
| #include <sys/kernel.h>
 | |
| #include <sys/vnode.h>
 | |
| #include <miscfs/genfs/genfs_node.h>
 | |
| #include <sys/mount.h>
 | |
| #include <sys/buf.h>
 | |
| #include <sys/file.h>
 | |
| #include <sys/device.h>
 | |
| #include <sys/disklabel.h>
 | |
| #include <sys/ioctl.h>
 | |
| #include <sys/malloc.h>
 | |
| #include <sys/dirent.h>
 | |
| #include <sys/stat.h>
 | |
| #include <sys/conf.h>
 | |
| #include <sys/kauth.h>
 | |
| #include <sys/kthread.h>
 | |
| #include <dev/clock_subr.h>
 | |
| 
 | |
| #include <fs/udf/ecma167-udf.h>
 | |
| #include <fs/udf/udf_mount.h>
 | |
| 
 | |
| #include "udf.h"
 | |
| #include "udf_subr.h"
 | |
| #include "udf_bswap.h"
 | |
| 
 | |
| 
 | |
| #define VTOI(vnode) ((struct udf_node *) vnode->v_data)
 | |
| #define PRIV(ump) ((struct strat_private *) ump->strategy_private)
 | |
| 
 | |
| /* --------------------------------------------------------------------- */
 | |
| 
 | |
| /* BUFQ's */
 | |
| #define UDF_SHED_MAX 3
 | |
| 
 | |
| #define UDF_SHED_READING	0
 | |
| #define UDF_SHED_WRITING	1
 | |
| #define UDF_SHED_SEQWRITING	2
 | |
| 
 | |
| struct strat_private {
 | |
| 	struct pool		 desc_pool;	 	/* node descriptors */
 | |
| 
 | |
| 	lwp_t			*queue_lwp;
 | |
| 	kcondvar_t		 discstrat_cv;		/* to wait on       */
 | |
| 	kmutex_t		 discstrat_mutex;	/* disc strategy    */
 | |
| 
 | |
| 	int			 run_thread;		/* thread control */
 | |
| 	int			 cur_queue;
 | |
| 
 | |
| 	struct disk_strategy	 old_strategy_setting;
 | |
| 	struct bufq_state	*queues[UDF_SHED_MAX];
 | |
| 	struct timespec		 last_queued[UDF_SHED_MAX];
 | |
| };
 | |
| 
 | |
| 
 | |
| /* --------------------------------------------------------------------- */
 | |
| 
 | |
| static void
 | |
| udf_wr_nodedscr_callback(struct buf *buf)
 | |
| {
 | |
| 	struct udf_node *udf_node;
 | |
| 
 | |
| 	KASSERT(buf);
 | |
| 	KASSERT(buf->b_data);
 | |
| 
 | |
| 	/* called when write action is done */
 | |
| 	DPRINTF(WRITE, ("udf_wr_nodedscr_callback(): node written out\n"));
 | |
| 
 | |
| 	udf_node = VTOI(buf->b_vp);
 | |
| 	if (udf_node == NULL) {
 | |
| 		putiobuf(buf);
 | |
| 		printf("udf_wr_node_callback: NULL node?\n");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* XXX right flags to mark dirty again on error? */
 | |
| 	if (buf->b_error) {
 | |
| 		udf_node->i_flags |= IN_MODIFIED | IN_ACCESSED;
 | |
| 		/* XXX TODO reshedule on error */
 | |
| 	}
 | |
| 
 | |
| 	/* decrement outstanding_nodedscr */
 | |
| 	KASSERT(udf_node->outstanding_nodedscr >= 1);
 | |
| 	udf_node->outstanding_nodedscr--;
 | |
| 	if (udf_node->outstanding_nodedscr == 0) {
 | |
| 		/* first unlock the node */
 | |
| 		UDF_UNLOCK_NODE(udf_node, 0);
 | |
| 		wakeup(&udf_node->outstanding_nodedscr);
 | |
| 	}
 | |
| 
 | |
| 	putiobuf(buf);
 | |
| }
 | |
| 
 | |
| /* --------------------------------------------------------------------- */
 | |
| 
 | |
| static int
 | |
| udf_create_logvol_dscr_seq(struct udf_strat_args *args)
 | |
| {
 | |
| 	union dscrptr   **dscrptr = &args->dscr;
 | |
| 	struct udf_mount *ump = args->ump;
 | |
| 	struct strat_private *priv = PRIV(ump);
 | |
| 	uint32_t lb_size;
 | |
| 
 | |
| 	lb_size = udf_rw32(ump->logical_vol->lb_size);
 | |
| 	*dscrptr = pool_get(&priv->desc_pool, PR_WAITOK);
 | |
| 	memset(*dscrptr, 0, lb_size);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| static void
 | |
| udf_free_logvol_dscr_seq(struct udf_strat_args *args)
 | |
| {
 | |
| 	union dscrptr    *dscr = args->dscr;
 | |
| 	struct udf_mount *ump  = args->ump;
 | |
| 	struct strat_private *priv = PRIV(ump);
 | |
| 
 | |
| 	pool_put(&priv->desc_pool, dscr);
 | |
| }
 | |
| 
 | |
| 
 | |
| static int
 | |
| udf_read_logvol_dscr_seq(struct udf_strat_args *args)
 | |
| {
 | |
| 	union dscrptr   **dscrptr = &args->dscr;
 | |
| 	union dscrptr    *tmpdscr;
 | |
| 	struct udf_mount *ump = args->ump;
 | |
| 	struct long_ad   *icb = args->icb;
 | |
| 	struct strat_private *priv = PRIV(ump);
 | |
| 	uint32_t lb_size;
 | |
| 	uint32_t sector, dummy;
 | |
| 	int error;
 | |
| 
 | |
| 	lb_size = udf_rw32(ump->logical_vol->lb_size);
 | |
| 
 | |
| 	error = udf_translate_vtop(ump, icb, §or, &dummy);
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 
 | |
| 	/* try to read in fe/efe */
 | |
| 	error = udf_read_phys_dscr(ump, sector, M_UDFTEMP, &tmpdscr);
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 
 | |
| 	*dscrptr = pool_get(&priv->desc_pool, PR_WAITOK);
 | |
| 	memcpy(*dscrptr, tmpdscr, lb_size);
 | |
| 	free(tmpdscr, M_UDFTEMP);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| static int
 | |
| udf_write_logvol_dscr_seq(struct udf_strat_args *args)
 | |
| {
 | |
| 	union dscrptr    *dscr     = args->dscr;
 | |
| 	struct udf_mount *ump      = args->ump;
 | |
| 	struct udf_node  *udf_node = args->udf_node;
 | |
| 	struct long_ad   *icb      = args->icb;
 | |
| 	int               waitfor  = args->waitfor;
 | |
| 	uint32_t logsectornr, sectornr, dummy;
 | |
| 	int error, vpart;
 | |
| 
 | |
| 	/*
 | |
| 	 * we have to decide if we write it out sequential or at its fixed 
 | |
| 	 * position by examining the partition its (to be) written on.
 | |
| 	 */
 | |
| 	vpart       = udf_rw16(udf_node->loc.loc.part_num);
 | |
| 	logsectornr = udf_rw32(icb->loc.lb_num);
 | |
| 	sectornr    = 0;
 | |
| 	if (ump->vtop_tp[vpart] != UDF_VTOP_TYPE_VIRT) {
 | |
| 		error = udf_translate_vtop(ump, icb, §ornr, &dummy);
 | |
| 		if (error)
 | |
| 			goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (waitfor) {
 | |
| 		DPRINTF(WRITE, ("udf_write_logvol_dscr: sync write\n"));
 | |
| 
 | |
| 		error = udf_write_phys_dscr_sync(ump, udf_node, UDF_C_NODE,
 | |
| 			dscr, sectornr, logsectornr);
 | |
| 	} else {
 | |
| 		DPRINTF(WRITE, ("udf_write_logvol_dscr: no wait, async write\n"));
 | |
| 
 | |
| 		error = udf_write_phys_dscr_async(ump, udf_node, UDF_C_NODE,
 | |
| 			dscr, sectornr, logsectornr, udf_wr_nodedscr_callback);
 | |
| 		/* will be UNLOCKED in call back */
 | |
| 		return error;
 | |
| 	}
 | |
| out:
 | |
| 	udf_node->outstanding_nodedscr--;
 | |
| 	if (udf_node->outstanding_nodedscr == 0) {
 | |
| 		UDF_UNLOCK_NODE(udf_node, 0);
 | |
| 		wakeup(&udf_node->outstanding_nodedscr);
 | |
| 	}
 | |
| 
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| /* --------------------------------------------------------------------- */
 | |
| 
 | |
| /*
 | |
|  * Main file-system specific sheduler. Due to the nature of optical media
 | |
|  * sheduling can't be performed in the traditional way. Most OS
 | |
|  * implementations i've seen thus read or write a file atomically giving all
 | |
|  * kinds of side effects.
 | |
|  *
 | |
|  * This implementation uses a kernel thread to shedule the queued requests in
 | |
|  * such a way that is semi-optimal for optical media; this means aproximately
 | |
|  * (R*|(Wr*|Ws*))* since switching between reading and writing is expensive in
 | |
|  * time.
 | |
|  */
 | |
| 
 | |
| static void
 | |
| udf_queuebuf_seq(struct udf_strat_args *args)
 | |
| {
 | |
| 	struct udf_mount *ump = args->ump;
 | |
| 	struct buf *nestbuf = args->nestbuf;
 | |
| 	struct strat_private *priv = PRIV(ump);
 | |
| 	int queue;
 | |
| 	int what;
 | |
| 
 | |
| 	KASSERT(ump);
 | |
| 	KASSERT(nestbuf);
 | |
| 	KASSERT(nestbuf->b_iodone == nestiobuf_iodone);
 | |
| 
 | |
| 	what = nestbuf->b_udf_c_type;
 | |
| 	queue = UDF_SHED_READING;
 | |
| 	if ((nestbuf->b_flags & B_READ) == 0) {
 | |
| 		/* writing */
 | |
| 		queue = UDF_SHED_SEQWRITING;
 | |
| 		if (what == UDF_C_ABSOLUTE)
 | |
| 			queue = UDF_SHED_WRITING;
 | |
| 	}
 | |
| 
 | |
| 	/* use our own sheduler lists for more complex sheduling */
 | |
| 	mutex_enter(&priv->discstrat_mutex);
 | |
| 		bufq_put(priv->queues[queue], nestbuf);
 | |
| 		vfs_timestamp(&priv->last_queued[queue]);
 | |
| 	mutex_exit(&priv->discstrat_mutex);
 | |
| 
 | |
| 	/* signal our thread that there might be something to do */
 | |
| 	cv_signal(&priv->discstrat_cv);
 | |
| }
 | |
| 
 | |
| /* --------------------------------------------------------------------- */
 | |
| 
 | |
| /* TODO convert to lb_size */
 | |
| static void
 | |
| udf_VAT_mapping_update(struct udf_mount *ump, struct buf *buf, uint32_t lb_map)
 | |
| {
 | |
| 	union dscrptr    *fdscr = (union dscrptr *) buf->b_data;
 | |
| 	struct vnode     *vp = buf->b_vp;
 | |
| 	struct udf_node  *udf_node = VTOI(vp);
 | |
| 	uint32_t lb_num;
 | |
| 	uint32_t udf_rw32_lbmap;
 | |
| 	int c_type = buf->b_udf_c_type;
 | |
| 	int error;
 | |
| 
 | |
| 	/* only interested when we're using a VAT */
 | |
| 	KASSERT(ump->vat_node);
 | |
| 	KASSERT(ump->vtop_alloc[ump->node_part] == UDF_ALLOC_VAT);
 | |
| 
 | |
| 	/* only nodes are recorded in the VAT */
 | |
| 	/* NOTE: and the fileset descriptor (FIXME ?) */
 | |
| 	if (c_type != UDF_C_NODE)
 | |
| 		return;
 | |
| 
 | |
| 	udf_rw32_lbmap = udf_rw32(lb_map);
 | |
| 
 | |
| 	/* if we're the VAT itself, only update our assigned sector number */
 | |
| 	if (udf_node == ump->vat_node) {
 | |
| 		fdscr->tag.tag_loc = udf_rw32_lbmap;
 | |
| 		udf_validate_tag_sum(fdscr);
 | |
| 		DPRINTF(TRANSLATE, ("VAT assigned to sector %u\n",
 | |
| 			udf_rw32(udf_rw32_lbmap)));
 | |
| 		/* no use mapping the VAT node in the VAT */
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* record new position in VAT file */
 | |
| 	lb_num = udf_rw32(fdscr->tag.tag_loc);
 | |
| 
 | |
| 	/* lb_num = udf_rw32(udf_node->write_loc.loc.lb_num); */
 | |
| 
 | |
| 	DPRINTF(TRANSLATE, ("VAT entry change (log %u -> phys %u)\n",
 | |
| 			lb_num, lb_map));
 | |
| 
 | |
| 	/* VAT should be the longer than this write, can't go wrong */
 | |
| 	KASSERT(lb_num <= ump->vat_entries);
 | |
| 
 | |
| 	mutex_enter(&ump->allocate_mutex);
 | |
| 	error = udf_vat_write(ump->vat_node,
 | |
| 			(uint8_t *) &udf_rw32_lbmap, 4,
 | |
| 			ump->vat_offset + lb_num * 4);
 | |
| 	mutex_exit(&ump->allocate_mutex);
 | |
| 
 | |
| 	if (error)
 | |
| 		panic( "udf_VAT_mapping_update: HELP! i couldn't "
 | |
| 			"write in the VAT file ?\n");
 | |
| }
 | |
| 
 | |
| 
 | |
| static void
 | |
| udf_issue_buf(struct udf_mount *ump, int queue, struct buf *buf)
 | |
| {
 | |
| 	union dscrptr *dscr;
 | |
| 	struct long_ad *node_ad_cpy;
 | |
| 	struct part_desc *pdesc;
 | |
| 	uint64_t *lmapping, *lmappos;
 | |
| 	uint32_t sectornr, bpos;
 | |
| 	uint32_t ptov;
 | |
| 	uint16_t vpart_num;
 | |
| 	uint8_t *fidblk;
 | |
| 	int sector_size = ump->discinfo.sector_size;
 | |
| 	int blks = sector_size / DEV_BSIZE;
 | |
| 	int len, buf_len;
 | |
| 
 | |
| 	/* if reading, just pass to the device's STRATEGY */
 | |
| 	if (queue == UDF_SHED_READING) {
 | |
| 		DPRINTF(SHEDULE, ("\nudf_issue_buf READ %p : sector %d type %d,"
 | |
| 			"b_resid %d, b_bcount %d, b_bufsize %d\n",
 | |
| 			buf, (uint32_t) buf->b_blkno / blks, buf->b_udf_c_type,
 | |
| 			buf->b_resid, buf->b_bcount, buf->b_bufsize));
 | |
| 		VOP_STRATEGY(ump->devvp, buf);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (queue == UDF_SHED_WRITING) {
 | |
| 		DPRINTF(SHEDULE, ("\nudf_issue_buf WRITE %p : sector %d "
 | |
| 			"type %d, b_resid %d, b_bcount %d, b_bufsize %d\n",
 | |
| 			buf, (uint32_t) buf->b_blkno / blks, buf->b_udf_c_type,
 | |
| 			buf->b_resid, buf->b_bcount, buf->b_bufsize));
 | |
| 		KASSERT(buf->b_udf_c_type == UDF_C_ABSOLUTE);
 | |
| 
 | |
| 		// udf_fixup_node_internals(ump, buf->b_data, buf->b_udf_c_type);
 | |
| 		VOP_STRATEGY(ump->devvp, buf);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	KASSERT(queue == UDF_SHED_SEQWRITING);
 | |
| 	DPRINTF(SHEDULE, ("\nudf_issue_buf SEQWRITE %p : sector XXXX "
 | |
| 		"type %d, b_resid %d, b_bcount %d, b_bufsize %d\n",
 | |
| 		buf, buf->b_udf_c_type, buf->b_resid, buf->b_bcount,
 | |
| 		buf->b_bufsize));
 | |
| 
 | |
| 	/*
 | |
| 	 * Buffers should not have been allocated to disc addresses yet on
 | |
| 	 * this queue. Note that a buffer can get multiple extents allocated.
 | |
| 	 *
 | |
| 	 * lmapping contains lb_num relative to base partition.
 | |
| 	 */
 | |
| 	lmapping    = ump->la_lmapping;
 | |
| 	node_ad_cpy = ump->la_node_ad_cpy;
 | |
| 
 | |
| 	/* logically allocate buf and map it in the file */
 | |
| 	udf_late_allocate_buf(ump, buf, lmapping, node_ad_cpy, &vpart_num);
 | |
| 
 | |
| 	/*
 | |
| 	 * NOTE We are using the knowledge here that sequential media will
 | |
| 	 * always be mapped linearly. Thus no use to explicitly translate the
 | |
| 	 * lmapping list.
 | |
| 	 */
 | |
| 
 | |
| 	/* calculate offset from physical base partition */
 | |
| 	pdesc = ump->partitions[ump->vtop[vpart_num]];
 | |
| 	ptov  = udf_rw32(pdesc->start_loc);
 | |
| 
 | |
| 	/* set buffers blkno to the physical block number */
 | |
| 	buf->b_blkno = (*lmapping + ptov) * blks;
 | |
| 
 | |
| 	/* fixate floating descriptors */
 | |
| 	if (buf->b_udf_c_type == UDF_C_FLOAT_DSCR) {
 | |
| 		/* set our tag location to the absolute position */
 | |
| 		dscr = (union dscrptr *) buf->b_data;
 | |
| 		dscr->tag.tag_loc = udf_rw32(*lmapping + ptov);
 | |
| 		udf_validate_tag_and_crc_sums(dscr);
 | |
| 	}
 | |
| 
 | |
| 	/* update mapping in the VAT */
 | |
| 	if (buf->b_udf_c_type == UDF_C_NODE) {
 | |
| 		udf_VAT_mapping_update(ump, buf, *lmapping);
 | |
| 		udf_fixup_node_internals(ump, buf->b_data, buf->b_udf_c_type);
 | |
| 	}
 | |
| 
 | |
| 	/* if we have FIDs, fixup using the new allocation table */
 | |
| 	if (buf->b_udf_c_type == UDF_C_FIDS) {
 | |
| 		buf_len = buf->b_bcount;
 | |
| 		bpos = 0;
 | |
| 		lmappos = lmapping;
 | |
| 		while (buf_len) {
 | |
| 			sectornr = *lmappos++;
 | |
| 			len = MIN(buf_len, sector_size);
 | |
| 			fidblk = (uint8_t *) buf->b_data + bpos;
 | |
| 			udf_fixup_fid_block(fidblk, sector_size,
 | |
| 				0, len, sectornr);
 | |
| 			bpos += len;
 | |
| 			buf_len -= len;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	VOP_STRATEGY(ump->devvp, buf);
 | |
| }
 | |
| 
 | |
| 
 | |
| static void
 | |
| udf_doshedule(struct udf_mount *ump)
 | |
| {
 | |
| 	struct buf *buf;
 | |
| 	struct timespec now, *last;
 | |
| 	struct strat_private *priv = PRIV(ump);
 | |
| 	void (*b_callback)(struct buf *);
 | |
| 	int new_queue;
 | |
| 	int error;
 | |
| 
 | |
| 	buf = bufq_get(priv->queues[priv->cur_queue]);
 | |
| 	if (buf) {
 | |
| 		/* transfer from the current queue to the device queue */
 | |
| 		mutex_exit(&priv->discstrat_mutex);
 | |
| 
 | |
| 		/* transform buffer to synchronous; XXX needed? */
 | |
| 		b_callback = buf->b_iodone;
 | |
| 		buf->b_iodone = NULL;
 | |
| 		CLR(buf->b_flags, B_ASYNC);
 | |
| 
 | |
| 		/* issue and wait on completion */
 | |
| 		udf_issue_buf(ump, priv->cur_queue, buf);
 | |
| 		biowait(buf);
 | |
| 
 | |
| 		mutex_enter(&priv->discstrat_mutex);
 | |
| 
 | |
| 		/* if there is an error, repair this error, otherwise propagate */
 | |
| 		if (buf->b_error && ((buf->b_flags & B_READ) == 0)) {
 | |
| 			/* check what we need to do */
 | |
| 			panic("UDF write error, can't handle yet!\n");
 | |
| 		}
 | |
| 
 | |
| 		/* propagate result to higher layers */
 | |
| 		if (b_callback) {
 | |
| 			buf->b_iodone = b_callback;
 | |
| 			(*buf->b_iodone)(buf);
 | |
| 		}
 | |
| 
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* Check if we're idling in this state */
 | |
| 	vfs_timestamp(&now);
 | |
| 	last = &priv->last_queued[priv->cur_queue];
 | |
| 	if (ump->discinfo.mmc_class == MMC_CLASS_CD) {
 | |
| 		/* dont switch too fast for CD media; its expensive in time */
 | |
| 		if (now.tv_sec - last->tv_sec < 3)
 | |
| 			return;
 | |
| 	}
 | |
| 
 | |
| 	/* check if we can/should switch */
 | |
| 	new_queue = priv->cur_queue;
 | |
| 
 | |
| 	if (bufq_peek(priv->queues[UDF_SHED_READING]))
 | |
| 		new_queue = UDF_SHED_READING;
 | |
| 	if (bufq_peek(priv->queues[UDF_SHED_WRITING]))		/* only for unmount */
 | |
| 		new_queue = UDF_SHED_WRITING;
 | |
| 	if (bufq_peek(priv->queues[UDF_SHED_SEQWRITING]))
 | |
| 		new_queue = UDF_SHED_SEQWRITING;
 | |
| 	if (priv->cur_queue == UDF_SHED_READING) {
 | |
| 		if (new_queue == UDF_SHED_SEQWRITING) {
 | |
| 			/* TODO use flag to signal if this is needed */
 | |
| 			mutex_exit(&priv->discstrat_mutex);
 | |
| 
 | |
| 			/* update trackinfo for data and metadata */
 | |
| 			error = udf_update_trackinfo(ump,
 | |
| 					&ump->data_track);
 | |
| 			assert(error == 0);
 | |
| 			error = udf_update_trackinfo(ump,
 | |
| 					&ump->metadata_track);
 | |
| 			assert(error == 0);
 | |
| 			mutex_enter(&priv->discstrat_mutex);
 | |
| 			__USE(error);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (new_queue != priv->cur_queue) {
 | |
| 		DPRINTF(SHEDULE, ("switching from %d to %d\n",
 | |
| 			priv->cur_queue, new_queue));
 | |
| 	}
 | |
| 
 | |
| 	priv->cur_queue = new_queue;
 | |
| }
 | |
| 
 | |
| 
 | |
| static void
 | |
| udf_discstrat_thread(void *arg)
 | |
| {
 | |
| 	struct udf_mount *ump = (struct udf_mount *) arg;
 | |
| 	struct strat_private *priv = PRIV(ump);
 | |
| 	int empty;
 | |
| 
 | |
| 	empty = 1;
 | |
| 	mutex_enter(&priv->discstrat_mutex);
 | |
| 	while (priv->run_thread || !empty) {
 | |
| 		/* process the current selected queue */
 | |
| 		udf_doshedule(ump);
 | |
| 		empty  = (bufq_peek(priv->queues[UDF_SHED_READING]) == NULL);
 | |
| 		empty &= (bufq_peek(priv->queues[UDF_SHED_WRITING]) == NULL);
 | |
| 		empty &= (bufq_peek(priv->queues[UDF_SHED_SEQWRITING]) == NULL);
 | |
| 
 | |
| 		/* wait for more if needed */
 | |
| 		if (empty)
 | |
| 			cv_timedwait(&priv->discstrat_cv,
 | |
| 				&priv->discstrat_mutex, hz/8);
 | |
| 	}
 | |
| 	mutex_exit(&priv->discstrat_mutex);
 | |
| 
 | |
| 	wakeup(&priv->run_thread);
 | |
| 	kthread_exit(0);
 | |
| 	/* not reached */
 | |
| }
 | |
| 
 | |
| /* --------------------------------------------------------------------- */
 | |
| 
 | |
| static void
 | |
| udf_discstrat_init_seq(struct udf_strat_args *args)
 | |
| {
 | |
| 	struct udf_mount *ump = args->ump;
 | |
| 	struct strat_private *priv = PRIV(ump);
 | |
| 	struct disk_strategy dkstrat;
 | |
| 	uint32_t lb_size;
 | |
| 
 | |
| 	KASSERT(ump);
 | |
| 	KASSERT(ump->logical_vol);
 | |
| 	KASSERT(priv == NULL);
 | |
| 
 | |
| 	lb_size = udf_rw32(ump->logical_vol->lb_size);
 | |
| 	KASSERT(lb_size > 0);
 | |
| 
 | |
| 	/* initialise our memory space */
 | |
| 	ump->strategy_private = malloc(sizeof(struct strat_private),
 | |
| 		M_UDFTEMP, M_WAITOK);
 | |
| 	priv = ump->strategy_private;
 | |
| 	memset(priv, 0 , sizeof(struct strat_private));
 | |
| 
 | |
| 	/* initialise locks */
 | |
| 	cv_init(&priv->discstrat_cv, "udfstrat");
 | |
| 	mutex_init(&priv->discstrat_mutex, MUTEX_DEFAULT, IPL_NONE);
 | |
| 
 | |
| 	/*
 | |
| 	 * Initialise pool for descriptors associated with nodes. This is done
 | |
| 	 * in lb_size units though currently lb_size is dictated to be
 | |
| 	 * sector_size.
 | |
| 	 */
 | |
| 	pool_init(&priv->desc_pool, lb_size, 0, 0, 0, "udf_desc_pool", NULL,
 | |
| 	    IPL_NONE);
 | |
| 
 | |
| 	/*
 | |
| 	 * remember old device strategy method and explicit set method
 | |
| 	 * `discsort' since we have our own more complex strategy that is not
 | |
| 	 * implementable on the CD device and other strategies will get in the
 | |
| 	 * way.
 | |
| 	 */
 | |
| 	memset(&priv->old_strategy_setting, 0,
 | |
| 		sizeof(struct disk_strategy));
 | |
| 	VOP_IOCTL(ump->devvp, DIOCGSTRATEGY, &priv->old_strategy_setting,
 | |
| 		FREAD | FKIOCTL, NOCRED);
 | |
| 	memset(&dkstrat, 0, sizeof(struct disk_strategy));
 | |
| 	strcpy(dkstrat.dks_name, "discsort");
 | |
| 	VOP_IOCTL(ump->devvp, DIOCSSTRATEGY, &dkstrat, FWRITE | FKIOCTL,
 | |
| 		NOCRED);
 | |
| 
 | |
| 	/* initialise our internal sheduler */
 | |
| 	priv->cur_queue = UDF_SHED_READING;
 | |
| 	bufq_alloc(&priv->queues[UDF_SHED_READING], "disksort",
 | |
| 		BUFQ_SORT_RAWBLOCK);
 | |
| 	bufq_alloc(&priv->queues[UDF_SHED_WRITING], "disksort",
 | |
| 		BUFQ_SORT_RAWBLOCK);
 | |
| 	bufq_alloc(&priv->queues[UDF_SHED_SEQWRITING], "fcfs", 0);
 | |
| 	vfs_timestamp(&priv->last_queued[UDF_SHED_READING]);
 | |
| 	vfs_timestamp(&priv->last_queued[UDF_SHED_WRITING]);
 | |
| 	vfs_timestamp(&priv->last_queued[UDF_SHED_SEQWRITING]);
 | |
| 
 | |
| 	/* create our disk strategy thread */
 | |
| 	priv->run_thread = 1;
 | |
| 	if (kthread_create(PRI_NONE, 0 /* KTHREAD_MPSAFE*/, NULL /* cpu_info*/,
 | |
| 		udf_discstrat_thread, ump, &priv->queue_lwp,
 | |
| 		"%s", "udf_rw")) {
 | |
| 		panic("fork udf_rw");
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| static void
 | |
| udf_discstrat_finish_seq(struct udf_strat_args *args)
 | |
| {
 | |
| 	struct udf_mount *ump = args->ump;
 | |
| 	struct strat_private *priv = PRIV(ump);
 | |
| 	int error;
 | |
| 
 | |
| 	if (ump == NULL)
 | |
| 		return;
 | |
| 
 | |
| 	/* stop our sheduling thread */
 | |
| 	KASSERT(priv->run_thread == 1);
 | |
| 	priv->run_thread = 0;
 | |
| 	wakeup(priv->queue_lwp);
 | |
| 	do {
 | |
| 		error = tsleep(&priv->run_thread, PRIBIO+1,
 | |
| 			"udfshedfin", hz);
 | |
| 	} while (error);
 | |
| 	/* kthread should be finished now */
 | |
| 
 | |
| 	/* set back old device strategy method */
 | |
| 	VOP_IOCTL(ump->devvp, DIOCSSTRATEGY, &priv->old_strategy_setting,
 | |
| 			FWRITE, NOCRED);
 | |
| 
 | |
| 	/* destroy our pool */
 | |
| 	pool_destroy(&priv->desc_pool);
 | |
| 
 | |
| 	mutex_destroy(&priv->discstrat_mutex);
 | |
| 	cv_destroy(&priv->discstrat_cv);
 | |
| 
 | |
| 	/* free our private space */
 | |
| 	free(ump->strategy_private, M_UDFTEMP);
 | |
| 	ump->strategy_private = NULL;
 | |
| }
 | |
| 
 | |
| /* --------------------------------------------------------------------- */
 | |
| 
 | |
| struct udf_strategy udf_strat_sequential =
 | |
| {
 | |
| 	udf_create_logvol_dscr_seq,
 | |
| 	udf_free_logvol_dscr_seq,
 | |
| 	udf_read_logvol_dscr_seq,
 | |
| 	udf_write_logvol_dscr_seq,
 | |
| 	udf_queuebuf_seq,
 | |
| 	udf_discstrat_init_seq,
 | |
| 	udf_discstrat_finish_seq
 | |
| };
 | |
| 	
 | |
| 
 |