73 lines
		
	
	
		
			1.3 KiB
		
	
	
	
		
			C
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			73 lines
		
	
	
		
			1.3 KiB
		
	
	
	
		
			C
		
	
	
		
			Executable File
		
	
	
	
	
/*
 | 
						|
 * (c) copyright 1988 by the Vrije Universiteit, Amsterdam, The Netherlands.
 | 
						|
 * See the copyright notice in the ACK home directory, in the file "Copyright".
 | 
						|
 *
 | 
						|
 * Author: Ceriel J.H. Jacobs
 | 
						|
 */
 | 
						|
/* $Header$ */
 | 
						|
 | 
						|
#include	<math.h>
 | 
						|
#include	<float.h>
 | 
						|
#include	<errno.h>
 | 
						|
#include	"localmath.h"
 | 
						|
 | 
						|
 | 
						|
double
 | 
						|
exp(double x)
 | 
						|
{
 | 
						|
	/*	Algorithm and coefficients from:
 | 
						|
			"Software manual for the elementary functions"
 | 
						|
			by W.J. Cody and W. Waite, Prentice-Hall, 1980
 | 
						|
	*/
 | 
						|
 | 
						|
	static double p[] = {
 | 
						|
		0.25000000000000000000e+0,
 | 
						|
		0.75753180159422776666e-2,
 | 
						|
		0.31555192765684646356e-4
 | 
						|
	};
 | 
						|
 | 
						|
	static double q[] = {
 | 
						|
		0.50000000000000000000e+0,
 | 
						|
		0.56817302698551221787e-1,
 | 
						|
		0.63121894374398503557e-3,
 | 
						|
		0.75104028399870046114e-6
 | 
						|
	};
 | 
						|
	double	xn, g;
 | 
						|
	int	n;
 | 
						|
	int	negative = x < 0;
 | 
						|
 | 
						|
	if (__IsNan(x)) {
 | 
						|
		errno = EDOM;
 | 
						|
		return x;
 | 
						|
	}
 | 
						|
	if (x < M_LN_MIN_D) {
 | 
						|
		errno = ERANGE;
 | 
						|
		return 0.0;
 | 
						|
	}
 | 
						|
	if (x > M_LN_MAX_D) {
 | 
						|
		errno = ERANGE;
 | 
						|
		return HUGE_VAL;
 | 
						|
	}
 | 
						|
 | 
						|
	if (negative) x = -x;
 | 
						|
 
 | 
						|
	/* ??? avoid underflow ??? */
 | 
						|
 | 
						|
	n = x * M_LOG2E + 0.5;	/* 1/ln(2) = log2(e), 0.5 added for rounding */
 | 
						|
	xn = n;
 | 
						|
	{
 | 
						|
		double	x1 = (long) x;
 | 
						|
		double	x2 = x - x1;
 | 
						|
 | 
						|
		g = ((x1-xn*0.693359375)+x2) - xn*(-2.1219444005469058277e-4);
 | 
						|
	}
 | 
						|
	if (negative) {
 | 
						|
		g = -g;
 | 
						|
		n = -n;
 | 
						|
	}
 | 
						|
	xn = g * g;
 | 
						|
	x = g * POLYNOM2(xn, p);
 | 
						|
	n += 1;
 | 
						|
	return (ldexp(0.5 + x/(POLYNOM3(xn, q) - x), n));
 | 
						|
}
 |