313 lines
		
	
	
		
			7.9 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			313 lines
		
	
	
		
			7.9 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
 | 
						|
#include <minix/cpufeature.h>
 | 
						|
 | 
						|
#include <assert.h>
 | 
						|
#include "kernel/kernel.h"
 | 
						|
#include "arch_proto.h"
 | 
						|
 | 
						|
#include <string.h>
 | 
						|
 | 
						|
/* These are set/computed in kernel.lds. */
 | 
						|
extern char _kern_vir_base, _kern_phys_base, _kern_size;
 | 
						|
 | 
						|
/* Retrieve the absolute values to something we can use. */
 | 
						|
static phys_bytes kern_vir_start = (phys_bytes) &_kern_vir_base;
 | 
						|
static phys_bytes kern_phys_start = (phys_bytes) &_kern_phys_base;
 | 
						|
static phys_bytes kern_kernlen = (phys_bytes) &_kern_size;
 | 
						|
 | 
						|
/* page directory we can use to map things */
 | 
						|
static u32_t pagedir[1024]  __aligned(4096);
 | 
						|
 | 
						|
void print_memmap(kinfo_t *cbi)
 | 
						|
{
 | 
						|
        int m;
 | 
						|
        assert(cbi->mmap_size < MAXMEMMAP);
 | 
						|
        for(m = 0; m < cbi->mmap_size; m++) {
 | 
						|
		phys_bytes addr = cbi->memmap[m].addr, endit = cbi->memmap[m].addr + cbi->memmap[m].len;
 | 
						|
                printf("%08lx-%08lx ",addr, endit);
 | 
						|
        }
 | 
						|
        printf("\nsize %08lx\n", cbi->mmap_size);
 | 
						|
}
 | 
						|
 | 
						|
void cut_memmap(kinfo_t *cbi, phys_bytes start, phys_bytes end)
 | 
						|
{
 | 
						|
        int m;
 | 
						|
        phys_bytes o;
 | 
						|
 | 
						|
        if((o=start % I386_PAGE_SIZE))
 | 
						|
                start -= o;
 | 
						|
        if((o=end % I386_PAGE_SIZE))
 | 
						|
                end += I386_PAGE_SIZE - o;
 | 
						|
 | 
						|
	assert(kernel_may_alloc);
 | 
						|
 | 
						|
        for(m = 0; m < cbi->mmap_size; m++) {
 | 
						|
                phys_bytes substart = start, subend = end;
 | 
						|
                phys_bytes memaddr = cbi->memmap[m].addr,
 | 
						|
                        memend = cbi->memmap[m].addr + cbi->memmap[m].len;
 | 
						|
 | 
						|
                /* adjust cut range to be a subset of the free memory */
 | 
						|
                if(substart < memaddr) substart = memaddr;
 | 
						|
                if(subend > memend) subend = memend;
 | 
						|
                if(substart >= subend) continue;
 | 
						|
 | 
						|
                /* if there is any overlap, forget this one and add
 | 
						|
                 * 1-2 subranges back
 | 
						|
                 */
 | 
						|
                cbi->memmap[m].addr = cbi->memmap[m].len = 0;
 | 
						|
                if(substart > memaddr)
 | 
						|
                        add_memmap(cbi, memaddr, substart-memaddr);
 | 
						|
                if(subend < memend)
 | 
						|
                        add_memmap(cbi, subend, memend-subend);
 | 
						|
        }
 | 
						|
}
 | 
						|
 | 
						|
phys_bytes alloc_lowest(kinfo_t *cbi, phys_bytes len)
 | 
						|
{
 | 
						|
	/* Allocate the lowest physical page we have. */
 | 
						|
	int m;
 | 
						|
#define EMPTY 0xffffffff
 | 
						|
	phys_bytes lowest = EMPTY;
 | 
						|
	assert(len > 0);
 | 
						|
	len = roundup(len, I386_PAGE_SIZE);
 | 
						|
 | 
						|
	assert(kernel_may_alloc);
 | 
						|
 | 
						|
	for(m = 0; m < cbi->mmap_size; m++) {
 | 
						|
		if(cbi->memmap[m].len < len) continue;
 | 
						|
		if(cbi->memmap[m].addr < lowest) lowest = cbi->memmap[m].addr;
 | 
						|
	}
 | 
						|
	assert(lowest != EMPTY);
 | 
						|
	cut_memmap(cbi, lowest, len);
 | 
						|
	cbi->kernel_allocated_bytes_dynamic += len;
 | 
						|
	return lowest;
 | 
						|
}
 | 
						|
 | 
						|
void add_memmap(kinfo_t *cbi, u64_t addr, u64_t len)
 | 
						|
{
 | 
						|
        int m;
 | 
						|
#define LIMIT 0xFFFFF000
 | 
						|
        /* Truncate available memory at 4GB as the rest of minix
 | 
						|
         * currently can't deal with any bigger.
 | 
						|
         */
 | 
						|
        if(addr > LIMIT) return;
 | 
						|
        if(addr + len > LIMIT) {
 | 
						|
                len -= (addr + len - LIMIT);
 | 
						|
        }
 | 
						|
        assert(cbi->mmap_size < MAXMEMMAP);
 | 
						|
        if(len == 0) return;
 | 
						|
	addr = roundup(addr, I386_PAGE_SIZE);
 | 
						|
	len = rounddown(len, I386_PAGE_SIZE);
 | 
						|
 | 
						|
	assert(kernel_may_alloc);
 | 
						|
 | 
						|
        for(m = 0; m < MAXMEMMAP; m++) {
 | 
						|
		phys_bytes highmark;
 | 
						|
                if(cbi->memmap[m].len) continue;
 | 
						|
                cbi->memmap[m].addr = addr;
 | 
						|
                cbi->memmap[m].len = len;
 | 
						|
                cbi->memmap[m].type = MULTIBOOT_MEMORY_AVAILABLE;
 | 
						|
                if(m >= cbi->mmap_size)
 | 
						|
                        cbi->mmap_size = m+1;
 | 
						|
		highmark = addr + len;
 | 
						|
		if(highmark > cbi->mem_high_phys) {
 | 
						|
			cbi->mem_high_phys = highmark;
 | 
						|
		}
 | 
						|
 | 
						|
                return;
 | 
						|
        }
 | 
						|
 | 
						|
        panic("no available memmap slot");
 | 
						|
}
 | 
						|
 | 
						|
u32_t *alloc_pagetable(phys_bytes *ph)
 | 
						|
{
 | 
						|
	u32_t *ret;
 | 
						|
#define PG_PAGETABLES 6
 | 
						|
	static u32_t pagetables[PG_PAGETABLES][1024]  __aligned(4096);
 | 
						|
	static int pt_inuse = 0;
 | 
						|
	if(pt_inuse >= PG_PAGETABLES) panic("no more pagetables");
 | 
						|
	assert(sizeof(pagetables[pt_inuse]) == I386_PAGE_SIZE);
 | 
						|
	ret = pagetables[pt_inuse++];
 | 
						|
	*ph = vir2phys(ret);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
#define PAGE_KB (I386_PAGE_SIZE / 1024)
 | 
						|
 | 
						|
phys_bytes pg_alloc_page(kinfo_t *cbi)
 | 
						|
{
 | 
						|
	int m;
 | 
						|
	multiboot_memory_map_t *mmap;
 | 
						|
 | 
						|
	assert(kernel_may_alloc);
 | 
						|
 | 
						|
	for(m = cbi->mmap_size-1; m >= 0; m--) {
 | 
						|
		mmap = &cbi->memmap[m];
 | 
						|
		if(!mmap->len) continue;
 | 
						|
		assert(mmap->len > 0);
 | 
						|
		assert(!(mmap->len % I386_PAGE_SIZE));
 | 
						|
		assert(!(mmap->addr % I386_PAGE_SIZE));
 | 
						|
 | 
						|
		mmap->len -= I386_PAGE_SIZE;
 | 
						|
 | 
						|
                cbi->kernel_allocated_bytes_dynamic += I386_PAGE_SIZE;
 | 
						|
 | 
						|
		return mmap->addr + mmap->len;
 | 
						|
	}
 | 
						|
 | 
						|
	panic("can't find free memory");
 | 
						|
}
 | 
						|
 | 
						|
void pg_identity(kinfo_t *cbi)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
	phys_bytes phys;
 | 
						|
 | 
						|
	/* We map memory that does not correspond to physical memory
 | 
						|
	 * as non-cacheable. Make sure we know what it is.
 | 
						|
	 */
 | 
						|
	assert(cbi->mem_high_phys);
 | 
						|
 | 
						|
        /* Set up an identity mapping page directory */
 | 
						|
        for(i = 0; i < I386_VM_DIR_ENTRIES; i++) {
 | 
						|
		u32_t flags = I386_VM_PRESENT | I386_VM_BIGPAGE
 | 
						|
			| I386_VM_USER
 | 
						|
			| I386_VM_WRITE;
 | 
						|
                phys = i * I386_BIG_PAGE_SIZE;
 | 
						|
		if((cbi->mem_high_phys & I386_VM_ADDR_MASK_4MB)
 | 
						|
			<= (phys & I386_VM_ADDR_MASK_4MB)) {
 | 
						|
			flags |= I386_VM_PWT | I386_VM_PCD;
 | 
						|
		}
 | 
						|
                pagedir[i] =  phys | flags;
 | 
						|
        }
 | 
						|
}
 | 
						|
 | 
						|
int pg_mapkernel(void)
 | 
						|
{
 | 
						|
	int pde;
 | 
						|
	u32_t mapped = 0, kern_phys = kern_phys_start;
 | 
						|
 | 
						|
        assert(!(kern_vir_start % I386_BIG_PAGE_SIZE));
 | 
						|
        assert(!(kern_phys % I386_BIG_PAGE_SIZE));
 | 
						|
        pde = kern_vir_start / I386_BIG_PAGE_SIZE; /* start pde */
 | 
						|
	while(mapped < kern_kernlen) {
 | 
						|
	        pagedir[pde] = kern_phys | I386_VM_PRESENT | 
 | 
						|
			I386_VM_BIGPAGE | I386_VM_WRITE;
 | 
						|
		mapped += I386_BIG_PAGE_SIZE;
 | 
						|
		kern_phys += I386_BIG_PAGE_SIZE;
 | 
						|
		pde++;
 | 
						|
	}
 | 
						|
	return pde;	/* free pde */
 | 
						|
}
 | 
						|
 | 
						|
void vm_enable_paging(void)
 | 
						|
{
 | 
						|
        u32_t cr0, cr4;
 | 
						|
        int pgeok;
 | 
						|
 | 
						|
        pgeok = _cpufeature(_CPUF_I386_PGE);
 | 
						|
 | 
						|
        cr0= read_cr0();
 | 
						|
        cr4= read_cr4();
 | 
						|
 | 
						|
	/* The boot loader should have put us in protected mode. */
 | 
						|
	assert(cr0 & I386_CR0_PE);
 | 
						|
 | 
						|
        /* First clear PG and PGE flag, as PGE must be enabled after PG. */
 | 
						|
        write_cr0(cr0 & ~I386_CR0_PG);
 | 
						|
        write_cr4(cr4 & ~(I386_CR4_PGE | I386_CR4_PSE));
 | 
						|
 | 
						|
        cr0= read_cr0();
 | 
						|
        cr4= read_cr4();
 | 
						|
 | 
						|
        /* Our page table contains 4MB entries. */
 | 
						|
        cr4 |= I386_CR4_PSE;
 | 
						|
 | 
						|
        write_cr4(cr4);
 | 
						|
 | 
						|
        /* First enable paging, then enable global page flag. */
 | 
						|
        cr0 |= I386_CR0_PG;
 | 
						|
        write_cr0(cr0);
 | 
						|
        cr0 |= I386_CR0_WP;
 | 
						|
        write_cr0(cr0);
 | 
						|
 | 
						|
        /* May we enable these features? */
 | 
						|
        if(pgeok)
 | 
						|
                cr4 |= I386_CR4_PGE;
 | 
						|
 | 
						|
        write_cr4(cr4);
 | 
						|
}
 | 
						|
 | 
						|
phys_bytes pg_load()
 | 
						|
{
 | 
						|
	phys_bytes phpagedir = vir2phys(pagedir);
 | 
						|
        write_cr3(phpagedir);
 | 
						|
	return phpagedir;
 | 
						|
}
 | 
						|
 | 
						|
void pg_clear(void)
 | 
						|
{
 | 
						|
	memset(pagedir, 0, sizeof(pagedir));
 | 
						|
}
 | 
						|
 | 
						|
phys_bytes pg_rounddown(phys_bytes b)
 | 
						|
{
 | 
						|
	phys_bytes o;
 | 
						|
	if(!(o = b % I386_PAGE_SIZE))
 | 
						|
		return b;
 | 
						|
	return b  - o;
 | 
						|
}
 | 
						|
 | 
						|
void pg_map(phys_bytes phys, vir_bytes vaddr, vir_bytes vaddr_end,
 | 
						|
	kinfo_t *cbi)
 | 
						|
{
 | 
						|
	static int mapped_pde = -1;
 | 
						|
	static u32_t *pt = NULL;
 | 
						|
	int pde, pte;
 | 
						|
 | 
						|
	assert(kernel_may_alloc);
 | 
						|
 | 
						|
	if(phys == PG_ALLOCATEME) {
 | 
						|
		assert(!(vaddr % I386_PAGE_SIZE));
 | 
						|
	} else  {
 | 
						|
		assert((vaddr % I386_PAGE_SIZE) == (phys % I386_PAGE_SIZE));
 | 
						|
		vaddr = pg_rounddown(vaddr);
 | 
						|
		phys = pg_rounddown(phys);
 | 
						|
	}	
 | 
						|
	assert(vaddr < kern_vir_start);
 | 
						|
 | 
						|
	while(vaddr < vaddr_end) {
 | 
						|
		phys_bytes source = phys;
 | 
						|
		assert(!(vaddr % I386_PAGE_SIZE));
 | 
						|
		if(phys == PG_ALLOCATEME) {
 | 
						|
			source = pg_alloc_page(cbi);
 | 
						|
		} else {
 | 
						|
			assert(!(phys % I386_PAGE_SIZE));
 | 
						|
		}
 | 
						|
		assert(!(source % I386_PAGE_SIZE));
 | 
						|
		pde = I386_VM_PDE(vaddr);
 | 
						|
		pte = I386_VM_PTE(vaddr);
 | 
						|
		if(mapped_pde < pde) {
 | 
						|
			phys_bytes ph;
 | 
						|
			pt = alloc_pagetable(&ph);
 | 
						|
			pagedir[pde] = (ph & I386_VM_ADDR_MASK)
 | 
						|
		                | I386_VM_PRESENT | I386_VM_USER | I386_VM_WRITE;
 | 
						|
			mapped_pde = pde;
 | 
						|
		}
 | 
						|
		assert(pt);
 | 
						|
		pt[pte] = (source & I386_VM_ADDR_MASK) |
 | 
						|
			I386_VM_PRESENT | I386_VM_USER | I386_VM_WRITE;
 | 
						|
		vaddr += I386_PAGE_SIZE;
 | 
						|
		if(phys != PG_ALLOCATEME)
 | 
						|
			phys += I386_PAGE_SIZE;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void pg_info(reg_t *pagedir_ph, u32_t **pagedir_v)
 | 
						|
{
 | 
						|
	*pagedir_ph = vir2phys(pagedir);
 | 
						|
	*pagedir_v = pagedir;
 | 
						|
}
 | 
						|
 |