Cristiano Giuffrida cb176df60f New RS and new signal handling for system processes.
UPDATING INFO:
20100317:
        /usr/src/etc/system.conf updated to ignore default kernel calls: copy
        it (or merge it) to /etc/system.conf.
        The hello driver (/dev/hello) added to the distribution:
        # cd /usr/src/commands/scripts && make clean install
        # cd /dev && MAKEDEV hello

KERNEL CHANGES:
- Generic signal handling support. The kernel no longer assumes PM as a signal
manager for every process. The signal manager of a given process can now be
specified in its privilege slot. When a signal has to be delivered, the kernel
performs the lookup and forwards the signal to the appropriate signal manager.
PM is the default signal manager for user processes, RS is the default signal
manager for system processes. To enable ptrace()ing for system processes, it
is sufficient to change the default signal manager to PM. This will temporarily
disable crash recovery, though.
- sys_exit() is now split into sys_exit() (i.e. exit() for system processes,
which generates a self-termination signal), and sys_clear() (i.e. used by PM
to ask the kernel to clear a process slot when a process exits).
- Added a new kernel call (i.e. sys_update()) to swap two process slots and
implement live update.

PM CHANGES:
- Posix signal handling is no longer allowed for system processes. System
signals are split into two fixed categories: termination and non-termination
signals. When a non-termination signaled is processed, PM transforms the signal
into an IPC message and delivers the message to the system process. When a
termination signal is processed, PM terminates the process.
- PM no longer assumes itself as the signal manager for system processes. It now
makes sure that every system signal goes through the kernel before being
actually processes. The kernel will then dispatch the signal to the appropriate
signal manager which may or may not be PM.

SYSLIB CHANGES:
- Simplified SEF init and LU callbacks.
- Added additional predefined SEF callbacks to debug crash recovery and
live update.
- Fixed a temporary ack in the SEF init protocol. SEF init reply is now
completely synchronous.
- Added SEF signal event type to provide a uniform interface for system
processes to deal with signals. A sef_cb_signal_handler() callback is
available for system processes to handle every received signal. A
sef_cb_signal_manager() callback is used by signal managers to process
system signals on behalf of the kernel.
- Fixed a few bugs with memory mapping and DS.

VM CHANGES:
- Page faults and memory requests coming from the kernel are now implemented
using signals.
- Added a new VM call to swap two process slots and implement live update.
- The call is used by RS at update time and in turn invokes the kernel call
sys_update().

RS CHANGES:
- RS has been reworked with a better functional decomposition.
- Better kernel call masks. com.h now defines the set of very basic kernel calls
every system service is allowed to use. This makes system.conf simpler and
easier to maintain. In addition, this guarantees a higher level of isolation
for system libraries that use one or more kernel calls internally (e.g. printf).
- RS is the default signal manager for system processes. By default, RS
intercepts every signal delivered to every system process. This makes crash
recovery possible before bringing PM and friends in the loop.
- RS now supports fast rollback when something goes wrong while initializing
the new version during a live update.
- Live update is now implemented by keeping the two versions side-by-side and
swapping the process slots when the old version is ready to update.
- Crash recovery is now implemented by keeping the two versions side-by-side
and cleaning up the old version only when the recovery process is complete.

DS CHANGES:
- Fixed a bug when the process doing ds_publish() or ds_delete() is not known
by DS.
- Fixed the completely broken support for strings. String publishing is now
implemented in the system library and simply wraps publishing of memory ranges.
Ideally, we should adopt a similar approach for other data types as well.
- Test suite fixed.

DRIVER CHANGES:
- The hello driver has been added to the Minix distribution to demonstrate basic
live update and crash recovery functionalities.
- Other drivers have been adapted to conform the new SEF interface.
2010-03-17 01:15:29 +00:00

69 lines
2.6 KiB
C

/* Prototypes and definitions for VM interface. */
#ifndef _MINIX_VM_H
#define _MINIX_VM_H
#include <minix/types.h>
#include <minix/endpoint.h>
_PROTOTYPE( int vm_exit, (endpoint_t ep));
_PROTOTYPE( int vm_fork, (endpoint_t ep, int slotno, endpoint_t *child_ep));
_PROTOTYPE( int vm_brk, (endpoint_t ep, char *newaddr));
_PROTOTYPE( int vm_exec_newmem, (endpoint_t ep, struct exec_newmem *args,
int args_bytes, char **ret_stack_top, int *ret_flags));
_PROTOTYPE( int vm_push_sig, (endpoint_t ep, vir_bytes *old_sp));
_PROTOTYPE( int vm_willexit, (endpoint_t ep));
_PROTOTYPE( int vm_adddma, (endpoint_t req_e, endpoint_t proc_e,
phys_bytes start, phys_bytes size) );
_PROTOTYPE( int vm_deldma, (endpoint_t req_e, endpoint_t proc_e,
phys_bytes start, phys_bytes size) );
_PROTOTYPE( int vm_getdma, (endpoint_t req_e, endpoint_t *procp,
phys_bytes *basep, phys_bytes *sizep) );
_PROTOTYPE( void *vm_map_phys, (endpoint_t who, void *physaddr, size_t len));
_PROTOTYPE( int vm_unmap_phys, (endpoint_t who, void *vaddr, size_t len));
_PROTOTYPE( int vm_notify_sig, (endpoint_t ep, endpoint_t ipc_ep));
_PROTOTYPE( int vm_ctl, (int what, int param));
_PROTOTYPE( int vm_set_priv, (int procnr, void *buf));
_PROTOTYPE( int vm_update, (endpoint_t src_e, endpoint_t dst_e));
_PROTOTYPE( int vm_query_exit, (int *endpt));
/* VM kernel request types. */
#define VMPTYPE_NONE 0
#define VMPTYPE_CHECK 1
#define VMPTYPE_COWMAP 2
#define VMPTYPE_SMAP 3
#define VMPTYPE_SUNMAP 4
struct vm_stats_info {
int vsi_pagesize; /* page size */
int vsi_total; /* total number of memory pages */
int vsi_free; /* number of free pages */
int vsi_largest; /* largest number of consecutive free pages */
};
struct vm_usage_info {
vir_bytes vui_total; /* total amount of process memory */
vir_bytes vui_common; /* part of memory mapped in more than once */
vir_bytes vui_shared; /* shared (non-COW) part of common memory */
};
struct vm_region_info {
int vri_seg; /* segment of virtual region (T or D) */
vir_bytes vri_addr; /* base address of region */
vir_bytes vri_length; /* length of region */
int vri_prot; /* protection flags (PROT_) */
int vri_flags; /* memory flags (subset of MAP_) */
};
#define MAX_VRI_COUNT 64 /* max. number of regions provided at once */
_PROTOTYPE( int vm_info_stats, (struct vm_stats_info *vfi) );
_PROTOTYPE( int vm_info_usage, (endpoint_t who,
struct vm_usage_info *vui) );
_PROTOTYPE( int vm_info_region, (endpoint_t who,
struct vm_region_info *vri, int count, vir_bytes *next) );
#endif /* _MINIX_VM_H */