Not all services involved in block I/O go through VM to access the blocks they need. As a result, the blocks in VM may become stale, possibly causing corruption when the stale copy is restored by a service that does go through VM later on. This patch restores support for forgetting cached blocks that belong to a particular device, and makes the relevant file systems use this functionality 1) when requested by VFS through REQ_FLUSH, and 2) upon unmount. Change-Id: I0758c5ed8fe4b5ba81d432595d2113175776aff8
		
			
				
	
	
		
			974 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			974 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
 | 
						|
#define _SYSTEM
 | 
						|
 | 
						|
#include <assert.h>
 | 
						|
#include <errno.h>
 | 
						|
#include <math.h>
 | 
						|
#include <stdlib.h>
 | 
						|
 | 
						|
#include <sys/param.h>
 | 
						|
#include <sys/mman.h>
 | 
						|
 | 
						|
#include <minix/dmap.h>
 | 
						|
#include <minix/libminixfs.h>
 | 
						|
#include <minix/syslib.h>
 | 
						|
#include <minix/sysutil.h>
 | 
						|
#include <minix/u64.h>
 | 
						|
#include <minix/bdev.h>
 | 
						|
 | 
						|
#define BUFHASH(b) ((b) % nr_bufs)
 | 
						|
#define MARKCLEAN  lmfs_markclean
 | 
						|
 | 
						|
#define MINBUFS 6 	/* minimal no of bufs for sanity check */
 | 
						|
 | 
						|
static struct buf *front;       /* points to least recently used free block */
 | 
						|
static struct buf *rear;        /* points to most recently used free block */
 | 
						|
static unsigned int bufs_in_use;/* # bufs currently in use (not on free list)*/
 | 
						|
 | 
						|
static void rm_lru(struct buf *bp);
 | 
						|
static void read_block(struct buf *);
 | 
						|
static void flushall(dev_t dev);
 | 
						|
static void freeblock(struct buf *bp);
 | 
						|
static void cache_heuristic_check(int major);
 | 
						|
 | 
						|
static int vmcache = 0; /* are we using vm's secondary cache? (initially not) */
 | 
						|
 | 
						|
static struct buf *buf;
 | 
						|
static struct buf **buf_hash;   /* the buffer hash table */
 | 
						|
static unsigned int nr_bufs;
 | 
						|
static int may_use_vmcache;
 | 
						|
 | 
						|
static int fs_block_size = PAGE_SIZE;	/* raw i/o block size */
 | 
						|
 | 
						|
static int rdwt_err;
 | 
						|
 | 
						|
static int quiet = 0;
 | 
						|
 | 
						|
void
 | 
						|
lmfs_setquiet(int q) { quiet = q; }
 | 
						|
 | 
						|
static u32_t fs_bufs_heuristic(int minbufs, u32_t btotal, u64_t bfree, 
 | 
						|
         int blocksize, dev_t majordev)
 | 
						|
{
 | 
						|
  struct vm_stats_info vsi;
 | 
						|
  int bufs;
 | 
						|
  u32_t kbytes_used_fs, kbytes_total_fs, kbcache, kb_fsmax;
 | 
						|
  u32_t kbytes_remain_mem;
 | 
						|
  u64_t bused;
 | 
						|
 | 
						|
  bused = btotal-bfree;
 | 
						|
 | 
						|
  /* set a reasonable cache size; cache at most a certain
 | 
						|
   * portion of the used FS, and at most a certain %age of remaining
 | 
						|
   * memory
 | 
						|
   */
 | 
						|
  if(vm_info_stats(&vsi) != OK) {
 | 
						|
	bufs = 1024;
 | 
						|
	if(!quiet)
 | 
						|
	  printf("fslib: heuristic info fail: default to %d bufs\n", bufs);
 | 
						|
	return bufs;
 | 
						|
  }
 | 
						|
 | 
						|
  /* remaining free memory is unused memory plus memory in used for cache,
 | 
						|
   * as the cache can be evicted
 | 
						|
   */
 | 
						|
  kbytes_remain_mem = (u64_t)(vsi.vsi_free + vsi.vsi_cached) *
 | 
						|
	vsi.vsi_pagesize / 1024;
 | 
						|
 | 
						|
  /* check fs usage. */
 | 
						|
  kbytes_used_fs = div64u(mul64u(bused, blocksize), 1024);
 | 
						|
  kbytes_total_fs = div64u(mul64u(btotal, blocksize), 1024);
 | 
						|
 | 
						|
  /* heuristic for a desired cache size based on FS usage;
 | 
						|
   * but never bigger than half of the total filesystem
 | 
						|
   */
 | 
						|
  kb_fsmax = sqrt_approx(kbytes_used_fs)*40;
 | 
						|
  kb_fsmax = MIN(kb_fsmax, kbytes_total_fs/2);
 | 
						|
 | 
						|
  /* heuristic for a maximum usage - 10% of remaining memory */
 | 
						|
  kbcache = MIN(kbytes_remain_mem/10, kb_fsmax);
 | 
						|
  bufs = kbcache * 1024 / blocksize;
 | 
						|
 | 
						|
  /* but we simply need MINBUFS no matter what */
 | 
						|
  if(bufs < minbufs)
 | 
						|
	bufs = minbufs;
 | 
						|
 | 
						|
  return bufs;
 | 
						|
}
 | 
						|
 | 
						|
void lmfs_blockschange(dev_t dev, int delta)
 | 
						|
{
 | 
						|
        /* Change the number of allocated blocks by 'delta.'
 | 
						|
         * Also accumulate the delta since the last cache re-evaluation.
 | 
						|
         * If it is outside a certain band, ask the cache library to
 | 
						|
         * re-evaluate the cache size.
 | 
						|
         */
 | 
						|
        static int bitdelta = 0;
 | 
						|
        bitdelta += delta;
 | 
						|
#define BANDKB (10*1024)	/* recheck cache every 10MB change */
 | 
						|
        if(bitdelta*fs_block_size/1024 > BANDKB ||
 | 
						|
	   bitdelta*fs_block_size/1024 < -BANDKB) {
 | 
						|
                lmfs_cache_reevaluate(dev);
 | 
						|
                bitdelta = 0;
 | 
						|
        }
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
lmfs_markdirty(struct buf *bp)
 | 
						|
{
 | 
						|
	bp->lmfs_flags |= VMMC_DIRTY;
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
lmfs_markclean(struct buf *bp)
 | 
						|
{
 | 
						|
	bp->lmfs_flags &= ~VMMC_DIRTY;
 | 
						|
}
 | 
						|
 | 
						|
int 
 | 
						|
lmfs_isclean(struct buf *bp)
 | 
						|
{
 | 
						|
	return !(bp->lmfs_flags & VMMC_DIRTY);
 | 
						|
}
 | 
						|
 | 
						|
dev_t
 | 
						|
lmfs_dev(struct buf *bp)
 | 
						|
{
 | 
						|
	return bp->lmfs_dev;
 | 
						|
}
 | 
						|
 | 
						|
int lmfs_bytes(struct buf *bp)
 | 
						|
{
 | 
						|
	return bp->lmfs_bytes;
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
free_unused_blocks(void)
 | 
						|
{
 | 
						|
	struct buf *bp;
 | 
						|
 | 
						|
	int freed = 0, bytes = 0;
 | 
						|
	printf("libminixfs: freeing; %d blocks in use\n", bufs_in_use);
 | 
						|
	for(bp = &buf[0]; bp < &buf[nr_bufs]; bp++) {
 | 
						|
  		if(bp->lmfs_bytes > 0 && bp->lmfs_count == 0) {
 | 
						|
			freed++;
 | 
						|
			bytes += bp->lmfs_bytes;
 | 
						|
			freeblock(bp);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	printf("libminixfs: freeing; %d blocks, %d bytes\n", freed, bytes);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
lmfs_alloc_block(struct buf *bp)
 | 
						|
{
 | 
						|
  int len;
 | 
						|
  ASSERT(!bp->data);
 | 
						|
  ASSERT(bp->lmfs_bytes == 0);
 | 
						|
 | 
						|
  len = roundup(fs_block_size, PAGE_SIZE);
 | 
						|
 | 
						|
  if((bp->data = minix_mmap(0, fs_block_size,
 | 
						|
     PROT_READ|PROT_WRITE, MAP_PREALLOC|MAP_ANON, -1, 0)) == MAP_FAILED) {
 | 
						|
	free_unused_blocks();
 | 
						|
	if((bp->data = minix_mmap(0, fs_block_size, PROT_READ|PROT_WRITE,
 | 
						|
		MAP_PREALLOC|MAP_ANON, -1, 0)) == MAP_FAILED) {
 | 
						|
		panic("libminixfs: could not allocate block");
 | 
						|
	}
 | 
						|
  }
 | 
						|
  assert(bp->data);
 | 
						|
  bp->lmfs_bytes = fs_block_size;
 | 
						|
  bp->lmfs_needsetcache = 1;
 | 
						|
}
 | 
						|
 | 
						|
/*===========================================================================*
 | 
						|
 *				lmfs_get_block				     *
 | 
						|
 *===========================================================================*/
 | 
						|
struct buf *lmfs_get_block(register dev_t dev, register block_t block,
 | 
						|
	int only_search)
 | 
						|
{
 | 
						|
	return lmfs_get_block_ino(dev, block, only_search, VMC_NO_INODE, 0);
 | 
						|
}
 | 
						|
 | 
						|
void minix_munmap_t(void *a, int len)
 | 
						|
{
 | 
						|
	vir_bytes av = (vir_bytes) a;
 | 
						|
	assert(a);
 | 
						|
	assert(a != MAP_FAILED);
 | 
						|
	assert(len > 0);
 | 
						|
	assert(!(av % PAGE_SIZE));
 | 
						|
 | 
						|
	len = roundup(len, PAGE_SIZE);
 | 
						|
 | 
						|
	assert(!(len % PAGE_SIZE));
 | 
						|
 | 
						|
	if(minix_munmap(a, len) < 0)
 | 
						|
		panic("libminixfs cache: munmap failed");
 | 
						|
}
 | 
						|
 | 
						|
static void raisecount(struct buf *bp)
 | 
						|
{
 | 
						|
  assert(bufs_in_use >= 0);
 | 
						|
  ASSERT(bp->lmfs_count >= 0);
 | 
						|
  bp->lmfs_count++;
 | 
						|
  if(bp->lmfs_count == 1) bufs_in_use++;
 | 
						|
  assert(bufs_in_use > 0);
 | 
						|
}
 | 
						|
 | 
						|
static void lowercount(struct buf *bp)
 | 
						|
{
 | 
						|
  assert(bufs_in_use > 0);
 | 
						|
  ASSERT(bp->lmfs_count > 0);
 | 
						|
  bp->lmfs_count--;
 | 
						|
  if(bp->lmfs_count == 0) bufs_in_use--;
 | 
						|
  assert(bufs_in_use >= 0);
 | 
						|
}
 | 
						|
 | 
						|
static void freeblock(struct buf *bp)
 | 
						|
{
 | 
						|
  ASSERT(bp->lmfs_count == 0);
 | 
						|
  /* If the block taken is dirty, make it clean by writing it to the disk.
 | 
						|
   * Avoid hysteresis by flushing all other dirty blocks for the same device.
 | 
						|
   */
 | 
						|
  if (bp->lmfs_dev != NO_DEV) {
 | 
						|
	if (!lmfs_isclean(bp)) flushall(bp->lmfs_dev);
 | 
						|
	assert(bp->lmfs_bytes == fs_block_size);
 | 
						|
	bp->lmfs_dev = NO_DEV;
 | 
						|
  }
 | 
						|
 | 
						|
  /* Fill in block's parameters and add it to the hash chain where it goes. */
 | 
						|
  MARKCLEAN(bp);		/* NO_DEV blocks may be marked dirty */
 | 
						|
  if(bp->lmfs_bytes > 0) {
 | 
						|
	assert(bp->data);
 | 
						|
	minix_munmap_t(bp->data, bp->lmfs_bytes);
 | 
						|
	bp->lmfs_bytes = 0;
 | 
						|
	bp->data = NULL;
 | 
						|
  } else assert(!bp->data);
 | 
						|
}
 | 
						|
 | 
						|
/*===========================================================================*
 | 
						|
 *				lmfs_get_block_ino			     *
 | 
						|
 *===========================================================================*/
 | 
						|
struct buf *lmfs_get_block_ino(dev_t dev, block_t block, int only_search,
 | 
						|
	ino_t ino, u64_t ino_off)
 | 
						|
{
 | 
						|
/* Check to see if the requested block is in the block cache.  If so, return
 | 
						|
 * a pointer to it.  If not, evict some other block and fetch it (unless
 | 
						|
 * 'only_search' is 1).  All the blocks in the cache that are not in use
 | 
						|
 * are linked together in a chain, with 'front' pointing to the least recently
 | 
						|
 * used block and 'rear' to the most recently used block.  If 'only_search' is
 | 
						|
 * 1, the block being requested will be overwritten in its entirety, so it is
 | 
						|
 * only necessary to see if it is in the cache; if it is not, any free buffer
 | 
						|
 * will do.  It is not necessary to actually read the block in from disk.
 | 
						|
 * If 'only_search' is PREFETCH, the block need not be read from the disk,
 | 
						|
 * and the device is not to be marked on the block, so callers can tell if
 | 
						|
 * the block returned is valid.
 | 
						|
 * In addition to the LRU chain, there is also a hash chain to link together
 | 
						|
 * blocks whose block numbers end with the same bit strings, for fast lookup.
 | 
						|
 */
 | 
						|
 | 
						|
  int b;
 | 
						|
  static struct buf *bp;
 | 
						|
  u64_t dev_off = (u64_t) block * fs_block_size;
 | 
						|
  struct buf *prev_ptr;
 | 
						|
 | 
						|
  assert(buf_hash);
 | 
						|
  assert(buf);
 | 
						|
  assert(nr_bufs > 0);
 | 
						|
 | 
						|
  ASSERT(fs_block_size > 0);
 | 
						|
 | 
						|
  assert(dev != NO_DEV);
 | 
						|
 | 
						|
  if((ino_off % fs_block_size)) {
 | 
						|
 | 
						|
	printf("cache: unaligned lmfs_get_block_ino ino_off %llu\n",
 | 
						|
		ino_off);
 | 
						|
  	util_stacktrace();
 | 
						|
  }
 | 
						|
 | 
						|
  /* Search the hash chain for (dev, block). */
 | 
						|
  b = BUFHASH(block);
 | 
						|
  bp = buf_hash[b];
 | 
						|
  while (bp != NULL) {
 | 
						|
  	if (bp->lmfs_blocknr == block && bp->lmfs_dev == dev) {
 | 
						|
  		if(bp->lmfs_flags & VMMC_EVICTED) {
 | 
						|
  			/* We had it but VM evicted it; invalidate it. */
 | 
						|
  			ASSERT(bp->lmfs_count == 0);
 | 
						|
  			ASSERT(!(bp->lmfs_flags & VMMC_BLOCK_LOCKED));
 | 
						|
  			ASSERT(!(bp->lmfs_flags & VMMC_DIRTY));
 | 
						|
  			bp->lmfs_dev = NO_DEV;
 | 
						|
  			bp->lmfs_bytes = 0;
 | 
						|
  			bp->data = NULL;
 | 
						|
  			break;
 | 
						|
  		}
 | 
						|
  		ASSERT(bp->lmfs_needsetcache == 0);
 | 
						|
  		/* Block needed has been found. */
 | 
						|
  		if (bp->lmfs_count == 0) {
 | 
						|
			rm_lru(bp);
 | 
						|
  			ASSERT(!(bp->lmfs_flags & VMMC_BLOCK_LOCKED));
 | 
						|
			bp->lmfs_flags |= VMMC_BLOCK_LOCKED;
 | 
						|
		}
 | 
						|
		raisecount(bp);
 | 
						|
  		ASSERT(bp->lmfs_bytes == fs_block_size);
 | 
						|
  		ASSERT(bp->lmfs_dev == dev);
 | 
						|
  		ASSERT(bp->lmfs_dev != NO_DEV);
 | 
						|
 		ASSERT(bp->lmfs_flags & VMMC_BLOCK_LOCKED);
 | 
						|
  		ASSERT(bp->data);
 | 
						|
 | 
						|
		if(ino != VMC_NO_INODE) {
 | 
						|
			if(bp->lmfs_inode == VMC_NO_INODE
 | 
						|
			|| bp->lmfs_inode != ino
 | 
						|
			|| bp->lmfs_inode_offset != ino_off) {
 | 
						|
				bp->lmfs_inode = ino;
 | 
						|
				bp->lmfs_inode_offset = ino_off;
 | 
						|
				bp->lmfs_needsetcache = 1;
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
  		return(bp);
 | 
						|
  	} else {
 | 
						|
  		/* This block is not the one sought. */
 | 
						|
  		bp = bp->lmfs_hash; /* move to next block on hash chain */
 | 
						|
  	}
 | 
						|
  }
 | 
						|
 | 
						|
  /* Desired block is not on available chain. Find a free block to use. */
 | 
						|
  if(bp) {
 | 
						|
  	ASSERT(bp->lmfs_flags & VMMC_EVICTED);
 | 
						|
  } else {
 | 
						|
	if ((bp = front) == NULL) panic("all buffers in use: %d", nr_bufs);
 | 
						|
  }
 | 
						|
  assert(bp);
 | 
						|
 | 
						|
  rm_lru(bp);
 | 
						|
 | 
						|
  /* Remove the block that was just taken from its hash chain. */
 | 
						|
  b = BUFHASH(bp->lmfs_blocknr);
 | 
						|
  prev_ptr = buf_hash[b];
 | 
						|
  if (prev_ptr == bp) {
 | 
						|
	buf_hash[b] = bp->lmfs_hash;
 | 
						|
  } else {
 | 
						|
	/* The block just taken is not on the front of its hash chain. */
 | 
						|
	while (prev_ptr->lmfs_hash != NULL)
 | 
						|
		if (prev_ptr->lmfs_hash == bp) {
 | 
						|
			prev_ptr->lmfs_hash = bp->lmfs_hash;	/* found it */
 | 
						|
			break;
 | 
						|
		} else {
 | 
						|
			prev_ptr = prev_ptr->lmfs_hash;	/* keep looking */
 | 
						|
		}
 | 
						|
  }
 | 
						|
 | 
						|
  freeblock(bp);
 | 
						|
 | 
						|
  bp->lmfs_inode = ino;
 | 
						|
  bp->lmfs_inode_offset = ino_off;
 | 
						|
 | 
						|
  bp->lmfs_flags = VMMC_BLOCK_LOCKED;
 | 
						|
  bp->lmfs_needsetcache = 0;
 | 
						|
  bp->lmfs_dev = dev;		/* fill in device number */
 | 
						|
  bp->lmfs_blocknr = block;	/* fill in block number */
 | 
						|
  ASSERT(bp->lmfs_count == 0);
 | 
						|
  raisecount(bp);
 | 
						|
  b = BUFHASH(bp->lmfs_blocknr);
 | 
						|
  bp->lmfs_hash = buf_hash[b];
 | 
						|
 | 
						|
  buf_hash[b] = bp;		/* add to hash list */
 | 
						|
 | 
						|
  assert(dev != NO_DEV);
 | 
						|
 | 
						|
  /* Block is not found in our cache, but we do want it
 | 
						|
   * if it's in the vm cache.
 | 
						|
   */
 | 
						|
  assert(!bp->data);
 | 
						|
  assert(!bp->lmfs_bytes);
 | 
						|
  if(vmcache) {
 | 
						|
	if((bp->data = vm_map_cacheblock(dev, dev_off, ino, ino_off,
 | 
						|
		&bp->lmfs_flags, fs_block_size)) != MAP_FAILED) {
 | 
						|
		bp->lmfs_bytes = fs_block_size;
 | 
						|
		ASSERT(!bp->lmfs_needsetcache);
 | 
						|
		return bp;
 | 
						|
	}
 | 
						|
  }
 | 
						|
  bp->data = NULL;
 | 
						|
 | 
						|
  /* Not in the cache; reserve memory for its contents. */
 | 
						|
 | 
						|
  lmfs_alloc_block(bp);
 | 
						|
 | 
						|
  assert(bp->data);
 | 
						|
 | 
						|
  if(only_search == PREFETCH) {
 | 
						|
	/* PREFETCH: don't do i/o. */
 | 
						|
	bp->lmfs_dev = NO_DEV;
 | 
						|
  } else if (only_search == NORMAL) {
 | 
						|
	read_block(bp);
 | 
						|
  } else if(only_search == NO_READ) {
 | 
						|
  	/* This block will be overwritten by new contents. */
 | 
						|
  } else
 | 
						|
	panic("unexpected only_search value: %d", only_search);
 | 
						|
 | 
						|
  assert(bp->data);
 | 
						|
 | 
						|
  return(bp);			/* return the newly acquired block */
 | 
						|
}
 | 
						|
 | 
						|
/*===========================================================================*
 | 
						|
 *				lmfs_put_block				     *
 | 
						|
 *===========================================================================*/
 | 
						|
void lmfs_put_block(bp, block_type)
 | 
						|
register struct buf *bp;	/* pointer to the buffer to be released */
 | 
						|
int block_type;			/* INODE_BLOCK, DIRECTORY_BLOCK, or whatever */
 | 
						|
{
 | 
						|
/* Return a block to the list of available blocks.   Depending on 'block_type'
 | 
						|
 * it may be put on the front or rear of the LRU chain.  Blocks that are
 | 
						|
 * expected to be needed again shortly (e.g., partially full data blocks)
 | 
						|
 * go on the rear; blocks that are unlikely to be needed again shortly
 | 
						|
 * (e.g., full data blocks) go on the front.  Blocks whose loss can hurt
 | 
						|
 * the integrity of the file system (e.g., inode blocks) are written to
 | 
						|
 * disk immediately if they are dirty.
 | 
						|
 */
 | 
						|
  dev_t dev;
 | 
						|
  u64_t dev_off;
 | 
						|
  int r;
 | 
						|
 | 
						|
  if (bp == NULL) return;	/* it is easier to check here than in caller */
 | 
						|
 | 
						|
  dev = bp->lmfs_dev;
 | 
						|
 | 
						|
  dev_off = (u64_t) bp->lmfs_blocknr * fs_block_size;
 | 
						|
 | 
						|
  lowercount(bp);
 | 
						|
  if (bp->lmfs_count != 0) return;	/* block is still in use */
 | 
						|
 | 
						|
  /* Put this block back on the LRU chain.  */
 | 
						|
  if (dev == DEV_RAM || (block_type & ONE_SHOT)) {
 | 
						|
	/* Block probably won't be needed quickly. Put it on front of chain.
 | 
						|
  	 * It will be the next block to be evicted from the cache.
 | 
						|
  	 */
 | 
						|
	bp->lmfs_prev = NULL;
 | 
						|
	bp->lmfs_next = front;
 | 
						|
	if (front == NULL)
 | 
						|
		rear = bp;	/* LRU chain was empty */
 | 
						|
	else
 | 
						|
		front->lmfs_prev = bp;
 | 
						|
	front = bp;
 | 
						|
  } 
 | 
						|
  else {
 | 
						|
	/* Block probably will be needed quickly.  Put it on rear of chain.
 | 
						|
  	 * It will not be evicted from the cache for a long time.
 | 
						|
  	 */
 | 
						|
	bp->lmfs_prev = rear;
 | 
						|
	bp->lmfs_next = NULL;
 | 
						|
	if (rear == NULL)
 | 
						|
		front = bp;
 | 
						|
	else
 | 
						|
		rear->lmfs_next = bp;
 | 
						|
	rear = bp;
 | 
						|
  }
 | 
						|
 | 
						|
  assert(bp->lmfs_flags & VMMC_BLOCK_LOCKED);
 | 
						|
  bp->lmfs_flags &= ~VMMC_BLOCK_LOCKED;
 | 
						|
 | 
						|
  /* block has sensible content - if necesary, identify it to VM */
 | 
						|
  if(vmcache && bp->lmfs_needsetcache && dev != NO_DEV) {
 | 
						|
  	if((r=vm_set_cacheblock(bp->data, dev, dev_off,
 | 
						|
	bp->lmfs_inode, bp->lmfs_inode_offset,
 | 
						|
	&bp->lmfs_flags, fs_block_size)) != OK) {
 | 
						|
		if(r == ENOSYS) {
 | 
						|
			printf("libminixfs: ENOSYS, disabling VM calls\n");
 | 
						|
			vmcache = 0;
 | 
						|
		} else {
 | 
						|
			panic("libminixfs: setblock of %p dev 0x%x off "
 | 
						|
				"0x%llx failed\n", bp->data, dev, dev_off);
 | 
						|
		}
 | 
						|
	}
 | 
						|
  }
 | 
						|
  bp->lmfs_needsetcache = 0;
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
void lmfs_cache_reevaluate(dev_t dev)
 | 
						|
{
 | 
						|
  if(bufs_in_use == 0 && dev != NO_DEV) {
 | 
						|
	/* if the cache isn't in use any more, we could resize it. */
 | 
						|
	cache_heuristic_check(major(dev));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/*===========================================================================*
 | 
						|
 *				read_block				     *
 | 
						|
 *===========================================================================*/
 | 
						|
static void read_block(bp)
 | 
						|
register struct buf *bp;	/* buffer pointer */
 | 
						|
{
 | 
						|
/* Read or write a disk block. This is the only routine in which actual disk
 | 
						|
 * I/O is invoked. If an error occurs, a message is printed here, but the error
 | 
						|
 * is not reported to the caller.  If the error occurred while purging a block
 | 
						|
 * from the cache, it is not clear what the caller could do about it anyway.
 | 
						|
 */
 | 
						|
  int r, op_failed;
 | 
						|
  u64_t pos;
 | 
						|
  dev_t dev = bp->lmfs_dev;
 | 
						|
 | 
						|
  op_failed = 0;
 | 
						|
 | 
						|
  assert(dev != NO_DEV);
 | 
						|
 | 
						|
  ASSERT(bp->lmfs_bytes == fs_block_size);
 | 
						|
  ASSERT(fs_block_size > 0);
 | 
						|
 | 
						|
  pos = mul64u(bp->lmfs_blocknr, fs_block_size);
 | 
						|
  if(fs_block_size > PAGE_SIZE) {
 | 
						|
#define MAXPAGES 20
 | 
						|
	vir_bytes blockrem, vaddr = (vir_bytes) bp->data;
 | 
						|
	int p = 0;
 | 
						|
  	static iovec_t iovec[MAXPAGES];
 | 
						|
	blockrem = fs_block_size;
 | 
						|
	while(blockrem > 0) {
 | 
						|
		vir_bytes chunk = blockrem >= PAGE_SIZE ? PAGE_SIZE : blockrem;
 | 
						|
		iovec[p].iov_addr = vaddr;
 | 
						|
		iovec[p].iov_size = chunk;
 | 
						|
		vaddr += chunk;
 | 
						|
		blockrem -= chunk;
 | 
						|
		p++;
 | 
						|
	}
 | 
						|
  	r = bdev_gather(dev, pos, iovec, p, BDEV_NOFLAGS);
 | 
						|
  } else {
 | 
						|
  	r = bdev_read(dev, pos, bp->data, fs_block_size,
 | 
						|
  		BDEV_NOFLAGS);
 | 
						|
  }
 | 
						|
  if (r < 0) {
 | 
						|
  	printf("fs cache: I/O error on device %d/%d, block %u\n",
 | 
						|
  	major(dev), minor(dev), bp->lmfs_blocknr);
 | 
						|
  	op_failed = 1;
 | 
						|
  } else if (r != (ssize_t) fs_block_size) {
 | 
						|
  	r = END_OF_FILE;
 | 
						|
  	op_failed = 1;
 | 
						|
  }
 | 
						|
 | 
						|
  if (op_failed) {
 | 
						|
  	bp->lmfs_dev = NO_DEV;	/* invalidate block */
 | 
						|
 | 
						|
  	/* Report read errors to interested parties. */
 | 
						|
  	rdwt_err = r;
 | 
						|
  }
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*===========================================================================*
 | 
						|
 *				lmfs_invalidate				     *
 | 
						|
 *===========================================================================*/
 | 
						|
void lmfs_invalidate(
 | 
						|
  dev_t device			/* device whose blocks are to be purged */
 | 
						|
)
 | 
						|
{
 | 
						|
/* Remove all the blocks belonging to some device from the cache. */
 | 
						|
 | 
						|
  register struct buf *bp;
 | 
						|
 | 
						|
  for (bp = &buf[0]; bp < &buf[nr_bufs]; bp++) {
 | 
						|
	if (bp->lmfs_dev == device) {
 | 
						|
		assert(bp->data);
 | 
						|
		assert(bp->lmfs_bytes > 0);
 | 
						|
		minix_munmap_t(bp->data, bp->lmfs_bytes);
 | 
						|
		bp->lmfs_dev = NO_DEV;
 | 
						|
		bp->lmfs_bytes = 0;
 | 
						|
		bp->data = NULL;
 | 
						|
	}
 | 
						|
  }
 | 
						|
 | 
						|
  vm_clear_cache(device);
 | 
						|
}
 | 
						|
 | 
						|
/*===========================================================================*
 | 
						|
 *				flushall				     *
 | 
						|
 *===========================================================================*/
 | 
						|
static void flushall(dev_t dev)
 | 
						|
{
 | 
						|
/* Flush all dirty blocks for one device. */
 | 
						|
 | 
						|
  register struct buf *bp;
 | 
						|
  static struct buf **dirty;	/* static so it isn't on stack */
 | 
						|
  static unsigned int dirtylistsize = 0;
 | 
						|
  int ndirty;
 | 
						|
 | 
						|
  if(dirtylistsize != nr_bufs) {
 | 
						|
	if(dirtylistsize > 0) {
 | 
						|
		assert(dirty != NULL);
 | 
						|
		free(dirty);
 | 
						|
	}
 | 
						|
	if(!(dirty = malloc(sizeof(dirty[0])*nr_bufs)))
 | 
						|
		panic("couldn't allocate dirty buf list");
 | 
						|
	dirtylistsize = nr_bufs;
 | 
						|
  }
 | 
						|
 | 
						|
  for (bp = &buf[0], ndirty = 0; bp < &buf[nr_bufs]; bp++) {
 | 
						|
       if (!lmfs_isclean(bp) && bp->lmfs_dev == dev) {
 | 
						|
               dirty[ndirty++] = bp;
 | 
						|
       }
 | 
						|
  }
 | 
						|
 | 
						|
  lmfs_rw_scattered(dev, dirty, ndirty, WRITING);
 | 
						|
}
 | 
						|
 | 
						|
/*===========================================================================*
 | 
						|
 *				lmfs_rw_scattered			     *
 | 
						|
 *===========================================================================*/
 | 
						|
void lmfs_rw_scattered(
 | 
						|
  dev_t dev,			/* major-minor device number */
 | 
						|
  struct buf **bufq,		/* pointer to array of buffers */
 | 
						|
  int bufqsize,			/* number of buffers */
 | 
						|
  int rw_flag			/* READING or WRITING */
 | 
						|
)
 | 
						|
{
 | 
						|
/* Read or write scattered data from a device. */
 | 
						|
 | 
						|
  register struct buf *bp;
 | 
						|
  int gap;
 | 
						|
  register int i;
 | 
						|
  register iovec_t *iop;
 | 
						|
  static iovec_t iovec[NR_IOREQS];
 | 
						|
  u64_t pos;
 | 
						|
  int iov_per_block;
 | 
						|
  int start_in_use = bufs_in_use, start_bufqsize = bufqsize;
 | 
						|
 | 
						|
  assert(bufqsize >= 0);
 | 
						|
  if(bufqsize == 0) return;
 | 
						|
 | 
						|
  /* for READING, check all buffers on the list are obtained and held
 | 
						|
   * (count > 0)
 | 
						|
   */
 | 
						|
  if (rw_flag == READING) {
 | 
						|
	for(i = 0; i < bufqsize; i++) {
 | 
						|
		assert(bufq[i] != NULL);
 | 
						|
		assert(bufq[i]->lmfs_count > 0);
 | 
						|
  	}
 | 
						|
 | 
						|
  	/* therefore they are all 'in use' and must be at least this many */
 | 
						|
	  assert(start_in_use >= start_bufqsize);
 | 
						|
  }
 | 
						|
 | 
						|
  assert(dev != NO_DEV);
 | 
						|
  assert(fs_block_size > 0);
 | 
						|
  iov_per_block = roundup(fs_block_size, PAGE_SIZE) / PAGE_SIZE;
 | 
						|
  assert(iov_per_block < NR_IOREQS);
 | 
						|
  
 | 
						|
  /* (Shell) sort buffers on lmfs_blocknr. */
 | 
						|
  gap = 1;
 | 
						|
  do
 | 
						|
	gap = 3 * gap + 1;
 | 
						|
  while (gap <= bufqsize);
 | 
						|
  while (gap != 1) {
 | 
						|
  	int j;
 | 
						|
	gap /= 3;
 | 
						|
	for (j = gap; j < bufqsize; j++) {
 | 
						|
		for (i = j - gap;
 | 
						|
		     i >= 0 && bufq[i]->lmfs_blocknr > bufq[i + gap]->lmfs_blocknr;
 | 
						|
		     i -= gap) {
 | 
						|
			bp = bufq[i];
 | 
						|
			bufq[i] = bufq[i + gap];
 | 
						|
			bufq[i + gap] = bp;
 | 
						|
		}
 | 
						|
	}
 | 
						|
  }
 | 
						|
 | 
						|
  /* Set up I/O vector and do I/O.  The result of bdev I/O is OK if everything
 | 
						|
   * went fine, otherwise the error code for the first failed transfer.
 | 
						|
   */
 | 
						|
  while (bufqsize > 0) {
 | 
						|
  	int nblocks = 0, niovecs = 0;
 | 
						|
	int r;
 | 
						|
	for (iop = iovec; nblocks < bufqsize; nblocks++) {
 | 
						|
		int p;
 | 
						|
		vir_bytes vdata, blockrem;
 | 
						|
		bp = bufq[nblocks];
 | 
						|
		if (bp->lmfs_blocknr != (block_t) bufq[0]->lmfs_blocknr + nblocks)
 | 
						|
			break;
 | 
						|
		if(niovecs >= NR_IOREQS-iov_per_block) break;
 | 
						|
		vdata = (vir_bytes) bp->data;
 | 
						|
		blockrem = fs_block_size;
 | 
						|
		for(p = 0; p < iov_per_block; p++) {
 | 
						|
			vir_bytes chunk = blockrem < PAGE_SIZE ? blockrem : PAGE_SIZE;
 | 
						|
			iop->iov_addr = vdata;
 | 
						|
			iop->iov_size = chunk;
 | 
						|
			vdata += PAGE_SIZE;
 | 
						|
			blockrem -= chunk;
 | 
						|
			iop++;
 | 
						|
			niovecs++;
 | 
						|
		}
 | 
						|
		assert(p == iov_per_block);
 | 
						|
		assert(blockrem == 0);
 | 
						|
	}
 | 
						|
 | 
						|
	assert(nblocks > 0);
 | 
						|
	assert(niovecs > 0);
 | 
						|
 | 
						|
	pos = mul64u(bufq[0]->lmfs_blocknr, fs_block_size);
 | 
						|
	if (rw_flag == READING)
 | 
						|
		r = bdev_gather(dev, pos, iovec, niovecs, BDEV_NOFLAGS);
 | 
						|
	else
 | 
						|
		r = bdev_scatter(dev, pos, iovec, niovecs, BDEV_NOFLAGS);
 | 
						|
 | 
						|
	/* Harvest the results.  The driver may have returned an error, or it
 | 
						|
	 * may have done less than what we asked for.
 | 
						|
	 */
 | 
						|
	if (r < 0) {
 | 
						|
		printf("fs cache: I/O error %d on device %d/%d, block %u\n",
 | 
						|
			r, major(dev), minor(dev), bufq[0]->lmfs_blocknr);
 | 
						|
	}
 | 
						|
	for (i = 0; i < nblocks; i++) {
 | 
						|
		bp = bufq[i];
 | 
						|
		if (r < (ssize_t) fs_block_size) {
 | 
						|
			/* Transfer failed. */
 | 
						|
			if (i == 0) {
 | 
						|
				bp->lmfs_dev = NO_DEV;	/* Invalidate block */
 | 
						|
			}
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		if (rw_flag == READING) {
 | 
						|
			bp->lmfs_dev = dev;	/* validate block */
 | 
						|
			lmfs_put_block(bp, PARTIAL_DATA_BLOCK);
 | 
						|
		} else {
 | 
						|
			MARKCLEAN(bp);
 | 
						|
		}
 | 
						|
		r -= fs_block_size;
 | 
						|
	}
 | 
						|
 | 
						|
	bufq += i;
 | 
						|
	bufqsize -= i;
 | 
						|
 | 
						|
	if (rw_flag == READING) {
 | 
						|
		/* Don't bother reading more than the device is willing to
 | 
						|
		 * give at this time.  Don't forget to release those extras.
 | 
						|
		 */
 | 
						|
		while (bufqsize > 0) {
 | 
						|
			lmfs_put_block(*bufq++, PARTIAL_DATA_BLOCK);
 | 
						|
			bufqsize--;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	if (rw_flag == WRITING && i == 0) {
 | 
						|
		/* We're not making progress, this means we might keep
 | 
						|
		 * looping. Buffers remain dirty if un-written. Buffers are
 | 
						|
		 * lost if invalidate()d or LRU-removed while dirty. This
 | 
						|
		 * is better than keeping unwritable blocks around forever..
 | 
						|
		 */
 | 
						|
		break;
 | 
						|
	}
 | 
						|
  }
 | 
						|
 | 
						|
  if(rw_flag == READING) {
 | 
						|
  	assert(start_in_use >= start_bufqsize);
 | 
						|
 | 
						|
	/* READING callers assume all bufs are released. */
 | 
						|
	assert(start_in_use - start_bufqsize == bufs_in_use);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/*===========================================================================*
 | 
						|
 *				rm_lru					     *
 | 
						|
 *===========================================================================*/
 | 
						|
static void rm_lru(bp)
 | 
						|
struct buf *bp;
 | 
						|
{
 | 
						|
/* Remove a block from its LRU chain. */
 | 
						|
  struct buf *next_ptr, *prev_ptr;
 | 
						|
 | 
						|
  next_ptr = bp->lmfs_next;	/* successor on LRU chain */
 | 
						|
  prev_ptr = bp->lmfs_prev;	/* predecessor on LRU chain */
 | 
						|
  if (prev_ptr != NULL)
 | 
						|
	prev_ptr->lmfs_next = next_ptr;
 | 
						|
  else
 | 
						|
	front = next_ptr;	/* this block was at front of chain */
 | 
						|
 | 
						|
  if (next_ptr != NULL)
 | 
						|
	next_ptr->lmfs_prev = prev_ptr;
 | 
						|
  else
 | 
						|
	rear = prev_ptr;	/* this block was at rear of chain */
 | 
						|
}
 | 
						|
 | 
						|
/*===========================================================================*
 | 
						|
 *				cache_resize				     *
 | 
						|
 *===========================================================================*/
 | 
						|
static void cache_resize(unsigned int blocksize, unsigned int bufs)
 | 
						|
{
 | 
						|
  struct buf *bp;
 | 
						|
 | 
						|
  assert(blocksize > 0);
 | 
						|
  assert(bufs >= MINBUFS);
 | 
						|
 | 
						|
  for (bp = &buf[0]; bp < &buf[nr_bufs]; bp++)
 | 
						|
	if(bp->lmfs_count != 0) panic("change blocksize with buffer in use");
 | 
						|
 | 
						|
  lmfs_buf_pool(bufs);
 | 
						|
 | 
						|
  fs_block_size = blocksize;
 | 
						|
}
 | 
						|
 | 
						|
static void cache_heuristic_check(int major)
 | 
						|
{
 | 
						|
  int bufs, d;
 | 
						|
  u64_t btotal, bfree, bused;
 | 
						|
 | 
						|
  fs_blockstats(&btotal, &bfree, &bused);
 | 
						|
 | 
						|
  bufs = fs_bufs_heuristic(10, btotal, bfree,
 | 
						|
        fs_block_size, major);
 | 
						|
 | 
						|
  /* set the cache to the new heuristic size if the new one
 | 
						|
   * is more than 10% off from the current one.
 | 
						|
   */
 | 
						|
  d = bufs-nr_bufs;
 | 
						|
  if(d < 0) d = -d;
 | 
						|
  if(d*100/nr_bufs > 10) {
 | 
						|
	cache_resize(fs_block_size, bufs);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/*===========================================================================*
 | 
						|
 *			lmfs_set_blocksize				     *
 | 
						|
 *===========================================================================*/
 | 
						|
void lmfs_set_blocksize(int new_block_size, int major)
 | 
						|
{
 | 
						|
  cache_resize(new_block_size, MINBUFS);
 | 
						|
  cache_heuristic_check(major);
 | 
						|
  
 | 
						|
  /* Decide whether to use seconday cache or not.
 | 
						|
   * Only do this if
 | 
						|
   *	- it's available, and
 | 
						|
   *	- use of it hasn't been disabled for this fs, and
 | 
						|
   *	- our main FS device isn't a memory device
 | 
						|
   */
 | 
						|
 | 
						|
  vmcache = 0;
 | 
						|
 | 
						|
  if(may_use_vmcache && !(new_block_size % PAGE_SIZE))
 | 
						|
	vmcache = 1;
 | 
						|
}
 | 
						|
 | 
						|
/*===========================================================================*
 | 
						|
 *                              lmfs_buf_pool                                *
 | 
						|
 *===========================================================================*/
 | 
						|
void lmfs_buf_pool(int new_nr_bufs)
 | 
						|
{
 | 
						|
/* Initialize the buffer pool. */
 | 
						|
  register struct buf *bp;
 | 
						|
 | 
						|
  assert(new_nr_bufs >= MINBUFS);
 | 
						|
 | 
						|
  if(nr_bufs > 0) {
 | 
						|
	assert(buf);
 | 
						|
	(void) fs_sync();
 | 
						|
  	for (bp = &buf[0]; bp < &buf[nr_bufs]; bp++) {
 | 
						|
		if(bp->data) {
 | 
						|
			assert(bp->lmfs_bytes > 0);
 | 
						|
			minix_munmap_t(bp->data, bp->lmfs_bytes);
 | 
						|
		}
 | 
						|
	}
 | 
						|
  }
 | 
						|
 | 
						|
  if(buf)
 | 
						|
	free(buf);
 | 
						|
 | 
						|
  if(!(buf = calloc(sizeof(buf[0]), new_nr_bufs)))
 | 
						|
	panic("couldn't allocate buf list (%d)", new_nr_bufs);
 | 
						|
 | 
						|
  if(buf_hash)
 | 
						|
	free(buf_hash);
 | 
						|
  if(!(buf_hash = calloc(sizeof(buf_hash[0]), new_nr_bufs)))
 | 
						|
	panic("couldn't allocate buf hash list (%d)", new_nr_bufs);
 | 
						|
 | 
						|
  nr_bufs = new_nr_bufs;
 | 
						|
 | 
						|
  bufs_in_use = 0;
 | 
						|
  front = &buf[0];
 | 
						|
  rear = &buf[nr_bufs - 1];
 | 
						|
 | 
						|
  for (bp = &buf[0]; bp < &buf[nr_bufs]; bp++) {
 | 
						|
        bp->lmfs_blocknr = NO_BLOCK;
 | 
						|
        bp->lmfs_dev = NO_DEV;
 | 
						|
        bp->lmfs_next = bp + 1;
 | 
						|
        bp->lmfs_prev = bp - 1;
 | 
						|
        bp->data = NULL;
 | 
						|
        bp->lmfs_bytes = 0;
 | 
						|
  }
 | 
						|
  front->lmfs_prev = NULL;
 | 
						|
  rear->lmfs_next = NULL;
 | 
						|
 | 
						|
  for (bp = &buf[0]; bp < &buf[nr_bufs]; bp++) bp->lmfs_hash = bp->lmfs_next;
 | 
						|
  buf_hash[0] = front;
 | 
						|
}
 | 
						|
 | 
						|
int lmfs_bufs_in_use(void)
 | 
						|
{
 | 
						|
	return bufs_in_use;
 | 
						|
}
 | 
						|
 | 
						|
int lmfs_nr_bufs(void)
 | 
						|
{
 | 
						|
	return nr_bufs;
 | 
						|
}
 | 
						|
 | 
						|
void lmfs_flushall(void)
 | 
						|
{
 | 
						|
	struct buf *bp;
 | 
						|
	for(bp = &buf[0]; bp < &buf[nr_bufs]; bp++)
 | 
						|
		if(bp->lmfs_dev != NO_DEV && !lmfs_isclean(bp)) 
 | 
						|
			flushall(bp->lmfs_dev);
 | 
						|
}
 | 
						|
 | 
						|
int lmfs_fs_block_size(void)
 | 
						|
{
 | 
						|
	return fs_block_size;
 | 
						|
}
 | 
						|
 | 
						|
void lmfs_may_use_vmcache(int ok)
 | 
						|
{
 | 
						|
	may_use_vmcache = ok;
 | 
						|
}
 | 
						|
 | 
						|
void lmfs_reset_rdwt_err(void)
 | 
						|
{
 | 
						|
	rdwt_err = OK;
 | 
						|
}
 | 
						|
 | 
						|
int lmfs_rdwt_err(void)
 | 
						|
{
 | 
						|
	return rdwt_err;
 | 
						|
}
 | 
						|
 | 
						|
int lmfs_do_bpeek(message *m)
 | 
						|
{
 | 
						|
	block_t startblock, b, limitblock;
 | 
						|
	dev_t dev = m->REQ_DEV2;
 | 
						|
	u64_t extra, pos = make64(m->REQ_SEEK_POS_LO, m->REQ_SEEK_POS_HI);
 | 
						|
	size_t len = m->REQ_NBYTES;
 | 
						|
	struct buf *bp;
 | 
						|
 | 
						|
	assert(m->m_type == REQ_BPEEK);
 | 
						|
	assert(fs_block_size > 0);
 | 
						|
	assert(dev != NO_DEV);
 | 
						|
 | 
						|
	if(!vmcache) { return ENXIO; }
 | 
						|
 | 
						|
	assert(!(fs_block_size % PAGE_SIZE));
 | 
						|
 | 
						|
	if((extra=(pos % fs_block_size))) {
 | 
						|
		pos -= extra;
 | 
						|
		len += extra;
 | 
						|
	}
 | 
						|
 | 
						|
	len = roundup(len, fs_block_size);
 | 
						|
 | 
						|
	startblock = pos/fs_block_size;
 | 
						|
	limitblock = startblock + len/fs_block_size;
 | 
						|
 | 
						|
	for(b = startblock; b < limitblock; b++) {
 | 
						|
		bp = lmfs_get_block(dev, b, NORMAL);
 | 
						|
		assert(bp);
 | 
						|
		lmfs_put_block(bp, FULL_DATA_BLOCK);
 | 
						|
	}
 | 
						|
 | 
						|
	return OK;
 | 
						|
}
 |