 84d9c625bf
			
		
	
	
		84d9c625bf
		
	
	
	
	
		
			
			- Fix for possible unset uid/gid in toproto
 - Fix for default mtree style
 - Update libelf
 - Importing libexecinfo
 - Resynchronize GCC, mpc, gmp, mpfr
 - build.sh: Replace params with show-params.
     This has been done as the make target has been renamed in the same
     way, while a new target named params has been added. This new
     target generates a file containing all the parameters, instead of
     printing it on the console.
 - Update test48 with new etc/services (Fix by Ben Gras <ben@minix3.org)
     get getservbyport() out of the inner loop
Change-Id: Ie6ad5226fa2621ff9f0dee8782ea48f9443d2091
		
	
			
		
			
				
	
	
		
			334 lines
		
	
	
		
			9.0 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			334 lines
		
	
	
		
			9.0 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*      $NetBSD: n_gamma.c,v 1.9 2013/11/09 21:41:03 christos Exp $ */
 | |
| /*-
 | |
|  * Copyright (c) 1992, 1993
 | |
|  *	The Regents of the University of California.  All rights reserved.
 | |
|  *
 | |
|  * Redistribution and use in source and binary forms, with or without
 | |
|  * modification, are permitted provided that the following conditions
 | |
|  * are met:
 | |
|  * 1. Redistributions of source code must retain the above copyright
 | |
|  *    notice, this list of conditions and the following disclaimer.
 | |
|  * 2. Redistributions in binary form must reproduce the above copyright
 | |
|  *    notice, this list of conditions and the following disclaimer in the
 | |
|  *    documentation and/or other materials provided with the distribution.
 | |
|  * 3. Neither the name of the University nor the names of its contributors
 | |
|  *    may be used to endorse or promote products derived from this software
 | |
|  *    without specific prior written permission.
 | |
|  *
 | |
|  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
 | |
|  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 | |
|  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 | |
|  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 | |
|  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 | |
|  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 | |
|  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 | |
|  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 | |
|  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 | |
|  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 | |
|  * SUCH DAMAGE.
 | |
|  */
 | |
| 
 | |
| #ifndef lint
 | |
| #if 0
 | |
| static char sccsid[] = "@(#)gamma.c	8.1 (Berkeley) 6/4/93";
 | |
| #endif
 | |
| #endif /* not lint */
 | |
| 
 | |
| /*
 | |
|  * This code by P. McIlroy, Oct 1992;
 | |
|  *
 | |
|  * The financial support of UUNET Communications Services is gratefully
 | |
|  * acknowledged.
 | |
|  */
 | |
| 
 | |
| #include <math.h>
 | |
| #include "mathimpl.h"
 | |
| #include <errno.h>
 | |
| 
 | |
| /* METHOD:
 | |
|  * x < 0: Use reflection formula, G(x) = pi/(sin(pi*x)*x*G(x))
 | |
|  * 	At negative integers, return +Inf, and set errno.
 | |
|  *
 | |
|  * x < 6.5:
 | |
|  *	Use argument reduction G(x+1) = xG(x) to reach the
 | |
|  *	range [1.066124,2.066124].  Use a rational
 | |
|  *	approximation centered at the minimum (x0+1) to
 | |
|  *	ensure monotonicity.
 | |
|  *
 | |
|  * x >= 6.5: Use the asymptotic approximation (Stirling's formula)
 | |
|  *	adjusted for equal-ripples:
 | |
|  *
 | |
|  *	log(G(x)) ~= (x-.5)*(log(x)-1) + .5(log(2*pi)-1) + 1/x*P(1/(x*x))
 | |
|  *
 | |
|  *	Keep extra precision in multiplying (x-.5)(log(x)-1), to
 | |
|  *	avoid premature round-off.
 | |
|  *
 | |
|  * Special values:
 | |
|  *	non-positive integer:	Set overflow trap; return +Inf;
 | |
|  *	x > 171.63:		Set overflow trap; return +Inf;
 | |
|  *	NaN: 			Set invalid trap;  return NaN
 | |
|  *
 | |
|  * Accuracy: Gamma(x) is accurate to within
 | |
|  *	x > 0:  error provably < 0.9ulp.
 | |
|  *	Maximum observed in 1,000,000 trials was .87ulp.
 | |
|  *	x < 0:
 | |
|  *	Maximum observed error < 4ulp in 1,000,000 trials.
 | |
|  */
 | |
| 
 | |
| static double neg_gam (double);
 | |
| static double small_gam (double);
 | |
| static double smaller_gam (double);
 | |
| static struct Double large_gam (double);
 | |
| static struct Double ratfun_gam (double, double);
 | |
| 
 | |
| /*
 | |
|  * Rational approximation, A0 + x*x*P(x)/Q(x), on the interval
 | |
|  * [1.066.., 2.066..] accurate to 4.25e-19.
 | |
|  */
 | |
| #define LEFT -.3955078125	/* left boundary for rat. approx */
 | |
| #define x0 .461632144968362356785	/* xmin - 1 */
 | |
| 
 | |
| #define a0_hi 0.88560319441088874992
 | |
| #define a0_lo -.00000000000000004996427036469019695
 | |
| #define P0	 6.21389571821820863029017800727e-01
 | |
| #define P1	 2.65757198651533466104979197553e-01
 | |
| #define P2	 5.53859446429917461063308081748e-03
 | |
| #define P3	 1.38456698304096573887145282811e-03
 | |
| #define P4	 2.40659950032711365819348969808e-03
 | |
| #define Q0	 1.45019531250000000000000000000e+00
 | |
| #define Q1	 1.06258521948016171343454061571e+00
 | |
| #define Q2	-2.07474561943859936441469926649e-01
 | |
| #define Q3	-1.46734131782005422506287573015e-01
 | |
| #define Q4	 3.07878176156175520361557573779e-02
 | |
| #define Q5	 5.12449347980666221336054633184e-03
 | |
| #define Q6	-1.76012741431666995019222898833e-03
 | |
| #define Q7	 9.35021023573788935372153030556e-05
 | |
| #define Q8	 6.13275507472443958924745652239e-06
 | |
| /*
 | |
|  * Constants for large x approximation (x in [6, Inf])
 | |
|  * (Accurate to 2.8*10^-19 absolute)
 | |
|  */
 | |
| #define lns2pi_hi 0.418945312500000
 | |
| #define lns2pi_lo -.000006779295327258219670263595
 | |
| #define Pa0	 8.33333333333333148296162562474e-02
 | |
| #define Pa1	-2.77777777774548123579378966497e-03
 | |
| #define Pa2	 7.93650778754435631476282786423e-04
 | |
| #define Pa3	-5.95235082566672847950717262222e-04
 | |
| #define Pa4	 8.41428560346653702135821806252e-04
 | |
| #define Pa5	-1.89773526463879200348872089421e-03
 | |
| #define Pa6	 5.69394463439411649408050664078e-03
 | |
| #define Pa7	-1.44705562421428915453880392761e-02
 | |
| 
 | |
| static const double zero = 0., one = 1.0, tiny = _TINY;
 | |
| /*
 | |
|  * TRUNC sets trailing bits in a floating-point number to zero.
 | |
|  * is a temporary variable.
 | |
|  */
 | |
| #if defined(__vax__) || defined(tahoe)
 | |
| #define _IEEE		0
 | |
| #define TRUNC(x)	x = (double) (float) (x)
 | |
| #else
 | |
| static int endian;
 | |
| #define _IEEE		1
 | |
| #define TRUNC(x)	*(((int *) &x) + endian) &= 0xf8000000
 | |
| #define infnan(x)	0.0
 | |
| #endif
 | |
| 
 | |
| double
 | |
| gamma(double x)
 | |
| {
 | |
| 	double b;
 | |
| 	struct Double u;
 | |
| #if _IEEE
 | |
| 	int endian = (*(int *) &one) ? 1 : 0;
 | |
| #endif
 | |
| 
 | |
| 	if (x >= 6) {
 | |
| 		if(x > 171.63)
 | |
| 			return(one/zero);
 | |
| 		u = large_gam(x);
 | |
| 		return(__exp__D(u.a, u.b));
 | |
| 	} else if (x >= 1.0 + LEFT + x0) {
 | |
| 		return (small_gam(x));
 | |
| 	} else if (x > 1.e-17) {
 | |
| 		return (smaller_gam(x));
 | |
| 	} else if (x > -1.e-17) {
 | |
| 		if (x == 0.0) {
 | |
| 			if (!_IEEE) return (infnan(ERANGE));
 | |
| 			else return (one/x);
 | |
| 		}
 | |
| 		b =one+1e-20;		/* Raise inexact flag. ??? -ragge */
 | |
| 		__USE(b);
 | |
| 		return (one/x);
 | |
| 	} else if (!finite(x)) {
 | |
| 		if (_IEEE)		/* x = NaN, -Inf */
 | |
| 			return (x*x);
 | |
| 		else
 | |
| 			return (infnan(EDOM));
 | |
| 	 } else
 | |
| 		return (neg_gam(x));
 | |
| }
 | |
| /*
 | |
|  * Accurate to max(ulp(1/128) absolute, 2^-66 relative) error.
 | |
|  */
 | |
| static struct Double
 | |
| large_gam(double x)
 | |
| {
 | |
| 	double z, p;
 | |
| 	struct Double t, u, v;
 | |
| 
 | |
| 	z = one/(x*x);
 | |
| 	p = Pa0+z*(Pa1+z*(Pa2+z*(Pa3+z*(Pa4+z*(Pa5+z*(Pa6+z*Pa7))))));
 | |
| 	p = p/x;
 | |
| 
 | |
| 	u = __log__D(x);
 | |
| 	u.a -= one;
 | |
| 	v.a = (x -= .5);
 | |
| 	TRUNC(v.a);
 | |
| 	v.b = x - v.a;
 | |
| 	t.a = v.a*u.a;			/* t = (x-.5)*(log(x)-1) */
 | |
| 	t.b = v.b*u.a + x*u.b;
 | |
| 	/* return t.a + t.b + lns2pi_hi + lns2pi_lo + p */
 | |
| 	t.b += lns2pi_lo; t.b += p;
 | |
| 	u.a = lns2pi_hi + t.b; u.a += t.a;
 | |
| 	u.b = t.a - u.a;
 | |
| 	u.b += lns2pi_hi; u.b += t.b;
 | |
| 	return (u);
 | |
| }
 | |
| /*
 | |
|  * Good to < 1 ulp.  (provably .90 ulp; .87 ulp on 1,000,000 runs.)
 | |
|  * It also has correct monotonicity.
 | |
|  */
 | |
| static double
 | |
| small_gam(double x)
 | |
| {
 | |
| 	double y, ym1, t;
 | |
| 	struct Double yy, r;
 | |
| 	y = x - one;
 | |
| 	ym1 = y - one;
 | |
| 	if (y <= 1.0 + (LEFT + x0)) {
 | |
| 		yy = ratfun_gam(y - x0, 0);
 | |
| 		return (yy.a + yy.b);
 | |
| 	}
 | |
| 	r.a = y;
 | |
| 	TRUNC(r.a);
 | |
| 	yy.a = r.a - one;
 | |
| 	y = ym1;
 | |
| 	yy.b = r.b = y - yy.a;
 | |
| 	/* Argument reduction: G(x+1) = x*G(x) */
 | |
| 	for (ym1 = y-one; ym1 > LEFT + x0; y = ym1--, yy.a--) {
 | |
| 		t = r.a*yy.a;
 | |
| 		r.b = r.a*yy.b + y*r.b;
 | |
| 		r.a = t;
 | |
| 		TRUNC(r.a);
 | |
| 		r.b += (t - r.a);
 | |
| 	}
 | |
| 	/* Return r*gamma(y). */
 | |
| 	yy = ratfun_gam(y - x0, 0);
 | |
| 	y = r.b*(yy.a + yy.b) + r.a*yy.b;
 | |
| 	y += yy.a*r.a;
 | |
| 	return (y);
 | |
| }
 | |
| /*
 | |
|  * Good on (0, 1+x0+LEFT].  Accurate to 1ulp.
 | |
|  */
 | |
| static double
 | |
| smaller_gam(double x)
 | |
| {
 | |
| 	double t, d;
 | |
| 	struct Double r, xx;
 | |
| 	if (x < x0 + LEFT) {
 | |
| 		t = x, TRUNC(t);
 | |
| 		d = (t+x)*(x-t);
 | |
| 		t *= t;
 | |
| 		xx.a = (t + x), TRUNC(xx.a);
 | |
| 		xx.b = x - xx.a; xx.b += t; xx.b += d;
 | |
| 		t = (one-x0); t += x;
 | |
| 		d = (one-x0); d -= t; d += x;
 | |
| 		x = xx.a + xx.b;
 | |
| 	} else {
 | |
| 		xx.a =  x, TRUNC(xx.a);
 | |
| 		xx.b = x - xx.a;
 | |
| 		t = x - x0;
 | |
| 		d = (-x0 -t); d += x;
 | |
| 	}
 | |
| 	r = ratfun_gam(t, d);
 | |
| 	d = r.a/x, TRUNC(d);
 | |
| 	r.a -= d*xx.a; r.a -= d*xx.b; r.a += r.b;
 | |
| 	return (d + r.a/x);
 | |
| }
 | |
| /*
 | |
|  * returns (z+c)^2 * P(z)/Q(z) + a0
 | |
|  */
 | |
| static struct Double
 | |
| ratfun_gam(double z, double c)
 | |
| {
 | |
| 	double p, q;
 | |
| 	struct Double r, t;
 | |
| 
 | |
| 	q = Q0 +z*(Q1+z*(Q2+z*(Q3+z*(Q4+z*(Q5+z*(Q6+z*(Q7+z*Q8)))))));
 | |
| 	p = P0 + z*(P1 + z*(P2 + z*(P3 + z*P4)));
 | |
| 
 | |
| 	/* return r.a + r.b = a0 + (z+c)^2*p/q, with r.a truncated to 26 bits. */
 | |
| 	p = p/q;
 | |
| 	t.a = z, TRUNC(t.a);		/* t ~= z + c */
 | |
| 	t.b = (z - t.a) + c;
 | |
| 	t.b *= (t.a + z);
 | |
| 	q = (t.a *= t.a);		/* t = (z+c)^2 */
 | |
| 	TRUNC(t.a);
 | |
| 	t.b += (q - t.a);
 | |
| 	r.a = p, TRUNC(r.a);		/* r = P/Q */
 | |
| 	r.b = p - r.a;
 | |
| 	t.b = t.b*p + t.a*r.b + a0_lo;
 | |
| 	t.a *= r.a;			/* t = (z+c)^2*(P/Q) */
 | |
| 	r.a = t.a + a0_hi, TRUNC(r.a);
 | |
| 	r.b = ((a0_hi-r.a) + t.a) + t.b;
 | |
| 	return (r);			/* r = a0 + t */
 | |
| }
 | |
| 
 | |
| static double
 | |
| neg_gam(double x)
 | |
| {
 | |
| 	int sgn = 1;
 | |
| 	struct Double lg, lsine;
 | |
| 	double y, z;
 | |
| 
 | |
| 	y = floor(x + .5);
 | |
| 	if (y == x) {		/* Negative integer. */
 | |
| 		if(!_IEEE)
 | |
| 			return (infnan(ERANGE));
 | |
| 		else
 | |
| 			return (one/zero);
 | |
| 	}
 | |
| 	z = fabs(x - y);
 | |
| 	y = .5*ceil(x);
 | |
| 	if (y == ceil(y))
 | |
| 		sgn = -1;
 | |
| 	if (z < .25)
 | |
| 		z = sin(M_PI*z);
 | |
| 	else
 | |
| 		z = cos(M_PI*(0.5-z));
 | |
| 	/* Special case: G(1-x) = Inf; G(x) may be nonzero. */
 | |
| 	if (x < -170) {
 | |
| 		if (x < -190)
 | |
| 			return ((double)sgn*tiny*tiny);
 | |
| 		y = one - x;		/* exact: 128 < |x| < 255 */
 | |
| 		lg = large_gam(y);
 | |
| 		lsine = __log__D(M_PI/z);	/* = TRUNC(log(u)) + small */
 | |
| 		lg.a -= lsine.a;		/* exact (opposite signs) */
 | |
| 		lg.b -= lsine.b;
 | |
| 		y = -(lg.a + lg.b);
 | |
| 		z = (y + lg.a) + lg.b;
 | |
| 		y = __exp__D(y, z);
 | |
| 		if (sgn < 0) y = -y;
 | |
| 		return (y);
 | |
| 	}
 | |
| 	y = one-x;
 | |
| 	if (one-y == x)
 | |
| 		y = gamma(y);
 | |
| 	else		/* 1-x is inexact */
 | |
| 		y = -x*gamma(-x);
 | |
| 	if (sgn < 0) y = -y;
 | |
| 	return (M_PI / (y*z));
 | |
| }
 |