 84d9c625bf
			
		
	
	
		84d9c625bf
		
	
	
	
	
		
			
			- Fix for possible unset uid/gid in toproto
 - Fix for default mtree style
 - Update libelf
 - Importing libexecinfo
 - Resynchronize GCC, mpc, gmp, mpfr
 - build.sh: Replace params with show-params.
     This has been done as the make target has been renamed in the same
     way, while a new target named params has been added. This new
     target generates a file containing all the parameters, instead of
     printing it on the console.
 - Update test48 with new etc/services (Fix by Ben Gras <ben@minix3.org)
     get getservbyport() out of the inner loop
Change-Id: Ie6ad5226fa2621ff9f0dee8782ea48f9443d2091
		
	
			
		
			
				
	
	
		
			461 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			461 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*	$NetBSD: n_j0.c,v 1.7 2011/11/02 02:34:56 christos Exp $	*/
 | |
| /*-
 | |
|  * Copyright (c) 1992, 1993
 | |
|  *	The Regents of the University of California.  All rights reserved.
 | |
|  *
 | |
|  * Redistribution and use in source and binary forms, with or without
 | |
|  * modification, are permitted provided that the following conditions
 | |
|  * are met:
 | |
|  * 1. Redistributions of source code must retain the above copyright
 | |
|  *    notice, this list of conditions and the following disclaimer.
 | |
|  * 2. Redistributions in binary form must reproduce the above copyright
 | |
|  *    notice, this list of conditions and the following disclaimer in the
 | |
|  *    documentation and/or other materials provided with the distribution.
 | |
|  * 3. Neither the name of the University nor the names of its contributors
 | |
|  *    may be used to endorse or promote products derived from this software
 | |
|  *    without specific prior written permission.
 | |
|  *
 | |
|  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
 | |
|  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 | |
|  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 | |
|  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 | |
|  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 | |
|  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 | |
|  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 | |
|  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 | |
|  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 | |
|  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 | |
|  * SUCH DAMAGE.
 | |
|  */
 | |
| 
 | |
| #ifndef lint
 | |
| #if 0
 | |
| static char sccsid[] = "@(#)j0.c	8.2 (Berkeley) 11/30/93";
 | |
| #endif
 | |
| #endif /* not lint */
 | |
| 
 | |
| /*
 | |
|  * 16 December 1992
 | |
|  * Minor modifications by Peter McIlroy to adapt non-IEEE architecture.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * ====================================================
 | |
|  * Copyright (C) 1992 by Sun Microsystems, Inc.
 | |
|  *
 | |
|  * Developed at SunPro, a Sun Microsystems, Inc. business.
 | |
|  * Permission to use, copy, modify, and distribute this
 | |
|  * software is freely granted, provided that this notice
 | |
|  * is preserved.
 | |
|  * ====================================================
 | |
|  *
 | |
|  * ******************* WARNING ********************
 | |
|  * This is an alpha version of SunPro's FDLIBM (Freely
 | |
|  * Distributable Math Library) for IEEE double precision
 | |
|  * arithmetic. FDLIBM is a basic math library written
 | |
|  * in C that runs on machines that conform to IEEE
 | |
|  * Standard 754/854. This alpha version is distributed
 | |
|  * for testing purpose. Those who use this software
 | |
|  * should report any bugs to
 | |
|  *
 | |
|  *		fdlibm-comments@sunpro.eng.sun.com
 | |
|  *
 | |
|  * -- K.C. Ng, Oct 12, 1992
 | |
|  * ************************************************
 | |
|  */
 | |
| 
 | |
| /* double j0(double x), y0(double x)
 | |
|  * Bessel function of the first and second kinds of order zero.
 | |
|  * Method -- j0(x):
 | |
|  *	1. For tiny x, we use j0(x) = 1 - x^2/4 + x^4/64 - ...
 | |
|  *	2. Reduce x to |x| since j0(x)=j0(-x),  and
 | |
|  *	   for x in (0,2)
 | |
|  *		j0(x) = 1-z/4+ z^2*R0/S0,  where z = x*x;
 | |
|  *	   (precision:  |j0-1+z/4-z^2R0/S0 |<2**-63.67 )
 | |
|  *	   for x in (2,inf)
 | |
|  * 		j0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)-q0(x)*sin(x0))
 | |
|  * 	   where x0 = x-pi/4. It is better to compute sin(x0),cos(x0)
 | |
|  *	   as follow:
 | |
|  *		cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
 | |
|  *			= 1/sqrt(2) * (cos(x) + sin(x))
 | |
|  *		sin(x0) = sin(x)cos(pi/4)-cos(x)sin(pi/4)
 | |
|  *			= 1/sqrt(2) * (sin(x) - cos(x))
 | |
|  * 	   (To avoid cancellation, use
 | |
|  *		sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
 | |
|  * 	    to compute the worse one.)
 | |
|  *
 | |
|  *	3 Special cases
 | |
|  *		j0(nan)= nan
 | |
|  *		j0(0) = 1
 | |
|  *		j0(inf) = 0
 | |
|  *
 | |
|  * Method -- y0(x):
 | |
|  *	1. For x<2.
 | |
|  *	   Since
 | |
|  *		y0(x) = 2/pi*(j0(x)*(ln(x/2)+Euler) + x^2/4 - ...)
 | |
|  *	   therefore y0(x)-2/pi*j0(x)*ln(x) is an even function.
 | |
|  *	   We use the following function to approximate y0,
 | |
|  *		y0(x) = U(z)/V(z) + (2/pi)*(j0(x)*ln(x)), z= x^2
 | |
|  *	   where
 | |
|  *		U(z) = u0 + u1*z + ... + u6*z^6
 | |
|  *		V(z) = 1  + v1*z + ... + v4*z^4
 | |
|  *	   with absolute approximation error bounded by 2**-72.
 | |
|  *	   Note: For tiny x, U/V = u0 and j0(x)~1, hence
 | |
|  *		y0(tiny) = u0 + (2/pi)*ln(tiny), (choose tiny<2**-27)
 | |
|  *	2. For x>=2.
 | |
|  * 		y0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)+q0(x)*sin(x0))
 | |
|  * 	   where x0 = x-pi/4. It is better to compute sin(x0),cos(x0)
 | |
|  *	   by the method mentioned above.
 | |
|  *	3. Special cases: y0(0)=-inf, y0(x<0)=NaN, y0(inf)=0.
 | |
|  */
 | |
| 
 | |
| #include "mathimpl.h"
 | |
| #include <float.h>
 | |
| #include <errno.h>
 | |
| 
 | |
| #if defined(__vax__) || defined(tahoe)
 | |
| #define _IEEE	0
 | |
| #else
 | |
| #define _IEEE	1
 | |
| #define infnan(x) (0.0)
 | |
| #endif
 | |
| 
 | |
| static double pzero (double), qzero (double);
 | |
| 
 | |
| static const double
 | |
| huge 	= _HUGE,
 | |
| zero    = 0.0,
 | |
| one	= 1.0,
 | |
| invsqrtpi= 5.641895835477562869480794515607725858441e-0001,
 | |
| tpi	= 0.636619772367581343075535053490057448,
 | |
|  		/* R0/S0 on [0, 2.00] */
 | |
| r02 =   1.562499999999999408594634421055018003102e-0002,
 | |
| r03 =  -1.899792942388547334476601771991800712355e-0004,
 | |
| r04 =   1.829540495327006565964161150603950916854e-0006,
 | |
| r05 =  -4.618326885321032060803075217804816988758e-0009,
 | |
| s01 =   1.561910294648900170180789369288114642057e-0002,
 | |
| s02 =   1.169267846633374484918570613449245536323e-0004,
 | |
| s03 =   5.135465502073181376284426245689510134134e-0007,
 | |
| s04 =   1.166140033337900097836930825478674320464e-0009;
 | |
| 
 | |
| double
 | |
| j0(double x)
 | |
| {
 | |
| 	double z, s,c,ss,cc,r,u,v;
 | |
| 
 | |
| 	if (!finite(x)) {
 | |
| #if _IEEE
 | |
| 		return one/(x*x);
 | |
| #else
 | |
| 		return (0);
 | |
| #endif
 | |
| 	}
 | |
| 	x = fabs(x);
 | |
| 	if (x >= 2.0) {	/* |x| >= 2.0 */
 | |
| 		s = sin(x);
 | |
| 		c = cos(x);
 | |
| 		ss = s-c;
 | |
| 		cc = s+c;
 | |
| 		if (x < .5 * DBL_MAX) {  /* make sure x+x not overflow */
 | |
| 		    z = -cos(x+x);
 | |
| 		    if ((s*c)<zero) cc = z/ss;
 | |
| 		    else 	    ss = z/cc;
 | |
| 		}
 | |
| 	/*
 | |
| 	 * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
 | |
| 	 * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
 | |
| 	 */
 | |
| #if _IEEE
 | |
| 		if (x > 6.80564733841876927e+38) /* 2^129 */
 | |
| 			z = (invsqrtpi*cc)/sqrt(x);
 | |
| 		else
 | |
| #endif
 | |
| 		{
 | |
| 		    u = pzero(x); v = qzero(x);
 | |
| 		    z = invsqrtpi*(u*cc-v*ss)/sqrt(x);
 | |
| 		}
 | |
| 		return z;
 | |
| 	}
 | |
| 	if (x < 1.220703125e-004) {		   /* |x| < 2**-13 */
 | |
| 	    if (huge+x > one) {			   /* raise inexact if x != 0 */
 | |
| 	        if (x < 7.450580596923828125e-009) /* |x|<2**-27 */
 | |
| 			return one;
 | |
| 	        else return (one - 0.25*x*x);
 | |
| 	    }
 | |
| 	}
 | |
| 	z = x*x;
 | |
| 	r =  z*(r02+z*(r03+z*(r04+z*r05)));
 | |
| 	s =  one+z*(s01+z*(s02+z*(s03+z*s04)));
 | |
| 	if (x < one) {			/* |x| < 1.00 */
 | |
| 	    return (one + z*(-0.25+(r/s)));
 | |
| 	} else {
 | |
| 	    u = 0.5*x;
 | |
| 	    return ((one+u)*(one-u)+z*(r/s));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static const double
 | |
| u00 =  -7.380429510868722527422411862872999615628e-0002,
 | |
| u01 =   1.766664525091811069896442906220827182707e-0001,
 | |
| u02 =  -1.381856719455968955440002438182885835344e-0002,
 | |
| u03 =   3.474534320936836562092566861515617053954e-0004,
 | |
| u04 =  -3.814070537243641752631729276103284491172e-0006,
 | |
| u05 =   1.955901370350229170025509706510038090009e-0008,
 | |
| u06 =  -3.982051941321034108350630097330144576337e-0011,
 | |
| v01 =   1.273048348341237002944554656529224780561e-0002,
 | |
| v02 =   7.600686273503532807462101309675806839635e-0005,
 | |
| v03 =   2.591508518404578033173189144579208685163e-0007,
 | |
| v04 =   4.411103113326754838596529339004302243157e-0010;
 | |
| 
 | |
| double
 | |
| y0(double x)
 | |
| {
 | |
| 	double z, s, c, ss, cc, u, v;
 | |
|     /* Y0(NaN) is NaN, y0(-inf) is Nan, y0(inf) is 0  */
 | |
| 	if (!finite(x)) {
 | |
| #if _IEEE
 | |
| 			return (one/(x+x*x));
 | |
| #else
 | |
| 			return (0);
 | |
| #endif
 | |
| 	}
 | |
|         if (x == 0) {
 | |
| #if _IEEE
 | |
| 		return (-one/zero);
 | |
| #else
 | |
| 		return(infnan(-ERANGE));
 | |
| #endif
 | |
| 	}
 | |
|         if (x<0) {
 | |
| #if _IEEE
 | |
| 		return (zero/zero);
 | |
| #else
 | |
| 		return (infnan(EDOM));
 | |
| #endif
 | |
| 	}
 | |
|         if (x >= 2.00) {	/* |x| >= 2.0 */
 | |
|         /* y0(x) = sqrt(2/(pi*x))*(p0(x)*sin(x0)+q0(x)*cos(x0))
 | |
|          * where x0 = x-pi/4
 | |
|          *      Better formula:
 | |
|          *              cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
 | |
|          *                      =  1/sqrt(2) * (sin(x) + cos(x))
 | |
|          *              sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
 | |
|          *                      =  1/sqrt(2) * (sin(x) - cos(x))
 | |
|          * To avoid cancellation, use
 | |
|          *              sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
 | |
|          * to compute the worse one.
 | |
|          */
 | |
|                 s = sin(x);
 | |
|                 c = cos(x);
 | |
|                 ss = s-c;
 | |
|                 cc = s+c;
 | |
| 	/*
 | |
| 	 * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
 | |
| 	 * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
 | |
| 	 */
 | |
|                 if (x < .5 * DBL_MAX) {  /* make sure x+x not overflow */
 | |
|                     z = -cos(x+x);
 | |
|                     if ((s*c)<zero) cc = z/ss;
 | |
|                     else            ss = z/cc;
 | |
|                 }
 | |
| #if _IEEE
 | |
|                 if (x > 6.80564733841876927e+38) /* > 2^129 */
 | |
| 			z = (invsqrtpi*ss)/sqrt(x);
 | |
|                 else
 | |
| #endif
 | |
| 		{
 | |
|                     u = pzero(x); v = qzero(x);
 | |
|                     z = invsqrtpi*(u*ss+v*cc)/sqrt(x);
 | |
|                 }
 | |
|                 return z;
 | |
| 	}
 | |
| 	if (x <= 7.450580596923828125e-009) {		/* x < 2**-27 */
 | |
| 	    return (u00 + tpi*log(x));
 | |
| 	}
 | |
| 	z = x*x;
 | |
| 	u = u00+z*(u01+z*(u02+z*(u03+z*(u04+z*(u05+z*u06)))));
 | |
| 	v = one+z*(v01+z*(v02+z*(v03+z*v04)));
 | |
| 	return (u/v + tpi*(j0(x)*log(x)));
 | |
| }
 | |
| 
 | |
| /* The asymptotic expansions of pzero is
 | |
|  *	1 - 9/128 s^2 + 11025/98304 s^4 - ...,	where s = 1/x.
 | |
|  * For x >= 2, We approximate pzero by
 | |
|  * 	pzero(x) = 1 + (R/S)
 | |
|  * where  R = pr0 + pr1*s^2 + pr2*s^4 + ... + pr5*s^10
 | |
|  * 	  S = 1 + ps0*s^2 + ... + ps4*s^10
 | |
|  * and
 | |
|  *	| pzero(x)-1-R/S | <= 2  ** ( -60.26)
 | |
|  */
 | |
| static const double pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
 | |
|    0.0,
 | |
|   -7.031249999999003994151563066182798210142e-0002,
 | |
|   -8.081670412753498508883963849859423939871e+0000,
 | |
|   -2.570631056797048755890526455854482662510e+0002,
 | |
|   -2.485216410094288379417154382189125598962e+0003,
 | |
|   -5.253043804907295692946647153614119665649e+0003,
 | |
| };
 | |
| static const double ps8[5] = {
 | |
|    1.165343646196681758075176077627332052048e+0002,
 | |
|    3.833744753641218451213253490882686307027e+0003,
 | |
|    4.059785726484725470626341023967186966531e+0004,
 | |
|    1.167529725643759169416844015694440325519e+0005,
 | |
|    4.762772841467309430100106254805711722972e+0004,
 | |
| };
 | |
| 
 | |
| static const double pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
 | |
|   -1.141254646918944974922813501362824060117e-0011,
 | |
|   -7.031249408735992804117367183001996028304e-0002,
 | |
|   -4.159610644705877925119684455252125760478e+0000,
 | |
|   -6.767476522651671942610538094335912346253e+0001,
 | |
|   -3.312312996491729755731871867397057689078e+0002,
 | |
|   -3.464333883656048910814187305901796723256e+0002,
 | |
| };
 | |
| static const double ps5[5] = {
 | |
|    6.075393826923003305967637195319271932944e+0001,
 | |
|    1.051252305957045869801410979087427910437e+0003,
 | |
|    5.978970943338558182743915287887408780344e+0003,
 | |
|    9.625445143577745335793221135208591603029e+0003,
 | |
|    2.406058159229391070820491174867406875471e+0003,
 | |
| };
 | |
| 
 | |
| static const double pr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
 | |
|   -2.547046017719519317420607587742992297519e-0009,
 | |
|   -7.031196163814817199050629727406231152464e-0002,
 | |
|   -2.409032215495295917537157371488126555072e+0000,
 | |
|   -2.196597747348830936268718293366935843223e+0001,
 | |
|   -5.807917047017375458527187341817239891940e+0001,
 | |
|   -3.144794705948885090518775074177485744176e+0001,
 | |
| };
 | |
| static const double ps3[5] = {
 | |
|    3.585603380552097167919946472266854507059e+0001,
 | |
|    3.615139830503038919981567245265266294189e+0002,
 | |
|    1.193607837921115243628631691509851364715e+0003,
 | |
|    1.127996798569074250675414186814529958010e+0003,
 | |
|    1.735809308133357510239737333055228118910e+0002,
 | |
| };
 | |
| 
 | |
| static const double pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
 | |
|   -8.875343330325263874525704514800809730145e-0008,
 | |
|   -7.030309954836247756556445443331044338352e-0002,
 | |
|   -1.450738467809529910662233622603401167409e+0000,
 | |
|   -7.635696138235277739186371273434739292491e+0000,
 | |
|   -1.119316688603567398846655082201614524650e+0001,
 | |
|   -3.233645793513353260006821113608134669030e+0000,
 | |
| };
 | |
| static const double ps2[5] = {
 | |
|    2.222029975320888079364901247548798910952e+0001,
 | |
|    1.362067942182152109590340823043813120940e+0002,
 | |
|    2.704702786580835044524562897256790293238e+0002,
 | |
|    1.538753942083203315263554770476850028583e+0002,
 | |
|    1.465761769482561965099880599279699314477e+0001,
 | |
| };
 | |
| 
 | |
| static double
 | |
| pzero(double x)
 | |
| {
 | |
| 	const double *p,*q;
 | |
| 	double z,r,s;
 | |
| 	if (x >= 8.00)			   {p = pr8; q= ps8;}
 | |
| 	else if (x >= 4.54545211791992188) {p = pr5; q= ps5;}
 | |
| 	else if (x >= 2.85714149475097656) {p = pr3; q= ps3;}
 | |
| 	else /* if (x >= 2.00) */	   {p = pr2; q= ps2;}
 | |
| 	z = one/(x*x);
 | |
| 	r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
 | |
| 	s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
 | |
| 	return one+ r/s;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* For x >= 8, the asymptotic expansions of qzero is
 | |
|  *	-1/8 s + 75/1024 s^3 - ..., where s = 1/x.
 | |
|  * We approximate pzero by
 | |
|  * 	qzero(x) = s*(-1.25 + (R/S))
 | |
|  * where  R = qr0 + qr1*s^2 + qr2*s^4 + ... + qr5*s^10
 | |
|  * 	  S = 1 + qs0*s^2 + ... + qs5*s^12
 | |
|  * and
 | |
|  *	| qzero(x)/s +1.25-R/S | <= 2  ** ( -61.22)
 | |
|  */
 | |
| static const double qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
 | |
|    0.0,
 | |
|    7.324218749999350414479738504551775297096e-0002,
 | |
|    1.176820646822526933903301695932765232456e+0001,
 | |
|    5.576733802564018422407734683549251364365e+0002,
 | |
|    8.859197207564685717547076568608235802317e+0003,
 | |
|    3.701462677768878501173055581933725704809e+0004,
 | |
| };
 | |
| static const double qs8[6] = {
 | |
|    1.637760268956898345680262381842235272369e+0002,
 | |
|    8.098344946564498460163123708054674227492e+0003,
 | |
|    1.425382914191204905277585267143216379136e+0005,
 | |
|    8.033092571195144136565231198526081387047e+0005,
 | |
|    8.405015798190605130722042369969184811488e+0005,
 | |
|   -3.438992935378666373204500729736454421006e+0005,
 | |
| };
 | |
| 
 | |
| static const double qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
 | |
|    1.840859635945155400568380711372759921179e-0011,
 | |
|    7.324217666126847411304688081129741939255e-0002,
 | |
|    5.835635089620569401157245917610984757296e+0000,
 | |
|    1.351115772864498375785526599119895942361e+0002,
 | |
|    1.027243765961641042977177679021711341529e+0003,
 | |
|    1.989977858646053872589042328678602481924e+0003,
 | |
| };
 | |
| static const double qs5[6] = {
 | |
|    8.277661022365377058749454444343415524509e+0001,
 | |
|    2.077814164213929827140178285401017305309e+0003,
 | |
|    1.884728877857180787101956800212453218179e+0004,
 | |
|    5.675111228949473657576693406600265778689e+0004,
 | |
|    3.597675384251145011342454247417399490174e+0004,
 | |
|   -5.354342756019447546671440667961399442388e+0003,
 | |
| };
 | |
| 
 | |
| static const double qr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
 | |
|    4.377410140897386263955149197672576223054e-0009,
 | |
|    7.324111800429115152536250525131924283018e-0002,
 | |
|    3.344231375161707158666412987337679317358e+0000,
 | |
|    4.262184407454126175974453269277100206290e+0001,
 | |
|    1.708080913405656078640701512007621675724e+0002,
 | |
|    1.667339486966511691019925923456050558293e+0002,
 | |
| };
 | |
| static const double qs3[6] = {
 | |
|    4.875887297245871932865584382810260676713e+0001,
 | |
|    7.096892210566060535416958362640184894280e+0002,
 | |
|    3.704148226201113687434290319905207398682e+0003,
 | |
|    6.460425167525689088321109036469797462086e+0003,
 | |
|    2.516333689203689683999196167394889715078e+0003,
 | |
|   -1.492474518361563818275130131510339371048e+0002,
 | |
| };
 | |
| 
 | |
| static const double qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
 | |
|    1.504444448869832780257436041633206366087e-0007,
 | |
|    7.322342659630792930894554535717104926902e-0002,
 | |
|    1.998191740938159956838594407540292600331e+0000,
 | |
|    1.449560293478857407645853071687125850962e+0001,
 | |
|    3.166623175047815297062638132537957315395e+0001,
 | |
|    1.625270757109292688799540258329430963726e+0001,
 | |
| };
 | |
| static const double qs2[6] = {
 | |
|    3.036558483552191922522729838478169383969e+0001,
 | |
|    2.693481186080498724211751445725708524507e+0002,
 | |
|    8.447837575953201460013136756723746023736e+0002,
 | |
|    8.829358451124885811233995083187666981299e+0002,
 | |
|    2.126663885117988324180482985363624996652e+0002,
 | |
|   -5.310954938826669402431816125780738924463e+0000,
 | |
| };
 | |
| 
 | |
| static double
 | |
| qzero(double x)
 | |
| {
 | |
| 	const double *p,*q;
 | |
| 	double s,r,z;
 | |
| 	if (x >= 8.00)			   {p = qr8; q= qs8;}
 | |
| 	else if (x >= 4.54545211791992188) {p = qr5; q= qs5;}
 | |
| 	else if (x >= 2.85714149475097656) {p = qr3; q= qs3;}
 | |
| 	else /* if (x >= 2.00) */	   {p = qr2; q= qs2;}
 | |
| 	z = one/(x*x);
 | |
| 	r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
 | |
| 	s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));
 | |
| 	return (-.125 + r/s)/x;
 | |
| }
 |