 84d9c625bf
			
		
	
	
		84d9c625bf
		
	
	
	
	
		
			
			- Fix for possible unset uid/gid in toproto
 - Fix for default mtree style
 - Update libelf
 - Importing libexecinfo
 - Resynchronize GCC, mpc, gmp, mpfr
 - build.sh: Replace params with show-params.
     This has been done as the make target has been renamed in the same
     way, while a new target named params has been added. This new
     target generates a file containing all the parameters, instead of
     printing it on the console.
 - Update test48 with new etc/services (Fix by Ben Gras <ben@minix3.org)
     get getservbyport() out of the inner loop
Change-Id: Ie6ad5226fa2621ff9f0dee8782ea48f9443d2091
		
	
			
		
			
				
	
	
		
			320 lines
		
	
	
		
			8.9 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			320 lines
		
	
	
		
			8.9 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*	$NetBSD: n_jn.c,v 1.7 2011/11/02 02:34:56 christos Exp $	*/
 | |
| /*-
 | |
|  * Copyright (c) 1992, 1993
 | |
|  *	The Regents of the University of California.  All rights reserved.
 | |
|  *
 | |
|  * Redistribution and use in source and binary forms, with or without
 | |
|  * modification, are permitted provided that the following conditions
 | |
|  * are met:
 | |
|  * 1. Redistributions of source code must retain the above copyright
 | |
|  *    notice, this list of conditions and the following disclaimer.
 | |
|  * 2. Redistributions in binary form must reproduce the above copyright
 | |
|  *    notice, this list of conditions and the following disclaimer in the
 | |
|  *    documentation and/or other materials provided with the distribution.
 | |
|  * 3. Neither the name of the University nor the names of its contributors
 | |
|  *    may be used to endorse or promote products derived from this software
 | |
|  *    without specific prior written permission.
 | |
|  *
 | |
|  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
 | |
|  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 | |
|  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 | |
|  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 | |
|  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 | |
|  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 | |
|  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 | |
|  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 | |
|  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 | |
|  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 | |
|  * SUCH DAMAGE.
 | |
|  */
 | |
| 
 | |
| #ifndef lint
 | |
| #if 0
 | |
| static char sccsid[] = "@(#)jn.c	8.2 (Berkeley) 11/30/93";
 | |
| #endif
 | |
| #endif /* not lint */
 | |
| 
 | |
| /*
 | |
|  * 16 December 1992
 | |
|  * Minor modifications by Peter McIlroy to adapt non-IEEE architecture.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * ====================================================
 | |
|  * Copyright (C) 1992 by Sun Microsystems, Inc.
 | |
|  *
 | |
|  * Developed at SunPro, a Sun Microsystems, Inc. business.
 | |
|  * Permission to use, copy, modify, and distribute this
 | |
|  * software is freely granted, provided that this notice
 | |
|  * is preserved.
 | |
|  * ====================================================
 | |
|  *
 | |
|  * ******************* WARNING ********************
 | |
|  * This is an alpha version of SunPro's FDLIBM (Freely
 | |
|  * Distributable Math Library) for IEEE double precision
 | |
|  * arithmetic. FDLIBM is a basic math library written
 | |
|  * in C that runs on machines that conform to IEEE
 | |
|  * Standard 754/854. This alpha version is distributed
 | |
|  * for testing purpose. Those who use this software
 | |
|  * should report any bugs to
 | |
|  *
 | |
|  *		fdlibm-comments@sunpro.eng.sun.com
 | |
|  *
 | |
|  * -- K.C. Ng, Oct 12, 1992
 | |
|  * ************************************************
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * jn(int n, double x), yn(int n, double x)
 | |
|  * floating point Bessel's function of the 1st and 2nd kind
 | |
|  * of order n
 | |
|  *
 | |
|  * Special cases:
 | |
|  *	y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
 | |
|  *	y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
 | |
|  * Note 2. About jn(n,x), yn(n,x)
 | |
|  *	For n=0, j0(x) is called,
 | |
|  *	for n=1, j1(x) is called,
 | |
|  *	for n<x, forward recursion us used starting
 | |
|  *	from values of j0(x) and j1(x).
 | |
|  *	for n>x, a continued fraction approximation to
 | |
|  *	j(n,x)/j(n-1,x) is evaluated and then backward
 | |
|  *	recursion is used starting from a supposed value
 | |
|  *	for j(n,x). The resulting value of j(0,x) is
 | |
|  *	compared with the actual value to correct the
 | |
|  *	supposed value of j(n,x).
 | |
|  *
 | |
|  *	yn(n,x) is similar in all respects, except
 | |
|  *	that forward recursion is used for all
 | |
|  *	values of n>1.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #include "mathimpl.h"
 | |
| #include <float.h>
 | |
| #include <errno.h>
 | |
| 
 | |
| #if defined(__vax__) || defined(tahoe)
 | |
| #define _IEEE	0
 | |
| #else
 | |
| #define _IEEE	1
 | |
| #define infnan(x) (0.0)
 | |
| #endif
 | |
| 
 | |
| static const double
 | |
| invsqrtpi= 5.641895835477562869480794515607725858441e-0001,
 | |
| two  = 2.0,
 | |
| zero = 0.0,
 | |
| one  = 1.0;
 | |
| 
 | |
| double
 | |
| jn(int n, double x)
 | |
| {
 | |
| 	int i, sgn;
 | |
| 	double a, b, temp;
 | |
| 	double z, w;
 | |
| 
 | |
|     /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
 | |
|      * Thus, J(-n,x) = J(n,-x)
 | |
|      */
 | |
|     /* if J(n,NaN) is NaN */
 | |
| #if _IEEE
 | |
| 	if (snan(x)) return x+x;
 | |
| #endif
 | |
| 	if (n<0){
 | |
| 		n = -n;
 | |
| 		x = -x;
 | |
| 	}
 | |
| 	if (n==0) return(j0(x));
 | |
| 	if (n==1) return(j1(x));
 | |
| 	sgn = (n&1)&(x < zero);		/* even n -- 0, odd n -- sign(x) */
 | |
| 	x = fabs(x);
 | |
| 	if (x == 0 || !finite (x)) 	/* if x is 0 or inf */
 | |
| 	    b = zero;
 | |
| 	else if ((double) n <= x) {
 | |
| 			/* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
 | |
| #if _IEEE
 | |
| 	    if (x >= 8.148143905337944345e+090) {
 | |
| 					/* x >= 2**302 */
 | |
|     /* (x >> n**2)
 | |
|      *	    Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
 | |
|      *	    Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
 | |
|      *	    Let s=sin(x), c=cos(x),
 | |
|      *		xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
 | |
|      *
 | |
|      *		   n	sin(xn)*sqt2	cos(xn)*sqt2
 | |
|      *		----------------------------------
 | |
|      *		   0	 s-c		 c+s
 | |
|      *		   1	-s-c 		-c+s
 | |
|      *		   2	-s+c		-c-s
 | |
|      *		   3	 s+c		 c-s
 | |
|      */
 | |
| 		switch(n&3) {
 | |
| 		    case 0: temp =  cos(x)+sin(x); break;
 | |
| 		    case 1: temp = -cos(x)+sin(x); break;
 | |
| 		    case 2: temp = -cos(x)-sin(x); break;
 | |
| 		    case 3: temp =  cos(x)-sin(x); break;
 | |
| 		}
 | |
| 		b = invsqrtpi*temp/sqrt(x);
 | |
| 	    } else
 | |
| #endif
 | |
| 	    {
 | |
| 	        a = j0(x);
 | |
| 	        b = j1(x);
 | |
| 	        for(i=1;i<n;i++){
 | |
| 		    temp = b;
 | |
| 		    b = b*((double)(i+i)/x) - a; /* avoid underflow */
 | |
| 		    a = temp;
 | |
| 	        }
 | |
| 	    }
 | |
| 	} else {
 | |
| 	    if (x < 1.86264514923095703125e-009) { /* x < 2**-29 */
 | |
|     /* x is tiny, return the first Taylor expansion of J(n,x)
 | |
|      * J(n,x) = 1/n!*(x/2)^n  - ...
 | |
|      */
 | |
| 		if (n > 33)	/* underflow */
 | |
| 		    b = zero;
 | |
| 		else {
 | |
| 		    temp = x*0.5; b = temp;
 | |
| 		    for (a=one,i=2;i<=n;i++) {
 | |
| 			a *= (double)i;		/* a = n! */
 | |
| 			b *= temp;		/* b = (x/2)^n */
 | |
| 		    }
 | |
| 		    b = b/a;
 | |
| 		}
 | |
| 	    } else {
 | |
| 		/* use backward recurrence */
 | |
| 		/* 			x      x^2      x^2
 | |
| 		 *  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
 | |
| 		 *			2n  - 2(n+1) - 2(n+2)
 | |
| 		 *
 | |
| 		 * 			1      1        1
 | |
| 		 *  (for large x)   =  ----  ------   ------   .....
 | |
| 		 *			2n   2(n+1)   2(n+2)
 | |
| 		 *			-- - ------ - ------ -
 | |
| 		 *			 x     x         x
 | |
| 		 *
 | |
| 		 * Let w = 2n/x and h=2/x, then the above quotient
 | |
| 		 * is equal to the continued fraction:
 | |
| 		 *		    1
 | |
| 		 *	= -----------------------
 | |
| 		 *		       1
 | |
| 		 *	   w - -----------------
 | |
| 		 *			  1
 | |
| 		 * 	        w+h - ---------
 | |
| 		 *		       w+2h - ...
 | |
| 		 *
 | |
| 		 * To determine how many terms needed, let
 | |
| 		 * Q(0) = w, Q(1) = w(w+h) - 1,
 | |
| 		 * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
 | |
| 		 * When Q(k) > 1e4	good for single
 | |
| 		 * When Q(k) > 1e9	good for double
 | |
| 		 * When Q(k) > 1e17	good for quadruple
 | |
| 		 */
 | |
| 	    /* determine k */
 | |
| 		double t,v;
 | |
| 		double q0,q1,h,tmp; int k,m;
 | |
| 		w  = (n+n)/(double)x; h = 2.0/(double)x;
 | |
| 		q0 = w;  z = w+h; q1 = w*z - 1.0; k=1;
 | |
| 		while (q1<1.0e9) {
 | |
| 			k += 1; z += h;
 | |
| 			tmp = z*q1 - q0;
 | |
| 			q0 = q1;
 | |
| 			q1 = tmp;
 | |
| 		}
 | |
| 		m = n+n;
 | |
| 		for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t);
 | |
| 		a = t;
 | |
| 		b = one;
 | |
| 		/*  estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
 | |
| 		 *  Hence, if n*(log(2n/x)) > ...
 | |
| 		 *  single 8.8722839355e+01
 | |
| 		 *  double 7.09782712893383973096e+02
 | |
| 		 *  long double 1.1356523406294143949491931077970765006170e+04
 | |
| 		 *  then recurrent value may overflow and the result will
 | |
| 		 *  likely underflow to zero
 | |
| 		 */
 | |
| 		tmp = n;
 | |
| 		v = two/x;
 | |
| 		tmp = tmp*log(fabs(v*tmp));
 | |
| 	    	for (i=n-1;i>0;i--){
 | |
| 		        temp = b;
 | |
| 		        b = ((i+i)/x)*b - a;
 | |
| 		        a = temp;
 | |
| 		    /* scale b to avoid spurious overflow */
 | |
| #			if defined(__vax__) || defined(tahoe)
 | |
| #				define BMAX 1e13
 | |
| #			else
 | |
| #				define BMAX 1e100
 | |
| #			endif /* defined(__vax__) || defined(tahoe) */
 | |
| 			if (b > BMAX) {
 | |
| 				a /= b;
 | |
| 				t /= b;
 | |
| 				b = one;
 | |
| 			}
 | |
| 		}
 | |
| 	    	b = (t*j0(x)/b);
 | |
| 	    }
 | |
| 	}
 | |
| 	return ((sgn == 1) ? -b : b);
 | |
| }
 | |
| 
 | |
| double
 | |
| yn(int n, double x)
 | |
| {
 | |
| 	int i, sign;
 | |
| 	double a, b, temp;
 | |
| 
 | |
|     /* Y(n,NaN), Y(n, x < 0) is NaN */
 | |
| 	if (x <= 0 || (_IEEE && x != x))
 | |
| 		if (_IEEE && x < 0) return zero/zero;
 | |
| 		else if (x < 0)     return (infnan(EDOM));
 | |
| 		else if (_IEEE)     return -one/zero;
 | |
| 		else		    return(infnan(-ERANGE));
 | |
| 	else if (!finite(x)) return(0);
 | |
| 	sign = 1;
 | |
| 	if (n<0){
 | |
| 		n = -n;
 | |
| 		sign = 1 - ((n&1)<<2);
 | |
| 	}
 | |
| 	if (n == 0) return(y0(x));
 | |
| 	if (n == 1) return(sign*y1(x));
 | |
| #if _IEEE
 | |
| 	if(x >= 8.148143905337944345e+090) { /* x > 2**302 */
 | |
|     /* (x >> n**2)
 | |
|      *	    Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
 | |
|      *	    Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
 | |
|      *	    Let s=sin(x), c=cos(x),
 | |
|      *		xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
 | |
|      *
 | |
|      *		   n	sin(xn)*sqt2	cos(xn)*sqt2
 | |
|      *		----------------------------------
 | |
|      *		   0	 s-c		 c+s
 | |
|      *		   1	-s-c 		-c+s
 | |
|      *		   2	-s+c		-c-s
 | |
|      *		   3	 s+c		 c-s
 | |
|      */
 | |
| 		switch (n&3) {
 | |
| 		    case 0: temp =  sin(x)-cos(x); break;
 | |
| 		    case 1: temp = -sin(x)-cos(x); break;
 | |
| 		    case 2: temp = -sin(x)+cos(x); break;
 | |
| 		    case 3: temp =  sin(x)+cos(x); break;
 | |
| 		}
 | |
| 		b = invsqrtpi*temp/sqrt(x);
 | |
| 	} else
 | |
| #endif
 | |
| 	{
 | |
| 	    a = y0(x);
 | |
| 	    b = y1(x);
 | |
| 	/* quit if b is -inf */
 | |
| 	    for (i = 1; i < n && !finite(b); i++){
 | |
| 		temp = b;
 | |
| 		b = ((double)(i+i)/x)*b - a;
 | |
| 		a = temp;
 | |
| 	    }
 | |
| 	}
 | |
| 	if (!_IEEE && !finite(b))
 | |
| 		return (infnan(-sign * ERANGE));
 | |
| 	return ((sign > 0) ? b : -b);
 | |
| }
 |