. incompatible with installboot -d FSDEV on mounted filesystems . should be re-enabled when netbsd boot loader is default
		
			
				
	
	
		
			687 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			687 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/* The file system maintains a buffer cache to reduce the number of disk
 | 
						|
 * accesses needed.  Whenever a read or write to the disk is done, a check is
 | 
						|
 * first made to see if the block is in the cache.  This file manages the
 | 
						|
 * cache.
 | 
						|
 *
 | 
						|
 * The entry points into this file are:
 | 
						|
 *   get_block:	  request to fetch a block for reading or writing from cache
 | 
						|
 *   put_block:	  return a block previously requested with get_block
 | 
						|
 *   alloc_zone:  allocate a new zone (to increase the length of a file)
 | 
						|
 *   free_zone:	  release a zone (when a file is removed)
 | 
						|
 *   invalidate:  remove all the cache blocks on some device
 | 
						|
 *
 | 
						|
 * Private functions:
 | 
						|
 *   read_block:    read or write a block from the disk itself
 | 
						|
 */
 | 
						|
 | 
						|
#include "fs.h"
 | 
						|
#include <minix/u64.h>
 | 
						|
#include <minix/bdev.h>
 | 
						|
#include <sys/param.h>
 | 
						|
#include <stdlib.h>
 | 
						|
#include <assert.h>
 | 
						|
#include <minix/libminixfs.h>
 | 
						|
#include <math.h>
 | 
						|
#include "buf.h"
 | 
						|
#include "super.h"
 | 
						|
#include "inode.h"
 | 
						|
 | 
						|
FORWARD _PROTOTYPE( void rm_lru, (struct buf *bp) );
 | 
						|
FORWARD _PROTOTYPE( void read_block, (struct buf *) );
 | 
						|
 | 
						|
PRIVATE int vmcache = 0; /* are we using vm's secondary cache? (initially not) */
 | 
						|
 | 
						|
PRIVATE block_t super_start = 0, super_end = 0; 
 | 
						|
 | 
						|
/*===========================================================================*
 | 
						|
 *				get_block				     *
 | 
						|
 *===========================================================================*/
 | 
						|
PUBLIC struct buf *get_block(
 | 
						|
  register dev_t dev,		/* on which device is the block? */
 | 
						|
  register block_t block,	/* which block is wanted? */
 | 
						|
  int only_search		/* if NO_READ, don't read, else act normal */
 | 
						|
)
 | 
						|
{
 | 
						|
/* Check to see if the requested block is in the block cache.  If so, return
 | 
						|
 * a pointer to it.  If not, evict some other block and fetch it (unless
 | 
						|
 * 'only_search' is 1).  All the blocks in the cache that are not in use
 | 
						|
 * are linked together in a chain, with 'front' pointing to the least recently
 | 
						|
 * used block and 'rear' to the most recently used block.  If 'only_search' is
 | 
						|
 * 1, the block being requested will be overwritten in its entirety, so it is
 | 
						|
 * only necessary to see if it is in the cache; if it is not, any free buffer
 | 
						|
 * will do.  It is not necessary to actually read the block in from disk.
 | 
						|
 * If 'only_search' is PREFETCH, the block need not be read from the disk,
 | 
						|
 * and the device is not to be marked on the block, so callers can tell if
 | 
						|
 * the block returned is valid.
 | 
						|
 * In addition to the LRU chain, there is also a hash chain to link together
 | 
						|
 * blocks whose block numbers end with the same bit strings, for fast lookup.
 | 
						|
 */
 | 
						|
 | 
						|
  int b;
 | 
						|
  static struct buf *bp, *prev_ptr;
 | 
						|
  u64_t yieldid = VM_BLOCKID_NONE, getid = make64(dev, block);
 | 
						|
 | 
						|
  assert(buf_hash);
 | 
						|
  assert(buf);
 | 
						|
  assert(nr_bufs > 0);
 | 
						|
 | 
						|
  ASSERT(fs_block_size > 0);
 | 
						|
 | 
						|
  /* Search the hash chain for (dev, block). Do_read() can use 
 | 
						|
   * get_block(NO_DEV ...) to get an unnamed block to fill with zeros when
 | 
						|
   * someone wants to read from a hole in a file, in which case this search
 | 
						|
   * is skipped
 | 
						|
   */
 | 
						|
  if (dev != NO_DEV) {
 | 
						|
	b = BUFHASH(block);
 | 
						|
	bp = buf_hash[b];
 | 
						|
	while (bp != NULL) {
 | 
						|
		if (bp->b_blocknr == block && bp->b_dev == dev) {
 | 
						|
			/* Block needed has been found. */
 | 
						|
			if (bp->b_count == 0) rm_lru(bp);
 | 
						|
			bp->b_count++;	/* record that block is in use */
 | 
						|
			ASSERT(bp->b_bytes == fs_block_size);
 | 
						|
			ASSERT(bp->b_dev == dev);
 | 
						|
			ASSERT(bp->b_dev != NO_DEV);
 | 
						|
			ASSERT(bp->bp);
 | 
						|
			return(bp);
 | 
						|
		} else {
 | 
						|
			/* This block is not the one sought. */
 | 
						|
			bp = bp->b_hash; /* move to next block on hash chain */
 | 
						|
		}
 | 
						|
	}
 | 
						|
  }
 | 
						|
 | 
						|
  /* Desired block is not on available chain.  Take oldest block ('front'). */
 | 
						|
  if ((bp = front) == NULL) panic("all buffers in use: %d", nr_bufs);
 | 
						|
 | 
						|
  if(bp->b_bytes < fs_block_size) {
 | 
						|
	ASSERT(!bp->bp);
 | 
						|
	ASSERT(bp->b_bytes == 0);
 | 
						|
	if(!(bp->bp = alloc_contig( (size_t) fs_block_size, 0, NULL))) {
 | 
						|
		printf("MFS: couldn't allocate a new block.\n");
 | 
						|
		for(bp = front;
 | 
						|
			bp && bp->b_bytes < fs_block_size; bp = bp->b_next)
 | 
						|
			;
 | 
						|
		if(!bp) {
 | 
						|
			panic("no buffer available");
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
  		bp->b_bytes = fs_block_size;
 | 
						|
	}
 | 
						|
  }
 | 
						|
 | 
						|
  ASSERT(bp);
 | 
						|
  ASSERT(bp->bp);
 | 
						|
  ASSERT(bp->b_bytes == fs_block_size);
 | 
						|
  ASSERT(bp->b_count == 0);
 | 
						|
 | 
						|
  rm_lru(bp);
 | 
						|
 | 
						|
  /* Remove the block that was just taken from its hash chain. */
 | 
						|
  b = BUFHASH(bp->b_blocknr);
 | 
						|
  prev_ptr = buf_hash[b];
 | 
						|
  if (prev_ptr == bp) {
 | 
						|
	buf_hash[b] = bp->b_hash;
 | 
						|
  } else {
 | 
						|
	/* The block just taken is not on the front of its hash chain. */
 | 
						|
	while (prev_ptr->b_hash != NULL)
 | 
						|
		if (prev_ptr->b_hash == bp) {
 | 
						|
			prev_ptr->b_hash = bp->b_hash;	/* found it */
 | 
						|
			break;
 | 
						|
		} else {
 | 
						|
			prev_ptr = prev_ptr->b_hash;	/* keep looking */
 | 
						|
		}
 | 
						|
  }
 | 
						|
 | 
						|
  /* If the block taken is dirty, make it clean by writing it to the disk.
 | 
						|
   * Avoid hysteresis by flushing all other dirty blocks for the same device.
 | 
						|
   */
 | 
						|
  if (bp->b_dev != NO_DEV) {
 | 
						|
	if (ISDIRTY(bp)) flushall(bp->b_dev);
 | 
						|
 | 
						|
	/* Are we throwing out a block that contained something?
 | 
						|
	 * Give it to VM for the second-layer cache.
 | 
						|
	 */
 | 
						|
	yieldid = make64(bp->b_dev, bp->b_blocknr);
 | 
						|
	assert(bp->b_bytes == fs_block_size);
 | 
						|
	BP_CLEARDEV(bp);
 | 
						|
  }
 | 
						|
 | 
						|
  /* Fill in block's parameters and add it to the hash chain where it goes. */
 | 
						|
  if(dev == NO_DEV) BP_CLEARDEV(bp);
 | 
						|
  else BP_SETDEV(bp, dev);
 | 
						|
  bp->b_blocknr = block;	/* fill in block number */
 | 
						|
  bp->b_count++;		/* record that block is being used */
 | 
						|
  b = BUFHASH(bp->b_blocknr);
 | 
						|
  bp->b_hash = buf_hash[b];
 | 
						|
 | 
						|
  buf_hash[b] = bp;		/* add to hash list */
 | 
						|
 | 
						|
  if(dev == NO_DEV) {
 | 
						|
	if(vmcache && cmp64(yieldid, VM_BLOCKID_NONE) != 0) {
 | 
						|
		vm_yield_block_get_block(yieldid, VM_BLOCKID_NONE,
 | 
						|
			bp->bp, fs_block_size);
 | 
						|
	}
 | 
						|
	return(bp);	/* If the caller wanted a NO_DEV block, work is done. */
 | 
						|
  }
 | 
						|
 | 
						|
  /* Go get the requested block unless searching or prefetching. */
 | 
						|
  if(only_search == PREFETCH || only_search == NORMAL) {
 | 
						|
	/* Block is not found in our cache, but we do want it
 | 
						|
	 * if it's in the vm cache.
 | 
						|
	 */
 | 
						|
	if(vmcache) {
 | 
						|
		/* If we can satisfy the PREFETCH or NORMAL request 
 | 
						|
		 * from the vm cache, work is done.
 | 
						|
		 */
 | 
						|
		if(vm_yield_block_get_block(yieldid, getid,
 | 
						|
			bp->bp, fs_block_size) == OK) {
 | 
						|
			return bp;
 | 
						|
		}
 | 
						|
	}
 | 
						|
  }
 | 
						|
 | 
						|
  if(only_search == PREFETCH) {
 | 
						|
	/* PREFETCH: don't do i/o. */
 | 
						|
	BP_CLEARDEV(bp);
 | 
						|
  } else if (only_search == NORMAL) {
 | 
						|
	read_block(bp);
 | 
						|
  } else if(only_search == NO_READ) {
 | 
						|
	/* we want this block, but its contents
 | 
						|
	 * will be overwritten. VM has to forget
 | 
						|
	 * about it.
 | 
						|
	 */
 | 
						|
	if(vmcache) {
 | 
						|
		vm_forgetblock(getid);
 | 
						|
	}
 | 
						|
  } else
 | 
						|
	panic("unexpected only_search value: %d", only_search);
 | 
						|
 | 
						|
  assert(bp->bp);
 | 
						|
 | 
						|
  return(bp);			/* return the newly acquired block */
 | 
						|
}
 | 
						|
 | 
						|
/*===========================================================================*
 | 
						|
 *				put_block				     *
 | 
						|
 *===========================================================================*/
 | 
						|
PUBLIC void put_block(bp, block_type)
 | 
						|
register struct buf *bp;	/* pointer to the buffer to be released */
 | 
						|
int block_type;			/* INODE_BLOCK, DIRECTORY_BLOCK, or whatever */
 | 
						|
{
 | 
						|
/* Return a block to the list of available blocks.   Depending on 'block_type'
 | 
						|
 * it may be put on the front or rear of the LRU chain.  Blocks that are
 | 
						|
 * expected to be needed again shortly (e.g., partially full data blocks)
 | 
						|
 * go on the rear; blocks that are unlikely to be needed again shortly
 | 
						|
 * (e.g., full data blocks) go on the front.  Blocks whose loss can hurt
 | 
						|
 * the integrity of the file system (e.g., inode blocks) are written to
 | 
						|
 * disk immediately if they are dirty.
 | 
						|
 */
 | 
						|
  if (bp == NULL) return;	/* it is easier to check here than in caller */
 | 
						|
 | 
						|
  bp->b_count--;		/* there is one use fewer now */
 | 
						|
  if (bp->b_count != 0) return;	/* block is still in use */
 | 
						|
 | 
						|
  bufs_in_use--;		/* one fewer block buffers in use */
 | 
						|
 | 
						|
  /* Put this block back on the LRU chain.  If the ONE_SHOT bit is set in
 | 
						|
   * 'block_type', the block is not likely to be needed again shortly, so put
 | 
						|
   * it on the front of the LRU chain where it will be the first one to be
 | 
						|
   * taken when a free buffer is needed later.
 | 
						|
   */
 | 
						|
  if (bp->b_dev == DEV_RAM || (block_type & ONE_SHOT)) {
 | 
						|
	/* Block probably won't be needed quickly. Put it on front of chain.
 | 
						|
  	 * It will be the next block to be evicted from the cache.
 | 
						|
  	 */
 | 
						|
	bp->b_prev = NULL;
 | 
						|
	bp->b_next = front;
 | 
						|
	if (front == NULL)
 | 
						|
		rear = bp;	/* LRU chain was empty */
 | 
						|
	else
 | 
						|
		front->b_prev = bp;
 | 
						|
	front = bp;
 | 
						|
  } 
 | 
						|
  else {
 | 
						|
	/* Block probably will be needed quickly.  Put it on rear of chain.
 | 
						|
  	 * It will not be evicted from the cache for a long time.
 | 
						|
  	 */
 | 
						|
	bp->b_prev = rear;
 | 
						|
	bp->b_next = NULL;
 | 
						|
	if (rear == NULL)
 | 
						|
		front = bp;
 | 
						|
	else
 | 
						|
		rear->b_next = bp;
 | 
						|
	rear = bp;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/*===========================================================================*
 | 
						|
 *				alloc_zone				     *
 | 
						|
 *===========================================================================*/
 | 
						|
PUBLIC zone_t alloc_zone(
 | 
						|
  dev_t dev,			/* device where zone wanted */
 | 
						|
  zone_t z			/* try to allocate new zone near this one */
 | 
						|
)
 | 
						|
{
 | 
						|
/* Allocate a new zone on the indicated device and return its number. */
 | 
						|
 | 
						|
  bit_t b, bit;
 | 
						|
  struct super_block *sp;
 | 
						|
  static int print_oos_msg = 1;
 | 
						|
 | 
						|
  /* Note that the routine alloc_bit() returns 1 for the lowest possible
 | 
						|
   * zone, which corresponds to sp->s_firstdatazone.  To convert a value
 | 
						|
   * between the bit number, 'b', used by alloc_bit() and the zone number, 'z',
 | 
						|
   * stored in the inode, use the formula:
 | 
						|
   *     z = b + sp->s_firstdatazone - 1
 | 
						|
   * Alloc_bit() never returns 0, since this is used for NO_BIT (failure).
 | 
						|
   */
 | 
						|
  sp = get_super(dev);
 | 
						|
 | 
						|
  /* If z is 0, skip initial part of the map known to be fully in use. */
 | 
						|
  if (z == sp->s_firstdatazone) {
 | 
						|
	bit = sp->s_zsearch;
 | 
						|
  } else {
 | 
						|
	bit = (bit_t) (z - (sp->s_firstdatazone - 1));
 | 
						|
  }
 | 
						|
  b = alloc_bit(sp, ZMAP, bit);
 | 
						|
  if (b == NO_BIT) {
 | 
						|
	err_code = ENOSPC;
 | 
						|
	if (print_oos_msg)
 | 
						|
		printf("No space on device %d/%d\n", major(sp->s_dev),
 | 
						|
			minor(sp->s_dev));
 | 
						|
	print_oos_msg = 0;	/* Don't repeat message */
 | 
						|
	return(NO_ZONE);
 | 
						|
  }
 | 
						|
  print_oos_msg = 1;
 | 
						|
  if (z == sp->s_firstdatazone) sp->s_zsearch = b;	/* for next time */
 | 
						|
  return( (zone_t) (sp->s_firstdatazone - 1) + (zone_t) b);
 | 
						|
}
 | 
						|
 | 
						|
/*===========================================================================*
 | 
						|
 *				free_zone				     *
 | 
						|
 *===========================================================================*/
 | 
						|
PUBLIC void free_zone(
 | 
						|
  dev_t dev,				/* device where zone located */
 | 
						|
  zone_t numb				/* zone to be returned */
 | 
						|
)
 | 
						|
{
 | 
						|
/* Return a zone. */
 | 
						|
 | 
						|
  register struct super_block *sp;
 | 
						|
  bit_t bit;
 | 
						|
 | 
						|
  /* Locate the appropriate super_block and return bit. */
 | 
						|
  sp = get_super(dev);
 | 
						|
  if (numb < sp->s_firstdatazone || numb >= sp->s_zones) return;
 | 
						|
  bit = (bit_t) (numb - (zone_t) (sp->s_firstdatazone - 1));
 | 
						|
  free_bit(sp, ZMAP, bit);
 | 
						|
  if (bit < sp->s_zsearch) sp->s_zsearch = bit;
 | 
						|
}
 | 
						|
 | 
						|
/*===========================================================================*
 | 
						|
 *				read_block				     *
 | 
						|
 *===========================================================================*/
 | 
						|
PRIVATE void read_block(bp)
 | 
						|
register struct buf *bp;	/* buffer pointer */
 | 
						|
{
 | 
						|
/* Read or write a disk block. This is the only routine in which actual disk
 | 
						|
 * I/O is invoked. If an error occurs, a message is printed here, but the error
 | 
						|
 * is not reported to the caller.  If the error occurred while purging a block
 | 
						|
 * from the cache, it is not clear what the caller could do about it anyway.
 | 
						|
 */
 | 
						|
  int r, op_failed;
 | 
						|
  u64_t pos;
 | 
						|
  dev_t dev;
 | 
						|
 | 
						|
  op_failed = 0;
 | 
						|
 | 
						|
  if ( (dev = bp->b_dev) != NO_DEV) {
 | 
						|
	pos = mul64u(bp->b_blocknr, fs_block_size);
 | 
						|
	r = bdev_read(dev, pos, bp->b_data, fs_block_size,
 | 
						|
		BDEV_NOFLAGS);
 | 
						|
	if (r < 0) {
 | 
						|
		printf("MFS(%d) I/O error on device %d/%d, block %u\n",
 | 
						|
		SELF_E, major(dev), minor(dev), bp->b_blocknr);
 | 
						|
		op_failed = 1;
 | 
						|
	} else if (r != (ssize_t) fs_block_size) {
 | 
						|
		r = END_OF_FILE;
 | 
						|
		op_failed = 1;
 | 
						|
	}
 | 
						|
 | 
						|
	if (op_failed) {
 | 
						|
		BP_CLEARDEV(bp);	/* invalidate block */
 | 
						|
 | 
						|
		/* Report read errors to interested parties. */
 | 
						|
		rdwt_err = r;
 | 
						|
	}
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/*===========================================================================*
 | 
						|
 *				invalidate				     *
 | 
						|
 *===========================================================================*/
 | 
						|
PUBLIC void invalidate(
 | 
						|
  dev_t device			/* device whose blocks are to be purged */
 | 
						|
)
 | 
						|
{
 | 
						|
/* Remove all the blocks belonging to some device from the cache. */
 | 
						|
 | 
						|
  register struct buf *bp;
 | 
						|
 | 
						|
  for (bp = &buf[0]; bp < &buf[nr_bufs]; bp++)
 | 
						|
	if (bp->b_dev == device) BP_CLEARDEV(bp);
 | 
						|
 | 
						|
  vm_forgetblocks();
 | 
						|
}
 | 
						|
 | 
						|
/*===========================================================================*
 | 
						|
 *				block_write_ok				     *
 | 
						|
 *===========================================================================*/
 | 
						|
int block_write_ok(struct buf *bp)
 | 
						|
{
 | 
						|
	/* XXX this check is temporarily disabled as it's incompatible with
 | 
						|
	 * updating the sector list in the bootcode. This will change when
 | 
						|
	 * we switch to the netbsd-based bootloader.
 | 
						|
	 */
 | 
						|
#if 0
 | 
						|
	if(superblock.s_dev != bp->b_dev) return 1;
 | 
						|
 | 
						|
	if(bp->b_blocknr >= super_start && bp->b_blocknr <= super_end) {
 | 
						|
		printf("MFS: blocking write to superblock on mounted filesystem dev 0x%x.\n", bp->b_dev);
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	if(superblock.s_rd_only) {
 | 
						|
		printf("MFS: blocking write to mounted readonly filesystem 0x%x.\n", bp->b_dev);
 | 
						|
		printf("This shouldn't happen.\n");
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
#endif
 | 
						|
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
 | 
						|
/*===========================================================================*
 | 
						|
 *				flushall				     *
 | 
						|
 *===========================================================================*/
 | 
						|
PUBLIC void flushall(
 | 
						|
  dev_t dev			/* device to flush */
 | 
						|
)
 | 
						|
{
 | 
						|
/* Flush all dirty blocks for one device. */
 | 
						|
 | 
						|
  register struct buf *bp;
 | 
						|
  static struct buf **dirty;	/* static so it isn't on stack */
 | 
						|
  static unsigned int dirtylistsize = 0;
 | 
						|
  int ndirty;
 | 
						|
 | 
						|
  if(dirtylistsize != nr_bufs) {
 | 
						|
	if(dirtylistsize > 0) {
 | 
						|
		assert(dirty != NULL);
 | 
						|
		free(dirty);
 | 
						|
	}
 | 
						|
	if(!(dirty = malloc(sizeof(dirty[0])*nr_bufs)))
 | 
						|
		panic("couldn't allocate dirty buf list");
 | 
						|
	dirtylistsize = nr_bufs;
 | 
						|
  }
 | 
						|
 | 
						|
  for (bp = &buf[0], ndirty = 0; bp < &buf[nr_bufs]; bp++) {
 | 
						|
       if (ISDIRTY(bp) && bp->b_dev == dev) {
 | 
						|
               if(!block_write_ok(bp)) {
 | 
						|
                       printf("MFS: LATE: ignoring changes in block %d\n", bp->b_blocknr);
 | 
						|
                       MARKCLEAN(bp);
 | 
						|
                       continue;
 | 
						|
               }
 | 
						|
               dirty[ndirty++] = bp;
 | 
						|
       }
 | 
						|
  }
 | 
						|
  rw_scattered(dev, dirty, ndirty, WRITING);
 | 
						|
}
 | 
						|
 | 
						|
/*===========================================================================*
 | 
						|
 *				rw_scattered				     *
 | 
						|
 *===========================================================================*/
 | 
						|
PUBLIC void rw_scattered(
 | 
						|
  dev_t dev,			/* major-minor device number */
 | 
						|
  struct buf **bufq,		/* pointer to array of buffers */
 | 
						|
  int bufqsize,			/* number of buffers */
 | 
						|
  int rw_flag			/* READING or WRITING */
 | 
						|
)
 | 
						|
{
 | 
						|
/* Read or write scattered data from a device. */
 | 
						|
 | 
						|
  register struct buf *bp;
 | 
						|
  int gap;
 | 
						|
  register int i;
 | 
						|
  register iovec_t *iop;
 | 
						|
  static iovec_t *iovec = NULL;
 | 
						|
  u64_t pos;
 | 
						|
  int j, r;
 | 
						|
 | 
						|
  STATICINIT(iovec, NR_IOREQS);
 | 
						|
 | 
						|
  /* (Shell) sort buffers on b_blocknr. */
 | 
						|
  gap = 1;
 | 
						|
  do
 | 
						|
	gap = 3 * gap + 1;
 | 
						|
  while (gap <= bufqsize);
 | 
						|
  while (gap != 1) {
 | 
						|
	gap /= 3;
 | 
						|
	for (j = gap; j < bufqsize; j++) {
 | 
						|
		for (i = j - gap;
 | 
						|
		     i >= 0 && bufq[i]->b_blocknr > bufq[i + gap]->b_blocknr;
 | 
						|
		     i -= gap) {
 | 
						|
			bp = bufq[i];
 | 
						|
			bufq[i] = bufq[i + gap];
 | 
						|
			bufq[i + gap] = bp;
 | 
						|
		}
 | 
						|
	}
 | 
						|
  }
 | 
						|
 | 
						|
  /* Set up I/O vector and do I/O.  The result of bdev I/O is OK if everything
 | 
						|
   * went fine, otherwise the error code for the first failed transfer.
 | 
						|
   */
 | 
						|
  while (bufqsize > 0) {
 | 
						|
	for (j = 0, iop = iovec; j < NR_IOREQS && j < bufqsize; j++, iop++) {
 | 
						|
		bp = bufq[j];
 | 
						|
		if (bp->b_blocknr != (block_t) bufq[0]->b_blocknr + j) break;
 | 
						|
		iop->iov_addr = (vir_bytes) bp->b_data;
 | 
						|
		iop->iov_size = (vir_bytes) fs_block_size;
 | 
						|
	}
 | 
						|
	pos = mul64u(bufq[0]->b_blocknr, fs_block_size);
 | 
						|
	if (rw_flag == READING)
 | 
						|
		r = bdev_gather(dev, pos, iovec, j, BDEV_NOFLAGS);
 | 
						|
	else
 | 
						|
		r = bdev_scatter(dev, pos, iovec, j, BDEV_NOFLAGS);
 | 
						|
 | 
						|
	/* Harvest the results.  The driver may have returned an error, or it
 | 
						|
	 * may have done less than what we asked for.
 | 
						|
	 */
 | 
						|
	if (r < 0) {
 | 
						|
		printf("MFS: I/O error %d on device %d/%d, block %u\n",
 | 
						|
			r, major(dev), minor(dev), bufq[0]->b_blocknr);
 | 
						|
	}
 | 
						|
	for (i = 0; i < j; i++) {
 | 
						|
		bp = bufq[i];
 | 
						|
		if (r < (ssize_t) fs_block_size) {
 | 
						|
			/* Transfer failed. */
 | 
						|
			if (i == 0) {
 | 
						|
				BP_CLEARDEV(bp);	/* Invalidate block */
 | 
						|
				vm_forgetblocks();
 | 
						|
			}
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		if (rw_flag == READING) {
 | 
						|
			BP_SETDEV(bp, dev);	/* validate block */
 | 
						|
			put_block(bp, PARTIAL_DATA_BLOCK);
 | 
						|
		} else {
 | 
						|
			MARKCLEAN(bp);
 | 
						|
		}
 | 
						|
		r -= fs_block_size;
 | 
						|
	}
 | 
						|
	bufq += i;
 | 
						|
	bufqsize -= i;
 | 
						|
	if (rw_flag == READING) {
 | 
						|
		/* Don't bother reading more than the device is willing to
 | 
						|
		 * give at this time.  Don't forget to release those extras.
 | 
						|
		 */
 | 
						|
		while (bufqsize > 0) {
 | 
						|
			put_block(*bufq++, PARTIAL_DATA_BLOCK);
 | 
						|
			bufqsize--;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	if (rw_flag == WRITING && i == 0) {
 | 
						|
		/* We're not making progress, this means we might keep
 | 
						|
		 * looping. Buffers remain dirty if un-written. Buffers are
 | 
						|
		 * lost if invalidate()d or LRU-removed while dirty. This
 | 
						|
		 * is better than keeping unwritable blocks around forever..
 | 
						|
		 */
 | 
						|
		break;
 | 
						|
	}
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/*===========================================================================*
 | 
						|
 *				rm_lru					     *
 | 
						|
 *===========================================================================*/
 | 
						|
PRIVATE void rm_lru(bp)
 | 
						|
struct buf *bp;
 | 
						|
{
 | 
						|
/* Remove a block from its LRU chain. */
 | 
						|
  struct buf *next_ptr, *prev_ptr;
 | 
						|
 | 
						|
  bufs_in_use++;
 | 
						|
  next_ptr = bp->b_next;	/* successor on LRU chain */
 | 
						|
  prev_ptr = bp->b_prev;	/* predecessor on LRU chain */
 | 
						|
  if (prev_ptr != NULL)
 | 
						|
	prev_ptr->b_next = next_ptr;
 | 
						|
  else
 | 
						|
	front = next_ptr;	/* this block was at front of chain */
 | 
						|
 | 
						|
  if (next_ptr != NULL)
 | 
						|
	next_ptr->b_prev = prev_ptr;
 | 
						|
  else
 | 
						|
	rear = prev_ptr;	/* this block was at rear of chain */
 | 
						|
}
 | 
						|
 | 
						|
/*===========================================================================*
 | 
						|
 *				cache_resize				     *
 | 
						|
 *===========================================================================*/
 | 
						|
PRIVATE void cache_resize(unsigned int blocksize, unsigned int bufs)
 | 
						|
{
 | 
						|
  struct buf *bp;
 | 
						|
  struct inode *rip;
 | 
						|
 | 
						|
#define MINBUFS 10
 | 
						|
  assert(blocksize > 0);
 | 
						|
  assert(bufs >= MINBUFS);
 | 
						|
 | 
						|
  for (bp = &buf[0]; bp < &buf[nr_bufs]; bp++)
 | 
						|
	if(bp->b_count != 0) panic("change blocksize with buffer in use");
 | 
						|
 | 
						|
  for (rip = &inode[0]; rip < &inode[NR_INODES]; rip++)
 | 
						|
	if (rip->i_count > 0) panic("change blocksize with inode in use");
 | 
						|
 | 
						|
  buf_pool(bufs);
 | 
						|
 | 
						|
  fs_block_size = blocksize;
 | 
						|
  super_start = SUPER_BLOCK_BYTES / fs_block_size;
 | 
						|
  super_end = (SUPER_BLOCK_BYTES + _MIN_BLOCK_SIZE - 1) / fs_block_size;
 | 
						|
}
 | 
						|
 | 
						|
/*===========================================================================*
 | 
						|
 *				bufs_heuristic				     *
 | 
						|
 *===========================================================================*/
 | 
						|
PRIVATE int bufs_heuristic(struct super_block *sp)
 | 
						|
{
 | 
						|
  u32_t btotal, bfree, bused;
 | 
						|
 | 
						|
  blockstats(&btotal, &bfree, &bused);
 | 
						|
 | 
						|
  return fs_bufs_heuristic(MINBUFS, btotal, bfree,
 | 
						|
  	sp->s_block_size, major(sp->s_dev));
 | 
						|
}
 | 
						|
 | 
						|
/*===========================================================================*
 | 
						|
 *				set_blocksize				     *
 | 
						|
 *===========================================================================*/
 | 
						|
PUBLIC void set_blocksize(struct super_block *sp)
 | 
						|
{
 | 
						|
  int bufs;
 | 
						|
 | 
						|
  cache_resize(sp->s_block_size, MINBUFS);
 | 
						|
  bufs = bufs_heuristic(sp);
 | 
						|
  cache_resize(sp->s_block_size, bufs);
 | 
						|
  
 | 
						|
  /* Decide whether to use seconday cache or not.
 | 
						|
   * Only do this if
 | 
						|
   *	- it's available, and
 | 
						|
   *	- use of it hasn't been disabled for this fs, and
 | 
						|
   *	- our main FS device isn't a memory device
 | 
						|
   */
 | 
						|
 | 
						|
  vmcache = 0;
 | 
						|
  if(vm_forgetblock(VM_BLOCKID_NONE) != ENOSYS &&
 | 
						|
  	may_use_vmcache && major(sp->s_dev) != MEMORY_MAJOR) {
 | 
						|
	vmcache = 1;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/*===========================================================================*
 | 
						|
 *                              buf_pool                                     *
 | 
						|
 *===========================================================================*/
 | 
						|
PUBLIC void buf_pool(int new_nr_bufs)
 | 
						|
{
 | 
						|
/* Initialize the buffer pool. */
 | 
						|
  register struct buf *bp;
 | 
						|
 | 
						|
  assert(new_nr_bufs >= MINBUFS);
 | 
						|
 | 
						|
  if(nr_bufs > 0) {
 | 
						|
	assert(buf);
 | 
						|
	(void) fs_sync();
 | 
						|
  	for (bp = &buf[0]; bp < &buf[nr_bufs]; bp++) {
 | 
						|
		if(bp->bp) {
 | 
						|
			assert(bp->b_bytes > 0);
 | 
						|
			free_contig(bp->bp, bp->b_bytes);
 | 
						|
		}
 | 
						|
	}
 | 
						|
  }
 | 
						|
 | 
						|
  if(buf)
 | 
						|
	free(buf);
 | 
						|
 | 
						|
  if(!(buf = calloc(sizeof(buf[0]), new_nr_bufs)))
 | 
						|
	panic("couldn't allocate buf list (%d)", new_nr_bufs);
 | 
						|
 | 
						|
  if(buf_hash)
 | 
						|
	free(buf_hash);
 | 
						|
  if(!(buf_hash = calloc(sizeof(buf_hash[0]), new_nr_bufs)))
 | 
						|
	panic("couldn't allocate buf hash list (%d)", new_nr_bufs);
 | 
						|
 | 
						|
  nr_bufs = new_nr_bufs;
 | 
						|
 | 
						|
  bufs_in_use = 0;
 | 
						|
  front = &buf[0];
 | 
						|
  rear = &buf[nr_bufs - 1];
 | 
						|
 | 
						|
  for (bp = &buf[0]; bp < &buf[nr_bufs]; bp++) {
 | 
						|
        bp->b_blocknr = NO_BLOCK;
 | 
						|
	BP_CLEARDEV(bp);
 | 
						|
        bp->b_next = bp + 1;
 | 
						|
        bp->b_prev = bp - 1;
 | 
						|
        bp->bp = NULL;
 | 
						|
        bp->b_bytes = 0;
 | 
						|
  }
 | 
						|
  front->b_prev = NULL;
 | 
						|
  rear->b_next = NULL;
 | 
						|
 | 
						|
  for (bp = &buf[0]; bp < &buf[nr_bufs]; bp++) bp->b_hash = bp->b_next;
 | 
						|
  buf_hash[0] = front;
 | 
						|
 | 
						|
  vm_forgetblocks();
 | 
						|
}
 | 
						|
 |