316 lines
		
	
	
		
			8.9 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			316 lines
		
	
	
		
			8.9 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * This code implements the MD5 message-digest algorithm.
 | |
|  * The algorithm is due to Ron Rivest.  This code was
 | |
|  * written by Colin Plumb in 1993, no copyright is claimed.
 | |
|  * This code is in the public domain; do with it what you wish.
 | |
|  *
 | |
|  * Equivalent code is available from RSA Data Security, Inc.
 | |
|  * This code has been tested against that, and is equivalent,
 | |
|  * except that you don't need to include two pages of legalese
 | |
|  * with every copy.
 | |
|  *
 | |
|  * To compute the message digest of a chunk of bytes, declare an
 | |
|  * MD5Context structure, pass it to MD5Init, call MD5Update as
 | |
|  * needed on buffers full of bytes, and then call MD5Final, which
 | |
|  * will fill a supplied 16-byte array with the digest.
 | |
|  */
 | |
| 
 | |
| /* This code was modified in 1997 by Jim Kingdon of Cyclic Software to
 | |
|    not require an integer type which is exactly 32 bits.  This work
 | |
|    draws on the changes for the same purpose by Tatu Ylonen
 | |
|    <ylo@cs.hut.fi> as part of SSH, but since I didn't actually use
 | |
|    that code, there is no copyright issue.  I hereby disclaim
 | |
|    copyright in any changes I have made; this code remains in the
 | |
|    public domain.  */
 | |
| 
 | |
| #ifdef TEST
 | |
| #include <stdlib.h>
 | |
| #endif
 | |
| 
 | |
| #include <string.h>	/* for memcpy() and memset() */
 | |
| 
 | |
| #include "md5.h"
 | |
| 
 | |
| /* Little-endian byte-swapping routines.  Note that these do not
 | |
|    depend on the size of datatypes such as uint32, nor do they require
 | |
|    us to detect the endianness of the machine we are running on.  It
 | |
|    is possible they should be macros for speed, but I would be
 | |
|    surprised if they were a performance bottleneck for MD5.  */
 | |
| 
 | |
| static uint32
 | |
| getu32 (const unsigned char *addr)
 | |
| {
 | |
| 	return (((((unsigned long)addr[3] << 8) | addr[2]) << 8)
 | |
| 		| addr[1]) << 8 | addr[0];
 | |
| }
 | |
| 
 | |
| static void
 | |
| putu32 (uint32 data, unsigned char *addr)
 | |
| {
 | |
| 	addr[0] = (unsigned char)data;
 | |
| 	addr[1] = (unsigned char)(data >> 8);
 | |
| 	addr[2] = (unsigned char)(data >> 16);
 | |
| 	addr[3] = (unsigned char)(data >> 24);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Start MD5 accumulation.  Set bit count to 0 and buffer to mysterious
 | |
|  * initialization constants.
 | |
|  */
 | |
| void
 | |
| MD5Init (ctx)
 | |
|      struct MD5Context *ctx;
 | |
| {
 | |
| 	ctx->buf[0] = 0x67452301;
 | |
| 	ctx->buf[1] = 0xefcdab89;
 | |
| 	ctx->buf[2] = 0x98badcfe;
 | |
| 	ctx->buf[3] = 0x10325476;
 | |
| 
 | |
| 	ctx->bits[0] = 0;
 | |
| 	ctx->bits[1] = 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Update context to reflect the concatenation of another buffer full
 | |
|  * of bytes.
 | |
|  */
 | |
| void
 | |
| MD5Update (ctx, buf, len)
 | |
|      struct MD5Context *ctx;
 | |
|      unsigned char const *buf;
 | |
|      unsigned len;
 | |
| {
 | |
| 	uint32 t;
 | |
| 
 | |
| 	/* Update bitcount */
 | |
| 
 | |
| 	t = ctx->bits[0];
 | |
| 	if ((ctx->bits[0] = (t + ((uint32)len << 3)) & 0xffffffff) < t)
 | |
| 		ctx->bits[1]++;	/* Carry from low to high */
 | |
| 	ctx->bits[1] += len >> 29;
 | |
| 
 | |
| 	t = (t >> 3) & 0x3f;	/* Bytes already in shsInfo->data */
 | |
| 
 | |
| 	/* Handle any leading odd-sized chunks */
 | |
| 
 | |
| 	if ( t ) {
 | |
| 		unsigned char *p = ctx->in + t;
 | |
| 
 | |
| 		t = 64-t;
 | |
| 		if (len < t) {
 | |
| 			memcpy(p, buf, len);
 | |
| 			return;
 | |
| 		}
 | |
| 		memcpy(p, buf, t);
 | |
| 		MD5Transform (ctx->buf, ctx->in);
 | |
| 		buf += t;
 | |
| 		len -= t;
 | |
| 	}
 | |
| 
 | |
| 	/* Process data in 64-byte chunks */
 | |
| 
 | |
| 	while (len >= 64) {
 | |
| 		memcpy(ctx->in, buf, 64);
 | |
| 		MD5Transform (ctx->buf, ctx->in);
 | |
| 		buf += 64;
 | |
| 		len -= 64;
 | |
| 	}
 | |
| 
 | |
| 	/* Handle any remaining bytes of data. */
 | |
| 
 | |
| 	memcpy(ctx->in, buf, len);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Final wrapup - pad to 64-byte boundary with the bit pattern 
 | |
|  * 1 0* (64-bit count of bits processed, MSB-first)
 | |
|  */
 | |
| void
 | |
| MD5Final (digest, ctx)
 | |
|      unsigned char digest[16];
 | |
|      struct MD5Context *ctx;
 | |
| {
 | |
| 	unsigned count;
 | |
| 	unsigned char *p;
 | |
| 
 | |
| 	/* Compute number of bytes mod 64 */
 | |
| 	count = (ctx->bits[0] >> 3) & 0x3F;
 | |
| 
 | |
| 	/* Set the first char of padding to 0x80.  This is safe since there is
 | |
| 	   always at least one byte free */
 | |
| 	p = ctx->in + count;
 | |
| 	*p++ = 0x80;
 | |
| 
 | |
| 	/* Bytes of padding needed to make 64 bytes */
 | |
| 	count = 64 - 1 - count;
 | |
| 
 | |
| 	/* Pad out to 56 mod 64 */
 | |
| 	if (count < 8) {
 | |
| 		/* Two lots of padding:  Pad the first block to 64 bytes */
 | |
| 		memset(p, 0, count);
 | |
| 		MD5Transform (ctx->buf, ctx->in);
 | |
| 
 | |
| 		/* Now fill the next block with 56 bytes */
 | |
| 		memset(ctx->in, 0, 56);
 | |
| 	} else {
 | |
| 		/* Pad block to 56 bytes */
 | |
| 		memset(p, 0, count-8);
 | |
| 	}
 | |
| 
 | |
| 	/* Append length in bits and transform */
 | |
| 	putu32(ctx->bits[0], ctx->in + 56);
 | |
| 	putu32(ctx->bits[1], ctx->in + 60);
 | |
| 
 | |
| 	MD5Transform (ctx->buf, ctx->in);
 | |
| 	putu32(ctx->buf[0], digest);
 | |
| 	putu32(ctx->buf[1], digest + 4);
 | |
| 	putu32(ctx->buf[2], digest + 8);
 | |
| 	putu32(ctx->buf[3], digest + 12);
 | |
| 	memset(ctx, 0, sizeof(ctx));	/* In case it's sensitive */
 | |
| }
 | |
| 
 | |
| #ifndef ASM_MD5
 | |
| 
 | |
| /* The four core functions - F1 is optimized somewhat */
 | |
| 
 | |
| /* #define F1(x, y, z) (x & y | ~x & z) */
 | |
| #define F1(x, y, z) (z ^ (x & (y ^ z)))
 | |
| #define F2(x, y, z) F1(z, x, y)
 | |
| #define F3(x, y, z) (x ^ y ^ z)
 | |
| #define F4(x, y, z) (y ^ (x | ~z))
 | |
| 
 | |
| /* This is the central step in the MD5 algorithm. */
 | |
| #define MD5STEP(f, w, x, y, z, data, s) \
 | |
| 	( w += f(x, y, z) + data, w &= 0xffffffff, w = w<<s | w>>(32-s), w += x )
 | |
| 
 | |
| /*
 | |
|  * The core of the MD5 algorithm, this alters an existing MD5 hash to
 | |
|  * reflect the addition of 16 longwords of new data.  MD5Update blocks
 | |
|  * the data and converts bytes into longwords for this routine.
 | |
|  */
 | |
| void
 | |
| MD5Transform (buf, inraw)
 | |
|      uint32 buf[4];
 | |
|      const unsigned char inraw[64];
 | |
| {
 | |
| 	register uint32 a, b, c, d;
 | |
| 	uint32 in[16];
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < 16; ++i)
 | |
| 		in[i] = getu32 (inraw + 4 * i);
 | |
| 
 | |
| 	a = buf[0];
 | |
| 	b = buf[1];
 | |
| 	c = buf[2];
 | |
| 	d = buf[3];
 | |
| 
 | |
| 	MD5STEP(F1, a, b, c, d, in[ 0]+0xd76aa478,  7);
 | |
| 	MD5STEP(F1, d, a, b, c, in[ 1]+0xe8c7b756, 12);
 | |
| 	MD5STEP(F1, c, d, a, b, in[ 2]+0x242070db, 17);
 | |
| 	MD5STEP(F1, b, c, d, a, in[ 3]+0xc1bdceee, 22);
 | |
| 	MD5STEP(F1, a, b, c, d, in[ 4]+0xf57c0faf,  7);
 | |
| 	MD5STEP(F1, d, a, b, c, in[ 5]+0x4787c62a, 12);
 | |
| 	MD5STEP(F1, c, d, a, b, in[ 6]+0xa8304613, 17);
 | |
| 	MD5STEP(F1, b, c, d, a, in[ 7]+0xfd469501, 22);
 | |
| 	MD5STEP(F1, a, b, c, d, in[ 8]+0x698098d8,  7);
 | |
| 	MD5STEP(F1, d, a, b, c, in[ 9]+0x8b44f7af, 12);
 | |
| 	MD5STEP(F1, c, d, a, b, in[10]+0xffff5bb1, 17);
 | |
| 	MD5STEP(F1, b, c, d, a, in[11]+0x895cd7be, 22);
 | |
| 	MD5STEP(F1, a, b, c, d, in[12]+0x6b901122,  7);
 | |
| 	MD5STEP(F1, d, a, b, c, in[13]+0xfd987193, 12);
 | |
| 	MD5STEP(F1, c, d, a, b, in[14]+0xa679438e, 17);
 | |
| 	MD5STEP(F1, b, c, d, a, in[15]+0x49b40821, 22);
 | |
| 
 | |
| 	MD5STEP(F2, a, b, c, d, in[ 1]+0xf61e2562,  5);
 | |
| 	MD5STEP(F2, d, a, b, c, in[ 6]+0xc040b340,  9);
 | |
| 	MD5STEP(F2, c, d, a, b, in[11]+0x265e5a51, 14);
 | |
| 	MD5STEP(F2, b, c, d, a, in[ 0]+0xe9b6c7aa, 20);
 | |
| 	MD5STEP(F2, a, b, c, d, in[ 5]+0xd62f105d,  5);
 | |
| 	MD5STEP(F2, d, a, b, c, in[10]+0x02441453,  9);
 | |
| 	MD5STEP(F2, c, d, a, b, in[15]+0xd8a1e681, 14);
 | |
| 	MD5STEP(F2, b, c, d, a, in[ 4]+0xe7d3fbc8, 20);
 | |
| 	MD5STEP(F2, a, b, c, d, in[ 9]+0x21e1cde6,  5);
 | |
| 	MD5STEP(F2, d, a, b, c, in[14]+0xc33707d6,  9);
 | |
| 	MD5STEP(F2, c, d, a, b, in[ 3]+0xf4d50d87, 14);
 | |
| 	MD5STEP(F2, b, c, d, a, in[ 8]+0x455a14ed, 20);
 | |
| 	MD5STEP(F2, a, b, c, d, in[13]+0xa9e3e905,  5);
 | |
| 	MD5STEP(F2, d, a, b, c, in[ 2]+0xfcefa3f8,  9);
 | |
| 	MD5STEP(F2, c, d, a, b, in[ 7]+0x676f02d9, 14);
 | |
| 	MD5STEP(F2, b, c, d, a, in[12]+0x8d2a4c8a, 20);
 | |
| 
 | |
| 	MD5STEP(F3, a, b, c, d, in[ 5]+0xfffa3942,  4);
 | |
| 	MD5STEP(F3, d, a, b, c, in[ 8]+0x8771f681, 11);
 | |
| 	MD5STEP(F3, c, d, a, b, in[11]+0x6d9d6122, 16);
 | |
| 	MD5STEP(F3, b, c, d, a, in[14]+0xfde5380c, 23);
 | |
| 	MD5STEP(F3, a, b, c, d, in[ 1]+0xa4beea44,  4);
 | |
| 	MD5STEP(F3, d, a, b, c, in[ 4]+0x4bdecfa9, 11);
 | |
| 	MD5STEP(F3, c, d, a, b, in[ 7]+0xf6bb4b60, 16);
 | |
| 	MD5STEP(F3, b, c, d, a, in[10]+0xbebfbc70, 23);
 | |
| 	MD5STEP(F3, a, b, c, d, in[13]+0x289b7ec6,  4);
 | |
| 	MD5STEP(F3, d, a, b, c, in[ 0]+0xeaa127fa, 11);
 | |
| 	MD5STEP(F3, c, d, a, b, in[ 3]+0xd4ef3085, 16);
 | |
| 	MD5STEP(F3, b, c, d, a, in[ 6]+0x04881d05, 23);
 | |
| 	MD5STEP(F3, a, b, c, d, in[ 9]+0xd9d4d039,  4);
 | |
| 	MD5STEP(F3, d, a, b, c, in[12]+0xe6db99e5, 11);
 | |
| 	MD5STEP(F3, c, d, a, b, in[15]+0x1fa27cf8, 16);
 | |
| 	MD5STEP(F3, b, c, d, a, in[ 2]+0xc4ac5665, 23);
 | |
| 
 | |
| 	MD5STEP(F4, a, b, c, d, in[ 0]+0xf4292244,  6);
 | |
| 	MD5STEP(F4, d, a, b, c, in[ 7]+0x432aff97, 10);
 | |
| 	MD5STEP(F4, c, d, a, b, in[14]+0xab9423a7, 15);
 | |
| 	MD5STEP(F4, b, c, d, a, in[ 5]+0xfc93a039, 21);
 | |
| 	MD5STEP(F4, a, b, c, d, in[12]+0x655b59c3,  6);
 | |
| 	MD5STEP(F4, d, a, b, c, in[ 3]+0x8f0ccc92, 10);
 | |
| 	MD5STEP(F4, c, d, a, b, in[10]+0xffeff47d, 15);
 | |
| 	MD5STEP(F4, b, c, d, a, in[ 1]+0x85845dd1, 21);
 | |
| 	MD5STEP(F4, a, b, c, d, in[ 8]+0x6fa87e4f,  6);
 | |
| 	MD5STEP(F4, d, a, b, c, in[15]+0xfe2ce6e0, 10);
 | |
| 	MD5STEP(F4, c, d, a, b, in[ 6]+0xa3014314, 15);
 | |
| 	MD5STEP(F4, b, c, d, a, in[13]+0x4e0811a1, 21);
 | |
| 	MD5STEP(F4, a, b, c, d, in[ 4]+0xf7537e82,  6);
 | |
| 	MD5STEP(F4, d, a, b, c, in[11]+0xbd3af235, 10);
 | |
| 	MD5STEP(F4, c, d, a, b, in[ 2]+0x2ad7d2bb, 15);
 | |
| 	MD5STEP(F4, b, c, d, a, in[ 9]+0xeb86d391, 21);
 | |
| 
 | |
| 	buf[0] += a;
 | |
| 	buf[1] += b;
 | |
| 	buf[2] += c;
 | |
| 	buf[3] += d;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef TEST
 | |
| /* Simple test program.  Can use it to manually run the tests from
 | |
|    RFC1321 for example.  */
 | |
| #include <stdio.h>
 | |
| 
 | |
| int
 | |
| main (int argc, char **argv)
 | |
| {
 | |
| 	struct MD5Context context;
 | |
| 	unsigned char checksum[16];
 | |
| 	int i;
 | |
| 	int j;
 | |
| 
 | |
| 	if (argc < 2)
 | |
| 	{
 | |
| 		fprintf (stderr, "usage: %s string-to-hash\n", argv[0]);
 | |
| 		exit (1);
 | |
| 	}
 | |
| 	for (j = 1; j < argc; ++j)
 | |
| 	{
 | |
| 		printf ("MD5 (\"%s\") = ", argv[j]);
 | |
| 		MD5Init (&context);
 | |
| 		MD5Update (&context, (unsigned char *)argv[j], strlen (argv[j]));
 | |
| 		MD5Final (checksum, &context);
 | |
| 		for (i = 0; i < 16; i++)
 | |
| 		{
 | |
| 			printf ("%02x", (unsigned int) checksum[i]);
 | |
| 		}
 | |
| 		printf ("\n");
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| #endif /* TEST */
 | 
