1406 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			1406 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C
		
	
	
		
			Executable File
		
	
	
	
	
| /* number.c: Implements arbitrary precision numbers. */
 | |
| 
 | |
| /*  This file is part of bc written for MINIX.
 | |
|     Copyright (C) 1991, 1992 Free Software Foundation, Inc.
 | |
| 
 | |
|     This program is free software; you can redistribute it and/or modify
 | |
|     it under the terms of the GNU General Public License as published by
 | |
|     the Free Software Foundation; either version 2 of the License , or
 | |
|     (at your option) any later version.
 | |
| 
 | |
|     This program is distributed in the hope that it will be useful,
 | |
|     but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|     GNU General Public License for more details.
 | |
| 
 | |
|     You should have received a copy of the GNU General Public License
 | |
|     along with this program; see the file COPYING.  If not, write to
 | |
|     the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
 | |
| 
 | |
|     You may contact the author by:
 | |
|        e-mail:  phil@cs.wwu.edu
 | |
|       us-mail:  Philip A. Nelson
 | |
|                 Computer Science Department, 9062
 | |
|                 Western Washington University
 | |
|                 Bellingham, WA 98226-9062
 | |
|        
 | |
| *************************************************************************/
 | |
| 
 | |
| #include "bcdefs.h"
 | |
| #include "proto.h"
 | |
| 
 | |
| /* Storage used for special numbers. */
 | |
| bc_num _zero_;
 | |
| bc_num _one_;
 | |
| bc_num _two_;
 | |
| 
 | |
| 
 | |
| /* "Frees" a bc_num NUM.  Actually decreases reference count and only
 | |
|    frees the storage if reference count is zero. */
 | |
| 
 | |
| void
 | |
| free_num (num)
 | |
|     bc_num *num;
 | |
| {
 | |
|   if (*num == NULL) return;
 | |
|   (*num)->n_refs--; 
 | |
|   if ((*num)->n_refs == 0) free(*num);
 | |
|   *num = NULL;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* new_num allocates a number and sets fields to known values. */
 | |
| 
 | |
| bc_num
 | |
| new_num (length, scale)
 | |
|      int length, scale;
 | |
| {
 | |
|   bc_num temp;
 | |
| 
 | |
|   temp = (bc_num) malloc (sizeof(bc_struct)+length+scale);
 | |
|   if (temp == NULL) out_of_memory ();
 | |
|   temp->n_sign = PLUS;
 | |
|   temp->n_len = length;
 | |
|   temp->n_scale = scale;
 | |
|   temp->n_refs = 1;
 | |
|   temp->n_value[0] = 0;
 | |
|   return temp;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Intitialize the number package! */
 | |
| 
 | |
| void
 | |
| init_numbers ()
 | |
| {
 | |
|   _zero_ = new_num (1,0);
 | |
|   _one_  = new_num (1,0);
 | |
|   _one_->n_value[0] = 1;
 | |
|   _two_  = new_num (1,0);
 | |
|   _two_->n_value[0] = 2;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Make a copy of a number!  Just increments the reference count! */
 | |
| 
 | |
| bc_num
 | |
| copy_num (num)
 | |
|      bc_num num;
 | |
| {
 | |
|   num->n_refs++;
 | |
|   return num;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Initialize a number NUM by making it a copy of zero. */
 | |
| 
 | |
| void
 | |
| init_num (num)
 | |
|      bc_num *num;
 | |
| {
 | |
|   *num = copy_num (_zero_);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Convert an integer VAL to a bc number NUM. */
 | |
| 
 | |
| void
 | |
| int2num (num, val)
 | |
|      bc_num *num;
 | |
|      int val;
 | |
| {
 | |
|   char buffer[30];
 | |
|   char *bptr, *vptr;
 | |
|   int  ix = 1;
 | |
|   char neg = 0;
 | |
|   
 | |
|   /* Sign. */
 | |
|   if (val < 0)
 | |
|     {
 | |
|       neg = 1;
 | |
|       val = -val;
 | |
|     }
 | |
|   
 | |
|   /* Get things going. */
 | |
|   bptr = buffer;
 | |
|   *bptr++ = val % 10;
 | |
|   val = val / 10;
 | |
|   
 | |
|   /* Extract remaining digits. */
 | |
|   while (val != 0)
 | |
|     {
 | |
|       *bptr++ = val % 10;
 | |
|       val = val / 10;
 | |
|       ix++; 		/* Count the digits. */
 | |
|     }
 | |
|   
 | |
|   /* Make the number. */
 | |
|   free_num (num);
 | |
|   *num = new_num (ix, 0);
 | |
|   if (neg) (*num)->n_sign = MINUS;
 | |
|   
 | |
|   /* Assign the digits. */
 | |
|   vptr = (*num)->n_value;
 | |
|   while (ix-- > 0)
 | |
|     *vptr++ = *--bptr;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Convert a number NUM to a long.  The function returns only the integer 
 | |
|    part of the number.  For numbers that are too large to represent as
 | |
|    a long, this function returns a zero.  This can be detected by checking
 | |
|    the NUM for zero after having a zero returned. */
 | |
| 
 | |
| long
 | |
| num2long (num)
 | |
|      bc_num num;
 | |
| {
 | |
|   long val;
 | |
|   char *nptr;
 | |
|   int  index;
 | |
| 
 | |
|   /* Extract the int value, ignore the fraction. */
 | |
|   val = 0;
 | |
|   nptr = num->n_value;
 | |
|   for (index=num->n_len; (index>0) && (val<=(LONG_MAX/10)); index--)
 | |
|     val = val*10 + *nptr++;
 | |
|   
 | |
|   /* Check for overflow.  If overflow, return zero. */
 | |
|   if (index>0) val = 0;
 | |
|   if (val < 0) val = 0;
 | |
|  
 | |
|   /* Return the value. */
 | |
|   if (num->n_sign == PLUS)
 | |
|     return (val);
 | |
|   else
 | |
|     return (-val);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* The following are some math routines for numbers. */
 | |
| _PROTOTYPE(static int _do_compare, (bc_num n1, bc_num n2, int use_sign,
 | |
| 				    int ignore_last));
 | |
| _PROTOTYPE(static void _rm_leading_zeros, (bc_num num));
 | |
| _PROTOTYPE(static bc_num _do_add, (bc_num n1, bc_num n2));
 | |
| _PROTOTYPE(static bc_num _do_sub, (bc_num n1, bc_num n2));
 | |
| _PROTOTYPE(static void _one_mult, (unsigned char *num, int size, int digit,
 | |
| 				   unsigned char *result));
 | |
| 
 | |
| 
 | |
| 
 | |
| /* Compare two bc numbers.  Return value is 0 if equal, -1 if N1 is less
 | |
|    than N2 and +1 if N1 is greater than N2.  If USE_SIGN is false, just
 | |
|    compare the magnitudes. */
 | |
| 
 | |
| static int
 | |
| _do_compare (n1, n2, use_sign, ignore_last)
 | |
|      bc_num n1, n2;
 | |
|      int use_sign;
 | |
|      int ignore_last;
 | |
| {
 | |
|   char *n1ptr, *n2ptr;
 | |
|   int  count;
 | |
|   
 | |
|   /* First, compare signs. */
 | |
|   if (use_sign && n1->n_sign != n2->n_sign)
 | |
|     {
 | |
|       if (n1->n_sign == PLUS)
 | |
| 	return (1);	/* Positive N1 > Negative N2 */
 | |
|       else
 | |
| 	return (-1);	/* Negative N1 < Positive N1 */
 | |
|     }
 | |
|   
 | |
|   /* Now compare the magnitude. */
 | |
|   if (n1->n_len != n2->n_len)
 | |
|     {
 | |
|       if (n1->n_len > n2->n_len)
 | |
| 	{
 | |
| 	  /* Magnitude of n1 > n2. */
 | |
| 	  if (!use_sign || n1->n_sign == PLUS)
 | |
| 	    return (1);
 | |
| 	  else
 | |
| 	    return (-1);
 | |
| 	}
 | |
|       else
 | |
| 	{
 | |
| 	  /* Magnitude of n1 < n2. */
 | |
| 	  if (!use_sign || n1->n_sign == PLUS)
 | |
| 	    return (-1);
 | |
| 	  else
 | |
| 	    return (1);
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|   /* If we get here, they have the same number of integer digits.
 | |
|      check the integer part and the equal length part of the fraction. */
 | |
|   count = n1->n_len + MIN (n1->n_scale, n2->n_scale);
 | |
|   n1ptr = n1->n_value;
 | |
|   n2ptr = n2->n_value;
 | |
| 
 | |
|   while ((count > 0) && (*n1ptr == *n2ptr))
 | |
|     {
 | |
|       n1ptr++;
 | |
|       n2ptr++;
 | |
|       count--;
 | |
|     }
 | |
|   if (ignore_last && count == 1 && n1->n_scale == n2->n_scale)
 | |
|     return (0);
 | |
|   if (count != 0)
 | |
|     {
 | |
|       if (*n1ptr > *n2ptr)
 | |
| 	{
 | |
| 	  /* Magnitude of n1 > n2. */
 | |
| 	  if (!use_sign || n1->n_sign == PLUS)
 | |
| 	    return (1);
 | |
| 	  else
 | |
| 	    return (-1);
 | |
| 	}
 | |
|       else
 | |
| 	{
 | |
| 	  /* Magnitude of n1 < n2. */
 | |
| 	  if (!use_sign || n1->n_sign == PLUS)
 | |
| 	    return (-1);
 | |
| 	  else
 | |
| 	    return (1);
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|   /* They are equal up to the last part of the equal part of the fraction. */
 | |
|   if (n1->n_scale != n2->n_scale) 
 | |
|     if (n1->n_scale > n2->n_scale)
 | |
|       {
 | |
| 	for (count = n1->n_scale-n2->n_scale; count>0; count--)
 | |
| 	  if (*n1ptr++ != 0)
 | |
| 	    {
 | |
| 	      /* Magnitude of n1 > n2. */
 | |
| 	      if (!use_sign || n1->n_sign == PLUS)
 | |
| 		return (1);
 | |
| 	      else
 | |
| 		return (-1);
 | |
| 	    }
 | |
|       }
 | |
|     else
 | |
|       {
 | |
| 	for (count = n2->n_scale-n1->n_scale; count>0; count--)
 | |
| 	  if (*n2ptr++ != 0)
 | |
| 	    {
 | |
| 	      /* Magnitude of n1 < n2. */
 | |
| 	      if (!use_sign || n1->n_sign == PLUS)
 | |
| 		return (-1);
 | |
| 	      else
 | |
| 		return (1);
 | |
| 	    }
 | |
|       }
 | |
|   
 | |
|   /* They must be equal! */
 | |
|   return (0);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* This is the "user callable" routine to compare numbers N1 and N2. */
 | |
| 
 | |
| int
 | |
| bc_compare (n1, n2)
 | |
|      bc_num n1, n2;
 | |
| {
 | |
|   return _do_compare (n1, n2, TRUE, FALSE);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* In some places we need to check if the number NUM is zero. */
 | |
| 
 | |
| char
 | |
| is_zero (num)
 | |
|      bc_num num;
 | |
| {
 | |
|   int  count;
 | |
|   char *nptr;
 | |
| 
 | |
|   /* Quick check. */
 | |
|   if (num == _zero_) return TRUE;
 | |
| 
 | |
|   /* Initialize */
 | |
|   count = num->n_len + num->n_scale;
 | |
|   nptr = num->n_value;
 | |
| 
 | |
|   /* The check */
 | |
|   while ((count > 0) && (*nptr++ == 0)) count--;
 | |
| 
 | |
|   if (count != 0)
 | |
|     return FALSE;
 | |
|   else 
 | |
|     return TRUE;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* In some places we need to check if the number is negative. */
 | |
| 
 | |
| char
 | |
| is_neg (num)
 | |
|      bc_num num;
 | |
| {
 | |
|   return num->n_sign == MINUS;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* For many things, we may have leading zeros in a number NUM.
 | |
|    _rm_leading_zeros just moves the data to the correct
 | |
|    place and adjusts the length. */
 | |
| 
 | |
| static void
 | |
| _rm_leading_zeros (num)
 | |
|      bc_num num;
 | |
| {
 | |
|   int bytes;
 | |
|   char *dst, *src;
 | |
| 
 | |
|   /* Do a quick check to see if we need to do it. */
 | |
|   if (*num->n_value != 0) return;
 | |
| 
 | |
|   /* The first digit is 0, find the first non-zero digit in the 10's or
 | |
|      greater place. */
 | |
|   bytes = num->n_len;
 | |
|   src = num->n_value;
 | |
|   while (bytes > 1 && *src == 0) src++, bytes--;
 | |
|   num->n_len = bytes;
 | |
|   bytes += num->n_scale;
 | |
|   dst = num->n_value;
 | |
|   while (bytes-- > 0) *dst++ = *src++;
 | |
|   
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Perform addition: N1 is added to N2 and the value is
 | |
|    returned.  The signs of N1 and N2 are ignored. */
 | |
| 
 | |
| static bc_num
 | |
| _do_add (n1, n2)
 | |
|      bc_num n1, n2;
 | |
| {
 | |
|   bc_num sum;
 | |
|   int sum_scale, sum_digits;
 | |
|   char *n1ptr, *n2ptr, *sumptr;
 | |
|   int carry, n1bytes, n2bytes;
 | |
| 
 | |
|   /* Prepare sum. */
 | |
|   sum_scale = MAX (n1->n_scale, n2->n_scale);
 | |
|   sum_digits = MAX (n1->n_len, n2->n_len) + 1;
 | |
|   sum = new_num (sum_digits,sum_scale);
 | |
| 
 | |
|   /* Start with the fraction part.  Initialize the pointers. */
 | |
|   n1bytes = n1->n_scale;
 | |
|   n2bytes = n2->n_scale;
 | |
|   n1ptr = (char *) (n1->n_value + n1->n_len + n1bytes - 1);
 | |
|   n2ptr = (char *) (n2->n_value + n2->n_len + n2bytes - 1);
 | |
|   sumptr = (char *) (sum->n_value + sum_scale + sum_digits - 1);
 | |
| 
 | |
|   /* Add the fraction part.  First copy the longer fraction.*/
 | |
|   if (n1bytes != n2bytes)
 | |
|     {
 | |
|       if (n1bytes > n2bytes)
 | |
| 	while (n1bytes>n2bytes)
 | |
| 	  { *sumptr-- = *n1ptr--; n1bytes--;}
 | |
|       else
 | |
| 	while (n2bytes>n1bytes)
 | |
| 	  { *sumptr-- = *n2ptr--; n2bytes--;}
 | |
|     }
 | |
| 
 | |
|   /* Now add the remaining fraction part and equal size integer parts. */
 | |
|   n1bytes += n1->n_len;
 | |
|   n2bytes += n2->n_len;
 | |
|   carry = 0;
 | |
|   while ((n1bytes > 0) && (n2bytes > 0))
 | |
|     {
 | |
|       *sumptr = *n1ptr-- + *n2ptr-- + carry;
 | |
|       if (*sumptr > 9)
 | |
| 	{
 | |
| 	   carry = 1;
 | |
| 	   *sumptr -= 10;
 | |
| 	}
 | |
|       else
 | |
| 	carry = 0;
 | |
|       sumptr--;
 | |
|       n1bytes--;
 | |
|       n2bytes--;
 | |
|     }
 | |
| 
 | |
|   /* Now add carry the longer integer part. */
 | |
|   if (n1bytes == 0)
 | |
|     { n1bytes = n2bytes; n1ptr = n2ptr; }
 | |
|   while (n1bytes-- > 0)
 | |
|     {
 | |
|       *sumptr = *n1ptr-- + carry;
 | |
|       if (*sumptr > 9)
 | |
| 	{
 | |
| 	   carry = 1;
 | |
| 	   *sumptr -= 10;
 | |
| 	 }
 | |
|       else
 | |
| 	carry = 0;
 | |
|       sumptr--;
 | |
|     }
 | |
| 
 | |
|   /* Set final carry. */
 | |
|   if (carry == 1)
 | |
|     *sumptr += 1;
 | |
|   
 | |
|   /* Adjust sum and return. */
 | |
|   _rm_leading_zeros (sum);
 | |
|   return sum;  
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Perform subtraction: N2 is subtracted from N1 and the value is
 | |
|    returned.  The signs of N1 and N2 are ignored.  Also, N1 is
 | |
|    assumed to be larger than N2.  */
 | |
| 
 | |
| static bc_num
 | |
| _do_sub (n1, n2)
 | |
|      bc_num n1, n2;
 | |
| {
 | |
|   bc_num diff;
 | |
|   int diff_scale, diff_len;
 | |
|   int min_scale, min_len;
 | |
|   char *n1ptr, *n2ptr, *diffptr;
 | |
|   int borrow, count, val;
 | |
| 
 | |
|   /* Allocate temporary storage. */
 | |
|   diff_len = MAX (n1->n_len, n2->n_len);
 | |
|   diff_scale = MAX (n1->n_scale, n2->n_scale);
 | |
|   min_len = MIN  (n1->n_len, n2->n_len);
 | |
|   min_scale = MIN (n1->n_scale, n2->n_scale);
 | |
|   diff = new_num (diff_len, diff_scale);
 | |
| 
 | |
|   /* Initialize the subtract. */
 | |
|   n1ptr = (char *) (n1->n_value + n1->n_len + n1->n_scale -1);
 | |
|   n2ptr = (char *) (n2->n_value + n2->n_len + n2->n_scale -1);
 | |
|   diffptr = (char *) (diff->n_value + diff_len + diff_scale -1);
 | |
| 
 | |
|   /* Subtract the numbers. */
 | |
|   borrow = 0;
 | |
|   
 | |
|   /* Take care of the longer scaled number. */
 | |
|   if (n1->n_scale != min_scale)
 | |
|     {
 | |
|       /* n1 has the longer scale */
 | |
|       for (count = n1->n_scale - min_scale; count > 0; count--)
 | |
| 	*diffptr-- = *n1ptr--;
 | |
|     }
 | |
|   else
 | |
|     {
 | |
|       /* n2 has the longer scale */
 | |
|       for (count = n2->n_scale - min_scale; count > 0; count--)
 | |
| 	{
 | |
| 	  val = - *n2ptr-- - borrow;
 | |
| 	  if (val < 0)
 | |
| 	    {
 | |
| 	      val += 10;
 | |
| 	      borrow = 1;
 | |
| 	    }
 | |
| 	  else
 | |
| 	    borrow = 0;
 | |
| 	  *diffptr-- = val;
 | |
| 	}
 | |
|     }
 | |
|   
 | |
|   /* Now do the equal length scale and integer parts. */
 | |
|   
 | |
|   for (count = 0; count < min_len + min_scale; count++)
 | |
|     {
 | |
|       val = *n1ptr-- - *n2ptr-- - borrow;
 | |
|       if (val < 0)
 | |
| 	{
 | |
| 	  val += 10;
 | |
| 	  borrow = 1;
 | |
| 	}
 | |
|       else
 | |
| 	borrow = 0;
 | |
|       *diffptr-- = val;
 | |
|     }
 | |
| 
 | |
|   /* If n1 has more digits then n2, we now do that subtract. */
 | |
|   if (diff_len != min_len)
 | |
|     {
 | |
|       for (count = diff_len - min_len; count > 0; count--)
 | |
| 	{
 | |
| 	  val = *n1ptr-- - borrow;
 | |
| 	  if (val < 0)
 | |
| 	    {
 | |
| 	      val += 10;
 | |
| 	      borrow = 1;
 | |
| 	    }
 | |
| 	  else
 | |
| 	    borrow = 0;
 | |
| 	  *diffptr-- = val;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|   /* Clean up and return. */
 | |
|   _rm_leading_zeros (diff);
 | |
|   return diff;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Here is the full add routine that takes care of negative numbers.
 | |
|    N1 is added to N2 and the result placed into RESULT. */
 | |
| 
 | |
| void
 | |
| bc_add ( n1, n2, result)
 | |
|      bc_num n1, n2, *result;
 | |
| {
 | |
|   bc_num sum;
 | |
|   int cmp_res;
 | |
| 
 | |
|   if (n1->n_sign == n2->n_sign)
 | |
|     {
 | |
|       sum = _do_add (n1, n2);
 | |
|       sum->n_sign = n1->n_sign;
 | |
|     }
 | |
|   else
 | |
|     {
 | |
|       /* subtraction must be done. */
 | |
|       cmp_res = _do_compare (n1, n2, FALSE, FALSE);  /* Compare magnitudes. */
 | |
|       switch (cmp_res)
 | |
| 	{
 | |
| 	case -1:
 | |
| 	  /* n1 is less than n2, subtract n1 from n2. */
 | |
| 	  sum = _do_sub (n2, n1);
 | |
| 	  sum->n_sign = n2->n_sign;
 | |
| 	  break;
 | |
| 	case  0:
 | |
| 	  /* They are equal! return zero! */
 | |
| 	  sum = copy_num (_zero_);   
 | |
| 	  break;
 | |
| 	case  1:
 | |
| 	  /* n2 is less than n1, subtract n2 from n1. */
 | |
| 	  sum = _do_sub (n1, n2);
 | |
| 	  sum->n_sign = n1->n_sign;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|   /* Clean up and return. */
 | |
|   free_num (result);
 | |
|   *result = sum;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Here is the full subtract routine that takes care of negative numbers.
 | |
|    N2 is subtracted from N1 and the result placed in RESULT. */
 | |
| 
 | |
| void
 | |
| bc_sub ( n1, n2, result)
 | |
|      bc_num n1, n2, *result;
 | |
| {
 | |
|   bc_num diff;
 | |
|   int cmp_res;
 | |
| 
 | |
|   if (n1->n_sign != n2->n_sign)
 | |
|     {
 | |
|       diff = _do_add (n1, n2);
 | |
|       diff->n_sign = n1->n_sign;
 | |
|     }
 | |
|   else
 | |
|     {
 | |
|       /* subtraction must be done. */
 | |
|       cmp_res = _do_compare (n1, n2, FALSE, FALSE);  /* Compare magnitudes. */
 | |
|       switch (cmp_res)
 | |
| 	{
 | |
| 	case -1:
 | |
| 	  /* n1 is less than n2, subtract n1 from n2. */
 | |
| 	  diff = _do_sub (n2, n1);
 | |
| 	  diff->n_sign = (n2->n_sign == PLUS ? MINUS : PLUS);
 | |
| 	  break;
 | |
| 	case  0:
 | |
| 	  /* They are equal! return zero! */
 | |
| 	  diff = copy_num (_zero_);   
 | |
| 	  break;
 | |
| 	case  1:
 | |
| 	  /* n2 is less than n1, subtract n2 from n1. */
 | |
| 	  diff = _do_sub (n1, n2);
 | |
| 	  diff->n_sign = n1->n_sign;
 | |
| 	  break;
 | |
| 	}
 | |
|     }
 | |
|   
 | |
|   /* Clean up and return. */
 | |
|   free_num (result);
 | |
|   *result = diff;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* The multiply routine.  N2 time N1 is put int PROD with the scale of
 | |
|    the result being MIN(N2 scale+N1 scale, MAX (SCALE, N2 scale, N1 scale)).
 | |
|    */
 | |
| 
 | |
| void
 | |
| bc_multiply (n1, n2, prod, scale)
 | |
|      bc_num n1, n2, *prod;
 | |
|      int scale;
 | |
| {
 | |
|   bc_num pval;			/* For the working storage. */
 | |
|   char *n1ptr, *n2ptr, *pvptr;	/* Work pointers. */
 | |
|   char *n1end, *n2end;		/* To the end of n1 and n2. */
 | |
| 
 | |
|   int indx;
 | |
|   int len1, len2, total_digits;
 | |
|   long sum;
 | |
|   int full_scale, prod_scale;
 | |
|   int toss;
 | |
| 
 | |
|   /* Initialize things. */
 | |
|   len1 = n1->n_len + n1->n_scale;
 | |
|   len2 = n2->n_len + n2->n_scale;
 | |
|   total_digits = len1 + len2;
 | |
|   full_scale = n1->n_scale + n2->n_scale;
 | |
|   prod_scale = MIN(full_scale,MAX(scale,MAX(n1->n_scale,n2->n_scale)));
 | |
|   toss = full_scale - prod_scale;
 | |
|   pval =  new_num (total_digits-full_scale, prod_scale);
 | |
|   pval->n_sign = ( n1->n_sign == n2->n_sign ? PLUS : MINUS );
 | |
|   n1end = (char *) (n1->n_value + len1 - 1);
 | |
|   n2end = (char *) (n2->n_value + len2 - 1);
 | |
|   pvptr = (char *) (pval->n_value + total_digits - toss - 1);
 | |
|   sum = 0;
 | |
| 
 | |
|   /* Here are the loops... */
 | |
|   for (indx = 0; indx < toss; indx++)
 | |
|     {
 | |
|       n1ptr = (char *) (n1end - MAX(0, indx-len2+1));
 | |
|       n2ptr = (char *) (n2end - MIN(indx, len2-1));
 | |
|       while ((n1ptr >= n1->n_value) && (n2ptr <= n2end))
 | |
| 	sum += *n1ptr-- * *n2ptr++;
 | |
|       sum = sum / 10;
 | |
|     }
 | |
|   for ( ; indx < total_digits-1; indx++)
 | |
|     {
 | |
|       n1ptr = (char *) (n1end - MAX(0, indx-len2+1));
 | |
|       n2ptr = (char *) (n2end - MIN(indx, len2-1));
 | |
|       while ((n1ptr >= n1->n_value) && (n2ptr <= n2end))
 | |
| 	sum += *n1ptr-- * *n2ptr++;
 | |
|       *pvptr-- = sum % 10;
 | |
|       sum = sum / 10;
 | |
|     }
 | |
|   *pvptr-- = sum;
 | |
| 
 | |
|   /* Assign to prod and clean up the number. */
 | |
|   free_num (prod);
 | |
|   *prod = pval;
 | |
|   _rm_leading_zeros (*prod);
 | |
|   if (is_zero (*prod)) 
 | |
|     (*prod)->n_sign = PLUS;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Some utility routines for the divide:  First a one digit multiply.
 | |
|    NUM (with SIZE digits) is multiplied by DIGIT and the result is
 | |
|    placed into RESULT.  It is written so that NUM and RESULT can be
 | |
|    the same pointers.  */
 | |
| 
 | |
| static void
 | |
| _one_mult (num, size, digit, result)
 | |
|      unsigned char *num;
 | |
|      int size, digit;
 | |
|      unsigned char *result;
 | |
| {
 | |
|   int carry, value;
 | |
|   unsigned char *nptr, *rptr;
 | |
| 
 | |
|   if (digit == 0)
 | |
|     memset (result, 0, size);
 | |
|   else
 | |
|     {
 | |
|       if (digit == 1)
 | |
| 	memcpy (result, num, size);
 | |
|       else
 | |
| 	{
 | |
| 	  /* Initialize */
 | |
| 	  nptr = (unsigned char *) (num+size-1);
 | |
| 	  rptr = (unsigned char *) (result+size-1);
 | |
| 	  carry = 0;
 | |
| 
 | |
| 	  while (size-- > 0)
 | |
| 	    {
 | |
| 	      value = *nptr-- * digit + carry;
 | |
| 	      *rptr-- = value % 10;
 | |
| 	      carry = value / 10;
 | |
| 	    }
 | |
|   
 | |
| 	  if (carry != 0) *rptr = carry;
 | |
| 	}
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| /* The full division routine. This computes N1 / N2.  It returns
 | |
|    0 if the division is ok and the result is in QUOT.  The number of
 | |
|    digits after the decimal point is SCALE. It returns -1 if division
 | |
|    by zero is tried.  The algorithm is found in Knuth Vol 2. p237. */
 | |
| 
 | |
| int
 | |
| bc_divide (n1, n2, quot, scale)
 | |
|      bc_num n1, n2, *quot;
 | |
|      int scale;
 | |
| { 
 | |
|   bc_num qval;
 | |
|   unsigned char *num1, *num2;
 | |
|   unsigned char *ptr1, *ptr2, *n2ptr, *qptr;
 | |
|   int  scale1, val;
 | |
|   unsigned int  len1, len2, scale2, qdigits, extra, count;
 | |
|   unsigned int  qdig, qguess, borrow, carry;
 | |
|   unsigned char *mval;
 | |
|   char zero;
 | |
|   unsigned int  norm;
 | |
| 
 | |
|   /* Test for divide by zero. */
 | |
|   if (is_zero (n2)) return -1;
 | |
| 
 | |
|   /* Test for divide by 1.  If it is we must truncate. */
 | |
|   if (n2->n_scale == 0)
 | |
|     {
 | |
|       if (n2->n_len == 1 && *n2->n_value == 1)
 | |
| 	{
 | |
| 	  qval = new_num (n1->n_len, scale);
 | |
| 	  qval->n_sign = (n1->n_sign == n2->n_sign ? PLUS : MINUS);
 | |
| 	  memset (&qval->n_value[n1->n_len],0,scale);
 | |
| 	  memcpy (qval->n_value, n1->n_value,
 | |
| 		  n1->n_len + MIN(n1->n_scale,scale));
 | |
| 	  free_num (quot);
 | |
| 	  *quot = qval;
 | |
| 	}
 | |
|     }
 | |
|   
 | |
|   /* Set up the divide.  Move the decimal point on n1 by n2's scale.
 | |
|      Remember, zeros on the end of num2 are wasted effort for dividing. */
 | |
|   scale2 = n2->n_scale;
 | |
|   n2ptr = (unsigned char *) n2->n_value+n2->n_len+scale2-1;
 | |
|   while ((scale2 > 0) && (*n2ptr-- == 0)) scale2--;
 | |
| 
 | |
|   len1 = n1->n_len + scale2;
 | |
|   scale1 = n1->n_scale - scale2;
 | |
|   if (scale1 < scale)
 | |
|     extra = scale - scale1;
 | |
|   else
 | |
|     extra = 0;
 | |
|   num1 = (unsigned char *) malloc (n1->n_len+n1->n_scale+extra+2);
 | |
|   if (num1 == NULL) out_of_memory();
 | |
|   memset (num1, 0, n1->n_len+n1->n_scale+extra+2);
 | |
|   memcpy (num1+1, n1->n_value, n1->n_len+n1->n_scale);
 | |
| 
 | |
|   len2 = n2->n_len + scale2;
 | |
|   num2 = (unsigned char *) malloc (len2+1);
 | |
|   if (num2 == NULL) out_of_memory();
 | |
|   memcpy (num2, n2->n_value, len2);
 | |
|   *(num2+len2) = 0;
 | |
|   n2ptr = num2;
 | |
|   while (*n2ptr == 0)
 | |
|     {
 | |
|       n2ptr++;
 | |
|       len2--;
 | |
|     }
 | |
| 
 | |
|   /* Calculate the number of quotient digits. */
 | |
|   if (len2 > len1+scale)
 | |
|     {
 | |
|       qdigits = scale+1;
 | |
|       zero = TRUE;
 | |
|     }
 | |
|   else
 | |
|     {
 | |
|       zero = FALSE;
 | |
|       if (len2>len1)
 | |
| 	qdigits = scale+1;  	/* One for the zero integer part. */
 | |
|       else
 | |
| 	qdigits = len1-len2+scale+1;
 | |
|     }
 | |
| 
 | |
|   /* Allocate and zero the storage for the quotient. */
 | |
|   qval = new_num (qdigits-scale,scale);
 | |
|   memset (qval->n_value, 0, qdigits);
 | |
| 
 | |
|   /* Allocate storage for the temporary storage mval. */
 | |
|   mval = (unsigned char *) malloc (len2+1);
 | |
|   if (mval == NULL) out_of_memory ();
 | |
| 
 | |
|   /* Now for the full divide algorithm. */
 | |
|   if (!zero)
 | |
|     {
 | |
|       /* Normalize */
 | |
|       norm =  10 / ((int)*n2ptr + 1);
 | |
|       if (norm != 1)
 | |
| 	{
 | |
| 	  _one_mult (num1, len1+scale1+extra+1, norm, num1);
 | |
| 	  _one_mult (n2ptr, len2, norm, n2ptr);
 | |
| 	}
 | |
| 
 | |
|       /* Initialize divide loop. */
 | |
|       qdig = 0;
 | |
|       if (len2 > len1)
 | |
| 	qptr = (unsigned char *) qval->n_value+len2-len1;
 | |
|       else
 | |
| 	qptr = (unsigned char *) qval->n_value;
 | |
| 
 | |
|       /* Loop */
 | |
|       while (qdig <= len1+scale-len2)
 | |
| 	{
 | |
| 	  /* Calculate the quotient digit guess. */
 | |
| 	  if (*n2ptr == num1[qdig])
 | |
| 	    qguess = 9;
 | |
| 	  else
 | |
| 	    qguess = (num1[qdig]*10 + num1[qdig+1]) / *n2ptr;
 | |
| 
 | |
| 	  /* Test qguess. */
 | |
| 	  if (n2ptr[1]*qguess >
 | |
| 	      (num1[qdig]*10 + num1[qdig+1] - *n2ptr*qguess)*10
 | |
| 	       + num1[qdig+2])
 | |
| 	    {
 | |
| 	      qguess--;
 | |
| 	      /* And again. */
 | |
| 	      if (n2ptr[1]*qguess >
 | |
| 		  (num1[qdig]*10 + num1[qdig+1] - *n2ptr*qguess)*10
 | |
| 		  + num1[qdig+2])
 | |
| 		qguess--;
 | |
| 	    }
 | |
|  
 | |
| 	  /* Multiply and subtract. */
 | |
| 	  borrow = 0;
 | |
| 	  if (qguess != 0)
 | |
| 	    {
 | |
| 	      *mval = 0;
 | |
| 	      _one_mult (n2ptr, len2, qguess, mval+1);
 | |
| 	      ptr1 = (unsigned char *) num1+qdig+len2;
 | |
| 	      ptr2 = (unsigned char *) mval+len2;
 | |
| 	      for (count = 0; count < len2+1; count++)
 | |
| 		{
 | |
| 		  val = (int) *ptr1 - (int) *ptr2-- - borrow;
 | |
| 		  if (val < 0)
 | |
| 		    {
 | |
| 		      val += 10;
 | |
| 		      borrow = 1;
 | |
| 		    }
 | |
| 		  else
 | |
| 		    borrow = 0;
 | |
| 		  *ptr1-- = val;
 | |
| 		}
 | |
| 	    }
 | |
| 
 | |
| 	  /* Test for negative result. */
 | |
| 	  if (borrow == 1)
 | |
| 	    {
 | |
| 	      qguess--;
 | |
| 	      ptr1 = (unsigned char *) num1+qdig+len2;
 | |
| 	      ptr2 = (unsigned char *) n2ptr+len2-1;
 | |
| 	      carry = 0;
 | |
| 	      for (count = 0; count < len2; count++)
 | |
| 		{
 | |
| 		  val = (int) *ptr1 + (int) *ptr2-- + carry;
 | |
| 		  if (val > 9)
 | |
| 		    {
 | |
| 		      val -= 10;
 | |
| 		      carry = 1;
 | |
| 		    }
 | |
| 		  else
 | |
| 		    carry = 0;
 | |
| 		  *ptr1-- = val;
 | |
| 		}
 | |
| 	      if (carry == 1) *ptr1 = (*ptr1 + 1) % 10;
 | |
| 	    }
 | |
|        
 | |
| 	  /* We now know the quotient digit. */
 | |
| 	  *qptr++ =  qguess;
 | |
| 	  qdig++;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|   /* Clean up and return the number. */
 | |
|   qval->n_sign = ( n1->n_sign == n2->n_sign ? PLUS : MINUS );
 | |
|   if (is_zero (qval)) qval->n_sign = PLUS;
 | |
|   _rm_leading_zeros (qval);
 | |
|   free_num (quot);
 | |
|   *quot = qval;
 | |
| 
 | |
|   /* Clean up temporary storage. */
 | |
|   free (mval);
 | |
|   free (num1);
 | |
|   free (num2);
 | |
| 
 | |
|   return 0;	/* Everything is OK. */
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Modulo for numbers.  This computes NUM1 % NUM2  and puts the
 | |
|    result in RESULT.   */
 | |
| 
 | |
| int
 | |
| bc_modulo (num1, num2, result, scale)
 | |
|      bc_num num1, num2, *result;
 | |
|      int scale;
 | |
| {
 | |
|   bc_num temp;
 | |
|   int rscale;
 | |
| 
 | |
|   /* Check for correct numbers. */
 | |
|   if (is_zero (num2)) return -1;
 | |
| 
 | |
|   /* Calculate final scale. */
 | |
|   rscale = MAX (num1->n_scale, num2->n_scale+scale);
 | |
|   init_num (&temp);
 | |
|   
 | |
|   /* Calculate it. */
 | |
|   bc_divide (num1, num2, &temp, scale);
 | |
|   bc_multiply (temp, num2, &temp, rscale);
 | |
|   bc_sub (num1, temp, result);
 | |
|   free_num (&temp);
 | |
| 
 | |
|   return 0;	/* Everything is OK. */
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Raise NUM1 to the NUM2 power.  The result is placed in RESULT.
 | |
|    Maximum exponent is LONG_MAX.  If a NUM2 is not an integer,
 | |
|    only the integer part is used.  */
 | |
| 
 | |
| void
 | |
| bc_raise (num1, num2, result, scale)
 | |
|      bc_num num1, num2, *result;
 | |
|      int scale;
 | |
| {
 | |
|    bc_num temp, power;
 | |
|    long exponent;
 | |
|    int rscale;
 | |
|    char neg;
 | |
| 
 | |
|    /* Check the exponent for scale digits and convert to a long. */
 | |
|    if (num2->n_scale != 0)
 | |
|      rt_warn ("non-zero scale in exponent");
 | |
|    exponent = num2long (num2);
 | |
|    if (exponent == 0 && (num2->n_len > 1 || num2->n_value[0] != 0))
 | |
|        rt_error ("exponent too large in raise");
 | |
| 
 | |
|    /* Special case if exponent is a zero. */
 | |
|    if (exponent == 0)
 | |
|      {
 | |
|        free_num (result);
 | |
|        *result = copy_num (_one_);
 | |
|        return;
 | |
|      }
 | |
| 
 | |
|    /* Other initializations. */
 | |
|    if (exponent < 0)
 | |
|      {
 | |
|        neg = TRUE;
 | |
|        exponent = -exponent;
 | |
|        rscale = scale;
 | |
|      }
 | |
|    else
 | |
|      {
 | |
|        neg = FALSE;
 | |
|        rscale = MIN (num1->n_scale*exponent, MAX(scale, num1->n_scale));
 | |
|      }
 | |
|    temp = copy_num (_one_);
 | |
|    power = copy_num (num1);
 | |
| 
 | |
|    /* Do the calculation. */
 | |
|    while (exponent != 0)
 | |
|      {
 | |
|        if (exponent & 1 != 0) 
 | |
| 	 bc_multiply (temp, power, &temp, rscale);
 | |
|        bc_multiply (power, power, &power, rscale);
 | |
|        exponent = exponent >> 1;
 | |
|      }
 | |
|    
 | |
|    /* Assign the value. */
 | |
|    if (neg)
 | |
|      {
 | |
|        bc_divide (_one_, temp, result, rscale);
 | |
|        free_num (&temp);
 | |
|      }
 | |
|    else
 | |
|      {
 | |
|        free_num (result);
 | |
|        *result = temp;
 | |
|      }
 | |
|    free_num (&power);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Take the square root NUM and return it in NUM with SCALE digits
 | |
|    after the decimal place. */
 | |
| 
 | |
| int 
 | |
| bc_sqrt (num, scale)
 | |
|      bc_num *num;
 | |
|      int scale;
 | |
| {
 | |
|   int rscale, cmp_res, done;
 | |
|   int cscale;
 | |
|   bc_num guess, guess1, point5;
 | |
| 
 | |
|   /* Initial checks. */
 | |
|   cmp_res = bc_compare (*num, _zero_);
 | |
|   if (cmp_res < 0)
 | |
|     return 0;		/* error */
 | |
|   else
 | |
|     {
 | |
|       if (cmp_res == 0)
 | |
| 	{
 | |
| 	  free_num (num);
 | |
| 	  *num = copy_num (_zero_);
 | |
| 	  return 1;
 | |
| 	}
 | |
|     }
 | |
|   cmp_res = bc_compare (*num, _one_);
 | |
|   if (cmp_res == 0)
 | |
|     {
 | |
|       free_num (num);
 | |
|       *num = copy_num (_one_);
 | |
|       return 1;
 | |
|     }
 | |
| 
 | |
|   /* Initialize the variables. */
 | |
|   rscale = MAX (scale, (*num)->n_scale);
 | |
|   cscale = rscale + 2;
 | |
|   init_num (&guess);
 | |
|   init_num (&guess1);
 | |
|   point5 = new_num (1,1);
 | |
|   point5->n_value[1] = 5;
 | |
|   
 | |
|   
 | |
|   /* Calculate the initial guess. */
 | |
|   if (cmp_res < 0)
 | |
|     /* The number is between 0 and 1.  Guess should start at 1. */
 | |
|     guess = copy_num (_one_);
 | |
|   else
 | |
|     {
 | |
|       /* The number is greater than 1.  Guess should start at 10^(exp/2). */
 | |
|       int2num (&guess,10);
 | |
|       int2num (&guess1,(*num)->n_len);
 | |
|       bc_multiply (guess1, point5, &guess1, rscale);
 | |
|       guess1->n_scale = 0;
 | |
|       bc_raise (guess, guess1, &guess, rscale);
 | |
|       free_num (&guess1);
 | |
|     }
 | |
|   
 | |
|   /* Find the square root using Newton's algorithm. */
 | |
|   done = FALSE;
 | |
|   while (!done)
 | |
|     {
 | |
|       free_num (&guess1);
 | |
|       guess1 = copy_num (guess);
 | |
|       bc_divide (*num,guess,&guess,cscale);
 | |
|       bc_add (guess,guess1,&guess);
 | |
|       bc_multiply (guess,point5,&guess,cscale);
 | |
|       cmp_res = _do_compare (guess,guess1,FALSE,TRUE);
 | |
|       if (cmp_res == 0) done = TRUE;
 | |
|     }
 | |
|   
 | |
|   /* Assign the number and clean up. */
 | |
|   free_num (num);
 | |
|   bc_divide (guess,_one_,num,rscale);
 | |
|   free_num (&guess);
 | |
|   free_num (&guess1);
 | |
|   free_num (&point5);
 | |
|   return 1;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* The following routines provide output for bcd numbers package
 | |
|    using the rules of POSIX bc for output. */
 | |
| 
 | |
| /* This structure is used for saving digits in the conversion process. */
 | |
| typedef struct stk_rec {
 | |
| 	long  digit;
 | |
| 	struct stk_rec *next;
 | |
| } stk_rec;
 | |
| 
 | |
| /* The reference string for digits. */
 | |
| char ref_str[] = "0123456789ABCDEF";
 | |
| 
 | |
| 
 | |
| /* A special output routine for "multi-character digits."  Exactly
 | |
|    SIZE characters must be output for the value VAL.  If SPACE is
 | |
|    non-zero, we must output one space before the number.  OUT_CHAR
 | |
|    is the actual routine for writing the characters. */
 | |
| 
 | |
| void
 | |
| out_long (val, size, space, out_char)
 | |
|      long val;
 | |
|      int size, space;
 | |
| #ifdef __STDC__
 | |
|      void (*out_char)(int);
 | |
| #else
 | |
|      void (*out_char)();
 | |
| #endif
 | |
| {
 | |
|   char digits[40];
 | |
|   int len, ix;
 | |
| 
 | |
|   if (space) (*out_char) (' ');
 | |
|   sprintf (digits, "%ld", val);
 | |
|   len = strlen (digits);
 | |
|   while (size > len)
 | |
|     {
 | |
|       (*out_char) ('0');
 | |
|       size--;
 | |
|     }
 | |
|   for (ix=0; ix < len; ix++)
 | |
|     (*out_char) (digits[ix]);
 | |
| }
 | |
| 
 | |
| /* Output of a bcd number.  NUM is written in base O_BASE using OUT_CHAR
 | |
|    as the routine to do the actual output of the characters. */
 | |
| 
 | |
| void
 | |
| out_num (num, o_base, out_char)
 | |
|      bc_num num;
 | |
|      int o_base;
 | |
| #ifdef __STDC__
 | |
|      void (*out_char)(int);
 | |
| #else
 | |
|      void (*out_char)();
 | |
| #endif
 | |
| {
 | |
|   char *nptr;
 | |
|   int  index, fdigit, pre_space;
 | |
|   stk_rec *digits, *temp;
 | |
|   bc_num int_part, frac_part, base, cur_dig, t_num, max_o_digit;
 | |
| 
 | |
|   /* The negative sign if needed. */
 | |
|   if (num->n_sign == MINUS) (*out_char) ('-');
 | |
| 
 | |
|   /* Output the number. */
 | |
|   if (is_zero (num))
 | |
|     (*out_char) ('0');
 | |
|   else
 | |
|     if (o_base == 10)
 | |
|       {
 | |
| 	/* The number is in base 10, do it the fast way. */
 | |
| 	nptr = num->n_value;
 | |
| 	if (num->n_len > 1 || *nptr != 0)
 | |
| 	  for (index=num->n_len; index>0; index--)
 | |
| 	    (*out_char) (BCD_CHAR(*nptr++));
 | |
| 	else
 | |
| 	  nptr++;
 | |
| 	
 | |
| 	/* Now the fraction. */
 | |
| 	if (num->n_scale > 0)
 | |
| 	  {
 | |
| 	    (*out_char) ('.');
 | |
| 	    for (index=0; index<num->n_scale; index++)
 | |
| 	      (*out_char) (BCD_CHAR(*nptr++));
 | |
| 	  }
 | |
|       }
 | |
|     else
 | |
|       {
 | |
| 	/* The number is some other base. */
 | |
| 	digits = NULL;
 | |
| 	init_num (&int_part);
 | |
| 	bc_divide (num, _one_, &int_part, 0);
 | |
| 	init_num (&frac_part);
 | |
| 	init_num (&cur_dig);
 | |
| 	init_num (&base);
 | |
| 	bc_sub (num, int_part, &frac_part);
 | |
| 	int2num (&base, o_base);
 | |
| 	init_num (&max_o_digit);
 | |
| 	int2num (&max_o_digit, o_base-1);
 | |
| 
 | |
| 
 | |
| 	/* Get the digits of the integer part and push them on a stack. */
 | |
| 	while (!is_zero (int_part))
 | |
| 	  {
 | |
| 	    bc_modulo (int_part, base, &cur_dig, 0);
 | |
| 	    temp = (stk_rec *) malloc (sizeof(stk_rec));
 | |
| 	    if (temp == NULL) out_of_memory();
 | |
| 	    temp->digit = num2long (cur_dig);
 | |
| 	    temp->next = digits;
 | |
| 	    digits = temp;
 | |
| 	    bc_divide (int_part, base, &int_part, 0);
 | |
| 	  }
 | |
| 
 | |
| 	/* Print the digits on the stack. */
 | |
| 	if (digits != NULL)
 | |
| 	  {
 | |
| 	    /* Output the digits. */
 | |
| 	    while (digits != NULL)
 | |
| 	      {
 | |
| 		temp = digits;
 | |
| 		digits = digits->next;
 | |
| 		if (o_base <= 16) 
 | |
| 		  (*out_char) (ref_str[ (int) temp->digit]);
 | |
| 		else
 | |
| 		  out_long (temp->digit, max_o_digit->n_len, 1, out_char);
 | |
| 		free (temp);
 | |
| 	      }
 | |
| 	  }
 | |
| 
 | |
| 	/* Get and print the digits of the fraction part. */
 | |
| 	if (num->n_scale > 0)
 | |
| 	  {
 | |
| 	    (*out_char) ('.');
 | |
| 	    pre_space = 0;
 | |
| 	    t_num = copy_num (_one_);
 | |
| 	    while (t_num->n_len <= num->n_scale) {
 | |
| 	      bc_multiply (frac_part, base, &frac_part, num->n_scale);
 | |
| 	      fdigit = num2long (frac_part);
 | |
| 	      int2num (&int_part, fdigit);
 | |
| 	      bc_sub (frac_part, int_part, &frac_part);
 | |
| 	      if (o_base <= 16)
 | |
| 		(*out_char) (ref_str[fdigit]);
 | |
| 	      else {
 | |
| 		out_long (fdigit, max_o_digit->n_len, pre_space, out_char);
 | |
| 		pre_space = 1;
 | |
| 	      }
 | |
| 	      bc_multiply (t_num, base, &t_num, 0);
 | |
| 	    }
 | |
| 	  }
 | |
|     
 | |
| 	/* Clean up. */
 | |
| 	free_num (&int_part);
 | |
| 	free_num (&frac_part);
 | |
| 	free_num (&base);
 | |
| 	free_num (&cur_dig);
 | |
|       }
 | |
| }
 | |
| 
 | |
| 
 | |
| #if DEBUG > 0
 | |
| 
 | |
| /* Debugging procedures.  Some are just so one can call them from the
 | |
|    debugger.  */
 | |
| 
 | |
| /* p_n prints the number NUM in base 10. */
 | |
| 
 | |
| void
 | |
| p_n (num)
 | |
|      bc_num num;
 | |
| {
 | |
|   out_num (num, 10, out_char);
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* p_b prints a character array as if it was a string of bcd digits. */
 | |
| void
 | |
| p_v (name, num, len)
 | |
|      char *name;
 | |
|      unsigned char *num;
 | |
|      int len;
 | |
| {
 | |
|   int i;
 | |
|   printf ("%s=", name);
 | |
|   for (i=0; i<len; i++) printf ("%c",BCD_CHAR(num[i]));
 | |
|   printf ("\n");
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Convert strings to bc numbers.  Base 10 only.*/
 | |
| 
 | |
| void
 | |
| str2num (num, str, scale)
 | |
|      bc_num *num;
 | |
|      char *str;
 | |
|      int scale;
 | |
| {
 | |
|   int digits, strscale;
 | |
|   char *ptr, *nptr;
 | |
|   char zero_int;
 | |
| 
 | |
|   /* Prepare num. */
 | |
|   free_num (num);
 | |
| 
 | |
|   /* Check for valid number and count digits. */
 | |
|   ptr = str;
 | |
|   digits = 0;
 | |
|   strscale = 0;
 | |
|   zero_int = FALSE;
 | |
|   if ( (*ptr == '+') || (*ptr == '-'))  ptr++;  /* Sign */
 | |
|   while (*ptr == '0') ptr++;			/* Skip leading zeros. */
 | |
|   while (isdigit(*ptr)) ptr++, digits++;	/* digits */
 | |
|   if (*ptr == '.') ptr++;			/* decimal point */
 | |
|   while (isdigit(*ptr)) ptr++, strscale++;	/* digits */
 | |
|   if ((*ptr != '\0') || (digits+strscale == 0))
 | |
|     {
 | |
|       *num = copy_num (_zero_);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|   /* Adjust numbers and allocate storage and initialize fields. */
 | |
|   strscale = MIN(strscale, scale);
 | |
|   if (digits == 0)
 | |
|     {
 | |
|       zero_int = TRUE;
 | |
|       digits = 1;
 | |
|     }
 | |
|   *num = new_num (digits, strscale);
 | |
| 
 | |
|   /* Build the whole number. */
 | |
|   ptr = str;
 | |
|   if (*ptr == '-')
 | |
|     {
 | |
|       (*num)->n_sign = MINUS;
 | |
|       ptr++;
 | |
|     }
 | |
|   else
 | |
|     {
 | |
|       (*num)->n_sign = PLUS;
 | |
|       if (*ptr == '+') ptr++;
 | |
|     }
 | |
|   while (*ptr == '0') ptr++;			/* Skip leading zeros. */
 | |
|   nptr = (*num)->n_value;
 | |
|   if (zero_int)
 | |
|     {
 | |
|       *nptr++ = 0;
 | |
|       digits = 0;
 | |
|     }
 | |
|   for (;digits > 0; digits--)
 | |
|     *nptr++ = CH_VAL(*ptr++);
 | |
| 
 | |
|   
 | |
|   /* Build the fractional part. */
 | |
|   if (strscale > 0)
 | |
|     {
 | |
|       ptr++;  /* skip the decimal point! */
 | |
|       for (;strscale > 0; strscale--)
 | |
| 	*nptr++ = CH_VAL(*ptr++);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Convert a numbers to a string.  Base 10 only.*/
 | |
| 
 | |
| char
 | |
| *num2str (num)
 | |
|       bc_num num;
 | |
| {
 | |
|   char *str, *sptr;
 | |
|   char *nptr;
 | |
|   int  index, signch;
 | |
| 
 | |
|   /* Allocate the string memory. */
 | |
|   signch = ( num->n_sign == PLUS ? 0 : 1 );  /* Number of sign chars. */
 | |
|   if (num->n_scale > 0)
 | |
|     str = (char *) malloc (num->n_len + num->n_scale + 2 + signch);
 | |
|   else
 | |
|     str = (char *) malloc (num->n_len + 1 + signch);
 | |
|   if (str == NULL) out_of_memory();
 | |
| 
 | |
|   /* The negative sign if needed. */
 | |
|   sptr = str;
 | |
|   if (signch) *sptr++ = '-';
 | |
| 
 | |
|   /* Load the whole number. */
 | |
|   nptr = num->n_value;
 | |
|   for (index=num->n_len; index>0; index--)
 | |
|     *sptr++ = BCD_CHAR(*nptr++);
 | |
| 
 | |
|   /* Now the fraction. */
 | |
|   if (num->n_scale > 0)
 | |
|     {
 | |
|       *sptr++ = '.';
 | |
|       for (index=0; index<num->n_scale; index++)
 | |
| 	*sptr++ = BCD_CHAR(*nptr++);
 | |
|     }
 | |
| 
 | |
|   /* Terminate the string and return it! */
 | |
|   *sptr = '\0';
 | |
|   return (str);
 | |
| }
 | |
| #endif
 | 
