1058 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1058 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*	$NetBSD: prop_rb.c,v 1.9 2008/06/17 21:29:47 thorpej Exp $	*/
 | ||
| 
 | ||
| /*-
 | ||
|  * Copyright (c) 2001 The NetBSD Foundation, Inc.
 | ||
|  * All rights reserved.
 | ||
|  *
 | ||
|  * This code is derived from software contributed to The NetBSD Foundation
 | ||
|  * by Matt Thomas <matt@3am-software.com>.
 | ||
|  *
 | ||
|  * Redistribution and use in source and binary forms, with or without
 | ||
|  * modification, are permitted provided that the following conditions
 | ||
|  * are met:
 | ||
|  * 1. Redistributions of source code must retain the above copyright
 | ||
|  *    notice, this list of conditions and the following disclaimer.
 | ||
|  * 2. Redistributions in binary form must reproduce the above copyright
 | ||
|  *    notice, this list of conditions and the following disclaimer in the
 | ||
|  *    documentation and/or other materials provided with the distribution.
 | ||
|  *
 | ||
|  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
 | ||
|  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
 | ||
|  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 | ||
|  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
 | ||
|  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 | ||
|  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 | ||
|  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 | ||
|  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 | ||
|  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 | ||
|  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 | ||
|  * POSSIBILITY OF SUCH DAMAGE.
 | ||
|  */
 | ||
| 
 | ||
| #include <prop/proplib.h>
 | ||
| 
 | ||
| #include "prop_object_impl.h"
 | ||
| #include "prop_rb_impl.h"
 | ||
| 
 | ||
| #undef KASSERT
 | ||
| #ifdef RBDEBUG
 | ||
| #define	KASSERT(x)	_PROP_ASSERT(x)
 | ||
| #else
 | ||
| #define	KASSERT(x)	/* nothing */
 | ||
| #endif
 | ||
| 
 | ||
| #ifndef __predict_false
 | ||
| #define	__predict_false(x)	(x)
 | ||
| #endif
 | ||
| 
 | ||
| static void rb_tree_reparent_nodes(struct rb_tree *, struct rb_node *,
 | ||
| 				   unsigned int);
 | ||
| static void rb_tree_insert_rebalance(struct rb_tree *, struct rb_node *);
 | ||
| static void rb_tree_removal_rebalance(struct rb_tree *, struct rb_node *,
 | ||
| 	unsigned int);
 | ||
| #ifdef RBDEBUG
 | ||
| static const struct rb_node *rb_tree_iterate_const(const struct rb_tree *,
 | ||
| 	const struct rb_node *, unsigned int);
 | ||
| static bool rb_tree_check_node(const struct rb_tree *, const struct rb_node *,
 | ||
| 	const struct rb_node *, bool);
 | ||
| #endif
 | ||
| 
 | ||
| #ifdef RBDEBUG
 | ||
| #define	RBT_COUNT_INCR(rbt)	(rbt)->rbt_count++
 | ||
| #define	RBT_COUNT_DECR(rbt)	(rbt)->rbt_count--
 | ||
| #else
 | ||
| #define	RBT_COUNT_INCR(rbt)	/* nothing */
 | ||
| #define	RBT_COUNT_DECR(rbt)	/* nothing */
 | ||
| #endif
 | ||
| 
 | ||
| #define	RBUNCONST(a)	((void *)(unsigned long)(const void *)(a))
 | ||
| 
 | ||
| /*
 | ||
|  * Rather than testing for the NULL everywhere, all terminal leaves are
 | ||
|  * pointed to this node (and that includes itself).  Note that by setting
 | ||
|  * it to be const, that on some architectures trying to write to it will
 | ||
|  * cause a fault.
 | ||
|  */
 | ||
| static const struct rb_node sentinel_node = {
 | ||
| 	.rb_nodes = { RBUNCONST(&sentinel_node),
 | ||
| 		      RBUNCONST(&sentinel_node),
 | ||
| 		      NULL },
 | ||
| 	.rb_u = { .u_s = { .s_sentinel = 1 } },
 | ||
| };
 | ||
| 
 | ||
| void
 | ||
| _prop_rb_tree_init(struct rb_tree *rbt, const struct rb_tree_ops *ops)
 | ||
| {
 | ||
| 	RB_TAILQ_INIT(&rbt->rbt_nodes);
 | ||
| #ifdef RBDEBUG
 | ||
| 	rbt->rbt_count = 0;
 | ||
| #endif
 | ||
| 	rbt->rbt_ops = ops;
 | ||
| 	*((const struct rb_node **)&rbt->rbt_root) = &sentinel_node;
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * Swap the location and colors of 'self' and its child @ which.  The child
 | ||
|  * can not be a sentinel node.
 | ||
|  */
 | ||
| /*ARGSUSED*/
 | ||
| static void
 | ||
| rb_tree_reparent_nodes(struct rb_tree *rbt _PROP_ARG_UNUSED,
 | ||
|     struct rb_node *old_father, unsigned int which)
 | ||
| {
 | ||
| 	const unsigned int other = which ^ RB_NODE_OTHER;
 | ||
| 	struct rb_node * const grandpa = old_father->rb_parent;
 | ||
| 	struct rb_node * const old_child = old_father->rb_nodes[which];
 | ||
| 	struct rb_node * const new_father = old_child;
 | ||
| 	struct rb_node * const new_child = old_father;
 | ||
| 	unsigned int properties;
 | ||
| 
 | ||
| 	KASSERT(which == RB_NODE_LEFT || which == RB_NODE_RIGHT);
 | ||
| 
 | ||
| 	KASSERT(!RB_SENTINEL_P(old_child));
 | ||
| 	KASSERT(old_child->rb_parent == old_father);
 | ||
| 
 | ||
| 	KASSERT(rb_tree_check_node(rbt, old_father, NULL, false));
 | ||
| 	KASSERT(rb_tree_check_node(rbt, old_child, NULL, false));
 | ||
| 	KASSERT(RB_ROOT_P(old_father) || rb_tree_check_node(rbt, grandpa, NULL, false));
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Exchange descendant linkages.
 | ||
| 	 */
 | ||
| 	grandpa->rb_nodes[old_father->rb_position] = new_father;
 | ||
| 	new_child->rb_nodes[which] = old_child->rb_nodes[other];
 | ||
| 	new_father->rb_nodes[other] = new_child;
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Update ancestor linkages
 | ||
| 	 */
 | ||
| 	new_father->rb_parent = grandpa;
 | ||
| 	new_child->rb_parent = new_father;
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Exchange properties between new_father and new_child.  The only
 | ||
| 	 * change is that new_child's position is now on the other side.
 | ||
| 	 */
 | ||
| 	properties = old_child->rb_properties;
 | ||
| 	new_father->rb_properties = old_father->rb_properties;
 | ||
| 	new_child->rb_properties = properties;
 | ||
| 	new_child->rb_position = other;
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Make sure to reparent the new child to ourself.
 | ||
| 	 */
 | ||
| 	if (!RB_SENTINEL_P(new_child->rb_nodes[which])) {
 | ||
| 		new_child->rb_nodes[which]->rb_parent = new_child;
 | ||
| 		new_child->rb_nodes[which]->rb_position = which;
 | ||
| 	}
 | ||
| 
 | ||
| 	KASSERT(rb_tree_check_node(rbt, new_father, NULL, false));
 | ||
| 	KASSERT(rb_tree_check_node(rbt, new_child, NULL, false));
 | ||
| 	KASSERT(RB_ROOT_P(new_father) || rb_tree_check_node(rbt, grandpa, NULL, false));
 | ||
| }
 | ||
| 
 | ||
| bool
 | ||
| _prop_rb_tree_insert_node(struct rb_tree *rbt, struct rb_node *self)
 | ||
| {
 | ||
| 	struct rb_node *parent, *tmp;
 | ||
| 	rb_compare_nodes_fn compare_nodes = rbt->rbt_ops->rbto_compare_nodes;
 | ||
| 	unsigned int position;
 | ||
| 
 | ||
| 	self->rb_properties = 0;
 | ||
| 	tmp = rbt->rbt_root;
 | ||
| 	/*
 | ||
| 	 * This is a hack.  Because rbt->rbt_root is just a struct rb_node *,
 | ||
| 	 * just like rb_node->rb_nodes[RB_NODE_LEFT], we can use this fact to
 | ||
| 	 * avoid a lot of tests for root and know that even at root,
 | ||
| 	 * updating rb_node->rb_parent->rb_nodes[rb_node->rb_position] will
 | ||
| 	 * rbt->rbt_root.
 | ||
| 	 */
 | ||
| 	/* LINTED: see above */
 | ||
| 	parent = (struct rb_node *)&rbt->rbt_root;
 | ||
| 	position = RB_NODE_LEFT;
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Find out where to place this new leaf.
 | ||
| 	 */
 | ||
| 	while (!RB_SENTINEL_P(tmp)) {
 | ||
| 		const int diff = (*compare_nodes)(tmp, self);
 | ||
| 		if (__predict_false(diff == 0)) {
 | ||
| 			/*
 | ||
| 			 * Node already exists; don't insert.
 | ||
| 			 */
 | ||
| 			return false;
 | ||
| 		}
 | ||
| 		parent = tmp;
 | ||
| 		KASSERT(diff != 0);
 | ||
| 		if (diff < 0) {
 | ||
| 			position = RB_NODE_LEFT;
 | ||
| 		} else {
 | ||
| 			position = RB_NODE_RIGHT;
 | ||
| 		}
 | ||
| 		tmp = parent->rb_nodes[position];
 | ||
| 	}
 | ||
| 
 | ||
| #ifdef RBDEBUG
 | ||
| 	{
 | ||
| 		struct rb_node *prev = NULL, *next = NULL;
 | ||
| 
 | ||
| 		if (position == RB_NODE_RIGHT)
 | ||
| 			prev = parent;
 | ||
| 		else if (tmp != rbt->rbt_root)
 | ||
| 			next = parent;
 | ||
| 
 | ||
| 		/*
 | ||
| 		 * Verify our sequential position
 | ||
| 		 */
 | ||
| 		KASSERT(prev == NULL || !RB_SENTINEL_P(prev));
 | ||
| 		KASSERT(next == NULL || !RB_SENTINEL_P(next));
 | ||
| 		if (prev != NULL && next == NULL)
 | ||
| 			next = TAILQ_NEXT(prev, rb_link);
 | ||
| 		if (prev == NULL && next != NULL)
 | ||
| 			prev = TAILQ_PREV(next, rb_node_qh, rb_link);
 | ||
| 		KASSERT(prev == NULL || !RB_SENTINEL_P(prev));
 | ||
| 		KASSERT(next == NULL || !RB_SENTINEL_P(next));
 | ||
| 		KASSERT(prev == NULL
 | ||
| 			|| (*compare_nodes)(prev, self) > 0);
 | ||
| 		KASSERT(next == NULL
 | ||
| 			|| (*compare_nodes)(self, next) > 0);
 | ||
| 	}
 | ||
| #endif
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Initialize the node and insert as a leaf into the tree.
 | ||
| 	 */
 | ||
| 	self->rb_parent = parent;
 | ||
| 	self->rb_position = position;
 | ||
| 	/* LINTED: rbt_root hack */
 | ||
| 	if (__predict_false(parent == (struct rb_node *) &rbt->rbt_root)) {
 | ||
| 		RB_MARK_ROOT(self);
 | ||
| 	} else {
 | ||
| 		KASSERT(position == RB_NODE_LEFT || position == RB_NODE_RIGHT);
 | ||
| 		KASSERT(!RB_ROOT_P(self)); 	/* Already done */
 | ||
| 	}
 | ||
| 	KASSERT(RB_SENTINEL_P(parent->rb_nodes[position]));
 | ||
| 	self->rb_left = parent->rb_nodes[position];
 | ||
| 	self->rb_right = parent->rb_nodes[position];
 | ||
| 	parent->rb_nodes[position] = self;
 | ||
| 	KASSERT(self->rb_left == &sentinel_node &&
 | ||
| 	    self->rb_right == &sentinel_node);
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Insert the new node into a sorted list for easy sequential access
 | ||
| 	 */
 | ||
| 	RBT_COUNT_INCR(rbt);
 | ||
| #ifdef RBDEBUG
 | ||
| 	if (RB_ROOT_P(self)) {
 | ||
| 		RB_TAILQ_INSERT_HEAD(&rbt->rbt_nodes, self, rb_link);
 | ||
| 	} else if (position == RB_NODE_LEFT) {
 | ||
| 		KASSERT((*compare_nodes)(self, self->rb_parent) > 0);
 | ||
| 		RB_TAILQ_INSERT_BEFORE(self->rb_parent, self, rb_link);
 | ||
| 	} else {
 | ||
| 		KASSERT((*compare_nodes)(self->rb_parent, self) > 0);
 | ||
| 		RB_TAILQ_INSERT_AFTER(&rbt->rbt_nodes, self->rb_parent,
 | ||
| 		    self, rb_link);
 | ||
| 	}
 | ||
| #endif
 | ||
| 
 | ||
| #if 0
 | ||
| 	/*
 | ||
| 	 * Validate the tree before we rebalance
 | ||
| 	 */
 | ||
| 	_prop_rb_tree_check(rbt, false);
 | ||
| #endif
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Rebalance tree after insertion
 | ||
| 	 */
 | ||
| 	rb_tree_insert_rebalance(rbt, self);
 | ||
| 
 | ||
| #if 0
 | ||
| 	/*
 | ||
| 	 * Validate the tree after we rebalanced
 | ||
| 	 */
 | ||
| 	_prop_rb_tree_check(rbt, true);
 | ||
| #endif
 | ||
| 
 | ||
| 	return true;
 | ||
| }
 | ||
| 
 | ||
| static void
 | ||
| rb_tree_insert_rebalance(struct rb_tree *rbt, struct rb_node *self)
 | ||
| {
 | ||
| 	RB_MARK_RED(self);
 | ||
| 
 | ||
| 	while (!RB_ROOT_P(self) && RB_RED_P(self->rb_parent)) {
 | ||
| 		const unsigned int which =
 | ||
| 		     (self->rb_parent == self->rb_parent->rb_parent->rb_left
 | ||
| 			? RB_NODE_LEFT
 | ||
| 			: RB_NODE_RIGHT);
 | ||
| 		const unsigned int other = which ^ RB_NODE_OTHER;
 | ||
| 		struct rb_node * father = self->rb_parent;
 | ||
| 		struct rb_node * grandpa = father->rb_parent;
 | ||
| 		struct rb_node * const uncle = grandpa->rb_nodes[other];
 | ||
| 
 | ||
| 		KASSERT(!RB_SENTINEL_P(self));
 | ||
| 		/*
 | ||
| 		 * We are red and our parent is red, therefore we must have a
 | ||
| 		 * grandfather and he must be black.
 | ||
| 		 */
 | ||
| 		KASSERT(RB_RED_P(self)
 | ||
| 			&& RB_RED_P(father)
 | ||
| 			&& RB_BLACK_P(grandpa));
 | ||
| 
 | ||
| 		if (RB_RED_P(uncle)) {
 | ||
| 			/*
 | ||
| 			 * Case 1: our uncle is red
 | ||
| 			 *   Simply invert the colors of our parent and
 | ||
| 			 *   uncle and make our grandparent red.  And
 | ||
| 			 *   then solve the problem up at his level.
 | ||
| 			 */
 | ||
| 			RB_MARK_BLACK(uncle);
 | ||
| 			RB_MARK_BLACK(father);
 | ||
| 			RB_MARK_RED(grandpa);
 | ||
| 			self = grandpa;
 | ||
| 			continue;
 | ||
| 		}
 | ||
| 		/*
 | ||
| 		 * Case 2&3: our uncle is black.
 | ||
| 		 */
 | ||
| 		if (self == father->rb_nodes[other]) {
 | ||
| 			/*
 | ||
| 			 * Case 2: we are on the same side as our uncle
 | ||
| 			 *   Swap ourselves with our parent so this case
 | ||
| 			 *   becomes case 3.  Basically our parent becomes our
 | ||
| 			 *   child.
 | ||
| 			 */
 | ||
| 			rb_tree_reparent_nodes(rbt, father, other);
 | ||
| 			KASSERT(father->rb_parent == self);
 | ||
| 			KASSERT(self->rb_nodes[which] == father);
 | ||
| 			KASSERT(self->rb_parent == grandpa);
 | ||
| 			self = father;
 | ||
| 			father = self->rb_parent;
 | ||
| 		}
 | ||
| 		KASSERT(RB_RED_P(self) && RB_RED_P(father));
 | ||
| 		KASSERT(grandpa->rb_nodes[which] == father);
 | ||
| 		/*
 | ||
| 		 * Case 3: we are opposite a child of a black uncle.
 | ||
| 		 *   Swap our parent and grandparent.  Since our grandfather
 | ||
| 		 *   is black, our father will become black and our new sibling
 | ||
| 		 *   (former grandparent) will become red.
 | ||
| 		 */
 | ||
| 		rb_tree_reparent_nodes(rbt, grandpa, which);
 | ||
| 		KASSERT(self->rb_parent == father);
 | ||
| 		KASSERT(self->rb_parent->rb_nodes[self->rb_position ^ RB_NODE_OTHER] == grandpa);
 | ||
| 		KASSERT(RB_RED_P(self));
 | ||
| 		KASSERT(RB_BLACK_P(father));
 | ||
| 		KASSERT(RB_RED_P(grandpa));
 | ||
| 		break;
 | ||
| 	}
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Final step: Set the root to black.
 | ||
| 	 */
 | ||
| 	RB_MARK_BLACK(rbt->rbt_root);
 | ||
| }
 | ||
| 
 | ||
| struct rb_node *
 | ||
| _prop_rb_tree_find(struct rb_tree *rbt, const void *key)
 | ||
| {
 | ||
| 	struct rb_node *parent = rbt->rbt_root;
 | ||
| 	rb_compare_key_fn compare_key = rbt->rbt_ops->rbto_compare_key;
 | ||
| 
 | ||
| 	while (!RB_SENTINEL_P(parent)) {
 | ||
| 		const int diff = (*compare_key)(parent, key);
 | ||
| 		if (diff == 0)
 | ||
| 			return parent;
 | ||
| 		parent = parent->rb_nodes[diff > 0];
 | ||
| 	}
 | ||
| 
 | ||
| 	return NULL;
 | ||
| }
 | ||
| 
 | ||
| static void
 | ||
| rb_tree_prune_node(struct rb_tree *rbt, struct rb_node *self, int rebalance)
 | ||
| {
 | ||
| 	const unsigned int which = self->rb_position;
 | ||
| 	struct rb_node *father = self->rb_parent;
 | ||
| 
 | ||
| 	KASSERT(rebalance || (RB_ROOT_P(self) || RB_RED_P(self)));
 | ||
| 	KASSERT(!rebalance || RB_BLACK_P(self));
 | ||
| 	KASSERT(RB_CHILDLESS_P(self));
 | ||
| 	KASSERT(rb_tree_check_node(rbt, self, NULL, false));
 | ||
| 
 | ||
| 	father->rb_nodes[which] = self->rb_left;
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Remove ourselves from the node list and decrement the count.
 | ||
| 	 */
 | ||
| 	RB_TAILQ_REMOVE(&rbt->rbt_nodes, self, rb_link);
 | ||
| 	RBT_COUNT_DECR(rbt);
 | ||
| 
 | ||
| 	if (rebalance)
 | ||
| 		rb_tree_removal_rebalance(rbt, father, which);
 | ||
| 	KASSERT(RB_ROOT_P(self) || rb_tree_check_node(rbt, father, NULL, true));
 | ||
| }
 | ||
| 
 | ||
| static void
 | ||
| rb_tree_swap_prune_and_rebalance(struct rb_tree *rbt, struct rb_node *self,
 | ||
| 	struct rb_node *standin)
 | ||
| {
 | ||
| 	unsigned int standin_which = standin->rb_position;
 | ||
| 	unsigned int standin_other = standin_which ^ RB_NODE_OTHER;
 | ||
| 	struct rb_node *standin_child;
 | ||
| 	struct rb_node *standin_father;
 | ||
| 	bool rebalance = RB_BLACK_P(standin);
 | ||
| 
 | ||
| 	if (standin->rb_parent == self) {
 | ||
| 		/*
 | ||
| 		 * As a child of self, any childen would be opposite of
 | ||
| 		 * our parent (self).
 | ||
| 		 */
 | ||
| 		KASSERT(RB_SENTINEL_P(standin->rb_nodes[standin_other]));
 | ||
| 		standin_child = standin->rb_nodes[standin_which];
 | ||
| 	} else {
 | ||
| 		/*
 | ||
| 		 * Since we aren't a child of self, any childen would be
 | ||
| 		 * on the same side as our parent (self).
 | ||
| 		 */
 | ||
| 		KASSERT(RB_SENTINEL_P(standin->rb_nodes[standin_which]));
 | ||
| 		standin_child = standin->rb_nodes[standin_other];
 | ||
| 	}
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * the node we are removing must have two children.
 | ||
| 	 */
 | ||
| 	KASSERT(RB_TWOCHILDREN_P(self));
 | ||
| 	/*
 | ||
| 	 * If standin has a child, it must be red.
 | ||
| 	 */
 | ||
| 	KASSERT(RB_SENTINEL_P(standin_child) || RB_RED_P(standin_child));
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Verify things are sane.
 | ||
| 	 */
 | ||
| 	KASSERT(rb_tree_check_node(rbt, self, NULL, false));
 | ||
| 	KASSERT(rb_tree_check_node(rbt, standin, NULL, false));
 | ||
| 
 | ||
| 	if (!RB_SENTINEL_P(standin_child)) {
 | ||
| 		/*
 | ||
| 		 * We know we have a red child so if we swap them we can
 | ||
| 		 * void flipping standin's child to black afterwards.
 | ||
| 		 */
 | ||
| 		KASSERT(rb_tree_check_node(rbt, standin_child, NULL, true));
 | ||
| 		rb_tree_reparent_nodes(rbt, standin,
 | ||
| 		    standin_child->rb_position);
 | ||
| 		KASSERT(rb_tree_check_node(rbt, standin, NULL, true));
 | ||
| 		KASSERT(rb_tree_check_node(rbt, standin_child, NULL, true));
 | ||
| 		/*
 | ||
| 		 * Since we are removing a red leaf, no need to rebalance.
 | ||
| 		 */
 | ||
| 		rebalance = false;
 | ||
| 		/*
 | ||
| 		 * We know that standin can not be a child of self, so
 | ||
| 		 * update before of that.
 | ||
| 		 */
 | ||
| 		KASSERT(standin->rb_parent != self);
 | ||
| 		standin_which = standin->rb_position;
 | ||
| 		standin_other = standin_which ^ RB_NODE_OTHER;
 | ||
| 	}
 | ||
| 	KASSERT(RB_CHILDLESS_P(standin));
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * If we are about to delete the standin's father, then when we call
 | ||
| 	 * rebalance, we need to use ourselves as our father.  Otherwise
 | ||
| 	 * remember our original father.  Also, if we are our standin's father
 | ||
| 	 * we only need to reparent the standin's brother.
 | ||
| 	 */
 | ||
| 	if (standin->rb_parent == self) {
 | ||
| 		/*
 | ||
| 		 * |   R   -->   S   |
 | ||
| 		 * | Q   S --> Q   * |
 | ||
| 		 * |       -->       |
 | ||
| 		 */
 | ||
| 		standin_father = standin;
 | ||
| 		KASSERT(RB_SENTINEL_P(standin->rb_nodes[standin_other]));
 | ||
| 		KASSERT(!RB_SENTINEL_P(self->rb_nodes[standin_other]));
 | ||
| 		KASSERT(self->rb_nodes[standin_which] == standin);
 | ||
| 		/*
 | ||
| 		 * Make our brother our son.
 | ||
| 		 */
 | ||
| 		standin->rb_nodes[standin_other] = self->rb_nodes[standin_other];
 | ||
| 		standin->rb_nodes[standin_other]->rb_parent = standin;
 | ||
| 		KASSERT(standin->rb_nodes[standin_other]->rb_position == standin_other);
 | ||
| 	} else {
 | ||
| 		/*
 | ||
| 		 * |  P      -->  P    |
 | ||
| 		 * |      S  -->    Q  |
 | ||
| 		 * |    Q    -->       |
 | ||
| 		 */
 | ||
| 		standin_father = standin->rb_parent;
 | ||
| 		standin_father->rb_nodes[standin_which] =
 | ||
| 		    standin->rb_nodes[standin_which];
 | ||
| 		standin->rb_left = self->rb_left;
 | ||
| 		standin->rb_right = self->rb_right;
 | ||
| 		standin->rb_left->rb_parent = standin;
 | ||
| 		standin->rb_right->rb_parent = standin;
 | ||
| 	}
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Now copy the result of self to standin and then replace
 | ||
| 	 * self with standin in the tree.
 | ||
| 	 */
 | ||
| 	standin->rb_parent = self->rb_parent;
 | ||
| 	standin->rb_properties = self->rb_properties;
 | ||
| 	standin->rb_parent->rb_nodes[standin->rb_position] = standin;
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Remove ourselves from the node list and decrement the count.
 | ||
| 	 */
 | ||
| 	RB_TAILQ_REMOVE(&rbt->rbt_nodes, self, rb_link);
 | ||
| 	RBT_COUNT_DECR(rbt);
 | ||
| 
 | ||
| 	KASSERT(rb_tree_check_node(rbt, standin, NULL, false));
 | ||
| 	KASSERT(rb_tree_check_node(rbt, standin_father, NULL, false));
 | ||
| 
 | ||
| 	if (!rebalance)
 | ||
| 		return;
 | ||
| 
 | ||
| 	rb_tree_removal_rebalance(rbt, standin_father, standin_which);
 | ||
| 	KASSERT(rb_tree_check_node(rbt, standin, NULL, true));
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|  * We could do this by doing
 | ||
|  *	rb_tree_node_swap(rbt, self, which);
 | ||
|  *	rb_tree_prune_node(rbt, self, false);
 | ||
|  *
 | ||
|  * But it's more efficient to just evalate and recolor the child.
 | ||
|  */
 | ||
| /*ARGSUSED*/
 | ||
| static void
 | ||
| rb_tree_prune_blackred_branch(struct rb_tree *rbt _PROP_ARG_UNUSED,
 | ||
|     struct rb_node *self, unsigned int which)
 | ||
| {
 | ||
| 	struct rb_node *parent = self->rb_parent;
 | ||
| 	struct rb_node *child = self->rb_nodes[which];
 | ||
| 
 | ||
| 	KASSERT(which == RB_NODE_LEFT || which == RB_NODE_RIGHT);
 | ||
| 	KASSERT(RB_BLACK_P(self) && RB_RED_P(child));
 | ||
| 	KASSERT(!RB_TWOCHILDREN_P(child));
 | ||
| 	KASSERT(RB_CHILDLESS_P(child));
 | ||
| 	KASSERT(rb_tree_check_node(rbt, self, NULL, false));
 | ||
| 	KASSERT(rb_tree_check_node(rbt, child, NULL, false));
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Remove ourselves from the tree and give our former child our
 | ||
| 	 * properties (position, color, root).
 | ||
| 	 */
 | ||
| 	parent->rb_nodes[self->rb_position] = child;
 | ||
| 	child->rb_parent = parent;
 | ||
| 	child->rb_properties = self->rb_properties;
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Remove ourselves from the node list and decrement the count.
 | ||
| 	 */
 | ||
| 	RB_TAILQ_REMOVE(&rbt->rbt_nodes, self, rb_link);
 | ||
| 	RBT_COUNT_DECR(rbt);
 | ||
| 
 | ||
| 	KASSERT(RB_ROOT_P(self) || rb_tree_check_node(rbt, parent, NULL, true));
 | ||
| 	KASSERT(rb_tree_check_node(rbt, child, NULL, true));
 | ||
| }
 | ||
| /*
 | ||
|  *
 | ||
|  */
 | ||
| void
 | ||
| _prop_rb_tree_remove_node(struct rb_tree *rbt, struct rb_node *self)
 | ||
| {
 | ||
| 	struct rb_node *standin;
 | ||
| 	unsigned int which;
 | ||
| 	/*
 | ||
| 	 * In the following diagrams, we (the node to be removed) are S.  Red
 | ||
| 	 * nodes are lowercase.  T could be either red or black.
 | ||
| 	 *
 | ||
| 	 * Remember the major axiom of the red-black tree: the number of
 | ||
| 	 * black nodes from the root to each leaf is constant across all
 | ||
| 	 * leaves, only the number of red nodes varies.
 | ||
| 	 *
 | ||
| 	 * Thus removing a red leaf doesn't require any other changes to a
 | ||
| 	 * red-black tree.  So if we must remove a node, attempt to rearrange
 | ||
| 	 * the tree so we can remove a red node.
 | ||
| 	 *
 | ||
| 	 * The simpliest case is a childless red node or a childless root node:
 | ||
| 	 *
 | ||
| 	 * |    T  -->    T  |    or    |  R  -->  *  |
 | ||
| 	 * |  s    -->  *    |
 | ||
| 	 */
 | ||
| 	if (RB_CHILDLESS_P(self)) {
 | ||
| 		if (RB_RED_P(self) || RB_ROOT_P(self)) {
 | ||
| 			rb_tree_prune_node(rbt, self, false);
 | ||
| 			return;
 | ||
| 		}
 | ||
| 		rb_tree_prune_node(rbt, self, true);
 | ||
| 		return;
 | ||
| 	}
 | ||
| 	KASSERT(!RB_CHILDLESS_P(self));
 | ||
| 	if (!RB_TWOCHILDREN_P(self)) {
 | ||
| 		/*
 | ||
| 		 * The next simpliest case is the node we are deleting is
 | ||
| 		 * black and has one red child.
 | ||
| 		 *
 | ||
| 		 * |      T  -->      T  -->      T  |
 | ||
| 		 * |    S    -->  R      -->  R      |
 | ||
| 		 * |  r      -->    s    -->    *    |
 | ||
| 		 */
 | ||
| 		which = RB_LEFT_SENTINEL_P(self) ? RB_NODE_RIGHT : RB_NODE_LEFT;
 | ||
| 		KASSERT(RB_BLACK_P(self));
 | ||
| 		KASSERT(RB_RED_P(self->rb_nodes[which]));
 | ||
| 		KASSERT(RB_CHILDLESS_P(self->rb_nodes[which]));
 | ||
| 		rb_tree_prune_blackred_branch(rbt, self, which);
 | ||
| 		return;
 | ||
| 	}
 | ||
| 	KASSERT(RB_TWOCHILDREN_P(self));
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * We invert these because we prefer to remove from the inside of
 | ||
| 	 * the tree.
 | ||
| 	 */
 | ||
| 	which = self->rb_position ^ RB_NODE_OTHER;
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Let's find the node closes to us opposite of our parent
 | ||
| 	 * Now swap it with ourself, "prune" it, and rebalance, if needed.
 | ||
| 	 */
 | ||
| 	standin = _prop_rb_tree_iterate(rbt, self, which);
 | ||
| 	rb_tree_swap_prune_and_rebalance(rbt, self, standin);
 | ||
| }
 | ||
| 
 | ||
| static void
 | ||
| rb_tree_removal_rebalance(struct rb_tree *rbt, struct rb_node *parent,
 | ||
| 	unsigned int which)
 | ||
| {
 | ||
| 	KASSERT(!RB_SENTINEL_P(parent));
 | ||
| 	KASSERT(RB_SENTINEL_P(parent->rb_nodes[which]));
 | ||
| 	KASSERT(which == RB_NODE_LEFT || which == RB_NODE_RIGHT);
 | ||
| 
 | ||
| 	while (RB_BLACK_P(parent->rb_nodes[which])) {
 | ||
| 		unsigned int other = which ^ RB_NODE_OTHER;
 | ||
| 		struct rb_node *brother = parent->rb_nodes[other];
 | ||
| 
 | ||
| 		KASSERT(!RB_SENTINEL_P(brother));
 | ||
| 		/*
 | ||
| 		 * For cases 1, 2a, and 2b, our brother's children must
 | ||
| 		 * be black and our father must be black
 | ||
| 		 */
 | ||
| 		if (RB_BLACK_P(parent)
 | ||
| 		    && RB_BLACK_P(brother->rb_left)
 | ||
| 		    && RB_BLACK_P(brother->rb_right)) {
 | ||
| 			/*
 | ||
| 			 * Case 1: Our brother is red, swap its position
 | ||
| 			 * (and colors) with our parent.  This is now case 2b.
 | ||
| 			 *
 | ||
| 			 *    B         ->        D
 | ||
| 			 *  x     d     ->    b     E
 | ||
| 			 *      C   E   ->  x   C
 | ||
| 			 */
 | ||
| 			if (RB_RED_P(brother)) {
 | ||
| 				KASSERT(RB_BLACK_P(parent));
 | ||
| 				rb_tree_reparent_nodes(rbt, parent, other);
 | ||
| 				brother = parent->rb_nodes[other];
 | ||
| 				KASSERT(!RB_SENTINEL_P(brother));
 | ||
| 				KASSERT(RB_BLACK_P(brother));
 | ||
| 				KASSERT(RB_RED_P(parent));
 | ||
| 				KASSERT(rb_tree_check_node(rbt, brother, NULL, false));
 | ||
| 				KASSERT(rb_tree_check_node(rbt, parent, NULL, false));
 | ||
| 			} else {
 | ||
| 				/*
 | ||
| 				 * Both our parent and brother are black.
 | ||
| 				 * Change our brother to red, advance up rank
 | ||
| 				 * and go through the loop again.
 | ||
| 				 *
 | ||
| 				 *    B         ->    B
 | ||
| 				 *  A     D     ->  A     d
 | ||
| 				 *      C   E   ->      C   E
 | ||
| 				 */
 | ||
| 				RB_MARK_RED(brother);
 | ||
| 				KASSERT(RB_BLACK_P(brother->rb_left));
 | ||
| 				KASSERT(RB_BLACK_P(brother->rb_right));
 | ||
| 				if (RB_ROOT_P(parent))
 | ||
| 					return;
 | ||
| 				KASSERT(rb_tree_check_node(rbt, brother, NULL, false));
 | ||
| 				KASSERT(rb_tree_check_node(rbt, parent, NULL, false));
 | ||
| 				which = parent->rb_position;
 | ||
| 				parent = parent->rb_parent;
 | ||
| 			}
 | ||
| 		} else if (RB_RED_P(parent)
 | ||
| 		    && RB_BLACK_P(brother)
 | ||
| 		    && RB_BLACK_P(brother->rb_left)
 | ||
| 		    && RB_BLACK_P(brother->rb_right)) {
 | ||
| 			KASSERT(RB_BLACK_P(brother));
 | ||
| 			KASSERT(RB_BLACK_P(brother->rb_left));
 | ||
| 			KASSERT(RB_BLACK_P(brother->rb_right));
 | ||
| 			RB_MARK_BLACK(parent);
 | ||
| 			RB_MARK_RED(brother);
 | ||
| 			KASSERT(rb_tree_check_node(rbt, brother, NULL, true));
 | ||
| 			break;		/* We're done! */
 | ||
| 		} else {
 | ||
| 			KASSERT(RB_BLACK_P(brother));
 | ||
| 			KASSERT(!RB_CHILDLESS_P(brother));
 | ||
| 			/*
 | ||
| 			 * Case 3: our brother is black, our left nephew is
 | ||
| 			 * red, and our right nephew is black.  Swap our
 | ||
| 			 * brother with our left nephew.   This result in a
 | ||
| 			 * tree that matches case 4.
 | ||
| 			 *
 | ||
| 			 *     B         ->       D
 | ||
| 			 * A       D     ->   B     E
 | ||
| 			 *       c   e   -> A   C
 | ||
| 			 */
 | ||
| 			if (RB_BLACK_P(brother->rb_nodes[other])) {
 | ||
| 				KASSERT(RB_RED_P(brother->rb_nodes[which]));
 | ||
| 				rb_tree_reparent_nodes(rbt, brother, which);
 | ||
| 				KASSERT(brother->rb_parent == parent->rb_nodes[other]);
 | ||
| 				brother = parent->rb_nodes[other];
 | ||
| 				KASSERT(RB_RED_P(brother->rb_nodes[other]));
 | ||
| 			}
 | ||
| 			/*
 | ||
| 			 * Case 4: our brother is black and our right nephew
 | ||
| 			 * is red.  Swap our parent and brother locations and
 | ||
| 			 * change our right nephew to black.  (these can be
 | ||
| 			 * done in either order so we change the color first).
 | ||
| 			 * The result is a valid red-black tree and is a
 | ||
| 			 * terminal case.
 | ||
| 			 *
 | ||
| 			 *     B         ->       D
 | ||
| 			 * A       D     ->   B     E
 | ||
| 			 *       c   e   -> A   C
 | ||
| 			 */
 | ||
| 			RB_MARK_BLACK(brother->rb_nodes[other]);
 | ||
| 			rb_tree_reparent_nodes(rbt, parent, other);
 | ||
| 			break;		/* We're done! */
 | ||
| 		}
 | ||
| 	}
 | ||
| 	KASSERT(rb_tree_check_node(rbt, parent, NULL, true));
 | ||
| }
 | ||
| 
 | ||
| struct rb_node *
 | ||
| _prop_rb_tree_iterate(struct rb_tree *rbt, struct rb_node *self,
 | ||
| 	unsigned int direction)
 | ||
| {
 | ||
| 	const unsigned int other = direction ^ RB_NODE_OTHER;
 | ||
| 	KASSERT(direction == RB_NODE_LEFT || direction == RB_NODE_RIGHT);
 | ||
| 
 | ||
| 	if (self == NULL) {
 | ||
| 		self = rbt->rbt_root;
 | ||
| 		if (RB_SENTINEL_P(self))
 | ||
| 			return NULL;
 | ||
| 		while (!RB_SENTINEL_P(self->rb_nodes[other]))
 | ||
| 			self = self->rb_nodes[other];
 | ||
| 		return self;
 | ||
| 	}
 | ||
| 	KASSERT(!RB_SENTINEL_P(self));
 | ||
| 	/*
 | ||
| 	 * We can't go any further in this direction.  We proceed up in the
 | ||
| 	 * opposite direction until our parent is in direction we want to go.
 | ||
| 	 */
 | ||
| 	if (RB_SENTINEL_P(self->rb_nodes[direction])) {
 | ||
| 		while (!RB_ROOT_P(self)) {
 | ||
| 			if (other == self->rb_position)
 | ||
| 				return self->rb_parent;
 | ||
| 			self = self->rb_parent;
 | ||
| 		}
 | ||
| 		return NULL;
 | ||
| 	}
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Advance down one in current direction and go down as far as possible
 | ||
| 	 * in the opposite direction.
 | ||
| 	 */
 | ||
| 	self = self->rb_nodes[direction];
 | ||
| 	KASSERT(!RB_SENTINEL_P(self));
 | ||
| 	while (!RB_SENTINEL_P(self->rb_nodes[other]))
 | ||
| 		self = self->rb_nodes[other];
 | ||
| 	return self;
 | ||
| }
 | ||
| 
 | ||
| #ifdef RBDEBUG
 | ||
| static const struct rb_node *
 | ||
| rb_tree_iterate_const(const struct rb_tree *rbt, const struct rb_node *self,
 | ||
| 	unsigned int direction)
 | ||
| {
 | ||
| 	const unsigned int other = direction ^ RB_NODE_OTHER;
 | ||
| 	KASSERT(direction == RB_NODE_LEFT || direction == RB_NODE_RIGHT);
 | ||
| 
 | ||
| 	if (self == NULL) {
 | ||
| 		self = rbt->rbt_root;
 | ||
| 		if (RB_SENTINEL_P(self))
 | ||
| 			return NULL;
 | ||
| 		while (!RB_SENTINEL_P(self->rb_nodes[other]))
 | ||
| 			self = self->rb_nodes[other];
 | ||
| 		return self;
 | ||
| 	}
 | ||
| 	KASSERT(!RB_SENTINEL_P(self));
 | ||
| 	/*
 | ||
| 	 * We can't go any further in this direction.  We proceed up in the
 | ||
| 	 * opposite direction until our parent is in direction we want to go.
 | ||
| 	 */
 | ||
| 	if (RB_SENTINEL_P(self->rb_nodes[direction])) {
 | ||
| 		while (!RB_ROOT_P(self)) {
 | ||
| 			if (other == self->rb_position)
 | ||
| 				return self->rb_parent;
 | ||
| 			self = self->rb_parent;
 | ||
| 		}
 | ||
| 		return NULL;
 | ||
| 	}
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Advance down one in current direction and go down as far as possible
 | ||
| 	 * in the opposite direction.
 | ||
| 	 */
 | ||
| 	self = self->rb_nodes[direction];
 | ||
| 	KASSERT(!RB_SENTINEL_P(self));
 | ||
| 	while (!RB_SENTINEL_P(self->rb_nodes[other]))
 | ||
| 		self = self->rb_nodes[other];
 | ||
| 	return self;
 | ||
| }
 | ||
| 
 | ||
| static bool
 | ||
| rb_tree_check_node(const struct rb_tree *rbt, const struct rb_node *self,
 | ||
| 	const struct rb_node *prev, bool red_check)
 | ||
| {
 | ||
| 	KASSERT(!self->rb_sentinel);
 | ||
| 	KASSERT(self->rb_left);
 | ||
| 	KASSERT(self->rb_right);
 | ||
| 	KASSERT(prev == NULL ||
 | ||
| 		(*rbt->rbt_ops->rbto_compare_nodes)(prev, self) > 0);
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Verify our relationship to our parent.
 | ||
| 	 */
 | ||
| 	if (RB_ROOT_P(self)) {
 | ||
| 		KASSERT(self == rbt->rbt_root);
 | ||
| 		KASSERT(self->rb_position == RB_NODE_LEFT);
 | ||
| 		KASSERT(self->rb_parent->rb_nodes[RB_NODE_LEFT] == self);
 | ||
| 		KASSERT(self->rb_parent == (const struct rb_node *) &rbt->rbt_root);
 | ||
| 	} else {
 | ||
| 		KASSERT(self != rbt->rbt_root);
 | ||
| 		KASSERT(!RB_PARENT_SENTINEL_P(self));
 | ||
| 		if (self->rb_position == RB_NODE_LEFT) {
 | ||
| 			KASSERT((*rbt->rbt_ops->rbto_compare_nodes)(self, self->rb_parent) > 0);
 | ||
| 			KASSERT(self->rb_parent->rb_nodes[RB_NODE_LEFT] == self);
 | ||
| 		} else {
 | ||
| 			KASSERT((*rbt->rbt_ops->rbto_compare_nodes)(self, self->rb_parent) < 0);
 | ||
| 			KASSERT(self->rb_parent->rb_nodes[RB_NODE_RIGHT] == self);
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * Verify our position in the linked list against the tree itself.
 | ||
| 	 */
 | ||
| 	{
 | ||
| 		const struct rb_node *prev0 = rb_tree_iterate_const(rbt, self, RB_NODE_LEFT);
 | ||
| 		const struct rb_node *next0 = rb_tree_iterate_const(rbt, self, RB_NODE_RIGHT);
 | ||
| 		KASSERT(prev0 == TAILQ_PREV(self, rb_node_qh, rb_link));
 | ||
| 		if (next0 != TAILQ_NEXT(self, rb_link))
 | ||
| 			next0 = rb_tree_iterate_const(rbt, self, RB_NODE_RIGHT);
 | ||
| 		KASSERT(next0 == TAILQ_NEXT(self, rb_link));
 | ||
| 	}
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * The root must be black.
 | ||
| 	 * There can never be two adjacent red nodes. 
 | ||
| 	 */
 | ||
| 	if (red_check) {
 | ||
| 		KASSERT(!RB_ROOT_P(self) || RB_BLACK_P(self));
 | ||
| 		if (RB_RED_P(self)) {
 | ||
| 			const struct rb_node *brother;
 | ||
| 			KASSERT(!RB_ROOT_P(self));
 | ||
| 			brother = self->rb_parent->rb_nodes[self->rb_position ^ RB_NODE_OTHER];
 | ||
| 			KASSERT(RB_BLACK_P(self->rb_parent));
 | ||
| 			/* 
 | ||
| 			 * I'm red and have no children, then I must either
 | ||
| 			 * have no brother or my brother also be red and
 | ||
| 			 * also have no children.  (black count == 0)
 | ||
| 			 */
 | ||
| 			KASSERT(!RB_CHILDLESS_P(self)
 | ||
| 				|| RB_SENTINEL_P(brother)
 | ||
| 				|| RB_RED_P(brother)
 | ||
| 				|| RB_CHILDLESS_P(brother));
 | ||
| 			/*
 | ||
| 			 * If I'm not childless, I must have two children
 | ||
| 			 * and they must be both be black.
 | ||
| 			 */
 | ||
| 			KASSERT(RB_CHILDLESS_P(self)
 | ||
| 				|| (RB_TWOCHILDREN_P(self)
 | ||
| 				    && RB_BLACK_P(self->rb_left)
 | ||
| 				    && RB_BLACK_P(self->rb_right)));
 | ||
| 			/*
 | ||
| 			 * If I'm not childless, thus I have black children,
 | ||
| 			 * then my brother must either be black or have two
 | ||
| 			 * black children.
 | ||
| 			 */
 | ||
| 			KASSERT(RB_CHILDLESS_P(self)
 | ||
| 				|| RB_BLACK_P(brother)
 | ||
| 				|| (RB_TWOCHILDREN_P(brother)
 | ||
| 				    && RB_BLACK_P(brother->rb_left)
 | ||
| 				    && RB_BLACK_P(brother->rb_right)));
 | ||
| 		} else {
 | ||
| 			/*
 | ||
| 			 * If I'm black and have one child, that child must
 | ||
| 			 * be red and childless.
 | ||
| 			 */
 | ||
| 			KASSERT(RB_CHILDLESS_P(self)
 | ||
| 				|| RB_TWOCHILDREN_P(self)
 | ||
| 				|| (!RB_LEFT_SENTINEL_P(self)
 | ||
| 				    && RB_RIGHT_SENTINEL_P(self)
 | ||
| 				    && RB_RED_P(self->rb_left)
 | ||
| 				    && RB_CHILDLESS_P(self->rb_left))
 | ||
| 				|| (!RB_RIGHT_SENTINEL_P(self)
 | ||
| 				    && RB_LEFT_SENTINEL_P(self)
 | ||
| 				    && RB_RED_P(self->rb_right)
 | ||
| 				    && RB_CHILDLESS_P(self->rb_right)));
 | ||
| 
 | ||
| 			/*
 | ||
| 			 * If I'm a childless black node and my parent is
 | ||
| 			 * black, my 2nd closet relative away from my parent
 | ||
| 			 * is either red or has a red parent or red children.
 | ||
| 			 */
 | ||
| 			if (!RB_ROOT_P(self)
 | ||
| 			    && RB_CHILDLESS_P(self)
 | ||
| 			    && RB_BLACK_P(self->rb_parent)) {
 | ||
| 				const unsigned int which = self->rb_position;
 | ||
| 				const unsigned int other = which ^ RB_NODE_OTHER;
 | ||
| 				const struct rb_node *relative0, *relative;
 | ||
| 
 | ||
| 				relative0 = rb_tree_iterate_const(rbt,
 | ||
| 				    self, other);
 | ||
| 				KASSERT(relative0 != NULL);
 | ||
| 				relative = rb_tree_iterate_const(rbt,
 | ||
| 				    relative0, other);
 | ||
| 				KASSERT(relative != NULL);
 | ||
| 				KASSERT(RB_SENTINEL_P(relative->rb_nodes[which]));
 | ||
| #if 0
 | ||
| 				KASSERT(RB_RED_P(relative)
 | ||
| 					|| RB_RED_P(relative->rb_left)
 | ||
| 					|| RB_RED_P(relative->rb_right)
 | ||
| 					|| RB_RED_P(relative->rb_parent));
 | ||
| #endif
 | ||
| 			}
 | ||
| 		}
 | ||
| 		/*
 | ||
| 		 * A grandparent's children must be real nodes and not
 | ||
| 		 * sentinels.  First check out grandparent.
 | ||
| 		 */
 | ||
| 		KASSERT(RB_ROOT_P(self)
 | ||
| 			|| RB_ROOT_P(self->rb_parent)
 | ||
| 			|| RB_TWOCHILDREN_P(self->rb_parent->rb_parent));
 | ||
| 		/*
 | ||
| 		 * If we are have grandchildren on our left, then
 | ||
| 		 * we must have a child on our right.
 | ||
| 		 */
 | ||
| 		KASSERT(RB_LEFT_SENTINEL_P(self)
 | ||
| 			|| RB_CHILDLESS_P(self->rb_left)
 | ||
| 			|| !RB_RIGHT_SENTINEL_P(self));
 | ||
| 		/*
 | ||
| 		 * If we are have grandchildren on our right, then
 | ||
| 		 * we must have a child on our left.
 | ||
| 		 */
 | ||
| 		KASSERT(RB_RIGHT_SENTINEL_P(self)
 | ||
| 			|| RB_CHILDLESS_P(self->rb_right)
 | ||
| 			|| !RB_LEFT_SENTINEL_P(self));
 | ||
| 
 | ||
| 		/*
 | ||
| 		 * If we have a child on the left and it doesn't have two
 | ||
| 		 * children make sure we don't have great-great-grandchildren on
 | ||
| 		 * the right.
 | ||
| 		 */
 | ||
| 		KASSERT(RB_TWOCHILDREN_P(self->rb_left)
 | ||
| 			|| RB_CHILDLESS_P(self->rb_right)
 | ||
| 			|| RB_CHILDLESS_P(self->rb_right->rb_left)
 | ||
| 			|| RB_CHILDLESS_P(self->rb_right->rb_left->rb_left)
 | ||
| 			|| RB_CHILDLESS_P(self->rb_right->rb_left->rb_right)
 | ||
| 			|| RB_CHILDLESS_P(self->rb_right->rb_right)
 | ||
| 			|| RB_CHILDLESS_P(self->rb_right->rb_right->rb_left)
 | ||
| 			|| RB_CHILDLESS_P(self->rb_right->rb_right->rb_right));
 | ||
| 
 | ||
| 		/*
 | ||
| 		 * If we have a child on the right and it doesn't have two
 | ||
| 		 * children make sure we don't have great-great-grandchildren on
 | ||
| 		 * the left.
 | ||
| 		 */
 | ||
| 		KASSERT(RB_TWOCHILDREN_P(self->rb_right)
 | ||
| 			|| RB_CHILDLESS_P(self->rb_left)
 | ||
| 			|| RB_CHILDLESS_P(self->rb_left->rb_left)
 | ||
| 			|| RB_CHILDLESS_P(self->rb_left->rb_left->rb_left)
 | ||
| 			|| RB_CHILDLESS_P(self->rb_left->rb_left->rb_right)
 | ||
| 			|| RB_CHILDLESS_P(self->rb_left->rb_right)
 | ||
| 			|| RB_CHILDLESS_P(self->rb_left->rb_right->rb_left)
 | ||
| 			|| RB_CHILDLESS_P(self->rb_left->rb_right->rb_right));
 | ||
| 
 | ||
| 		/*
 | ||
| 		 * If we are fully interior node, then our predecessors and
 | ||
| 		 * successors must have no children in our direction.
 | ||
| 		 */
 | ||
| 		if (RB_TWOCHILDREN_P(self)) {
 | ||
| 			const struct rb_node *prev0;
 | ||
| 			const struct rb_node *next0;
 | ||
| 
 | ||
| 			prev0 = rb_tree_iterate_const(rbt, self, RB_NODE_LEFT);
 | ||
| 			KASSERT(prev0 != NULL);
 | ||
| 			KASSERT(RB_RIGHT_SENTINEL_P(prev0));
 | ||
| 
 | ||
| 			next0 = rb_tree_iterate_const(rbt, self, RB_NODE_RIGHT);
 | ||
| 			KASSERT(next0 != NULL);
 | ||
| 			KASSERT(RB_LEFT_SENTINEL_P(next0));
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	return true;
 | ||
| }
 | ||
| 
 | ||
| static unsigned int
 | ||
| rb_tree_count_black(const struct rb_node *self)
 | ||
| {
 | ||
| 	unsigned int left, right;
 | ||
| 
 | ||
| 	if (RB_SENTINEL_P(self))
 | ||
| 		return 0;
 | ||
| 
 | ||
| 	left = rb_tree_count_black(self->rb_left);
 | ||
| 	right = rb_tree_count_black(self->rb_right);
 | ||
| 
 | ||
| 	KASSERT(left == right);
 | ||
| 
 | ||
| 	return left + RB_BLACK_P(self);
 | ||
| }
 | ||
| 
 | ||
| void
 | ||
| _prop_rb_tree_check(const struct rb_tree *rbt, bool red_check)
 | ||
| {
 | ||
| 	const struct rb_node *self;
 | ||
| 	const struct rb_node *prev;
 | ||
| 	unsigned int count;
 | ||
| 
 | ||
| 	KASSERT(rbt->rbt_root == NULL || rbt->rbt_root->rb_position == RB_NODE_LEFT);
 | ||
| 
 | ||
| 	prev = NULL;
 | ||
| 	count = 0;
 | ||
| 	TAILQ_FOREACH(self, &rbt->rbt_nodes, rb_link) {
 | ||
| 		rb_tree_check_node(rbt, self, prev, false);
 | ||
| 		count++;
 | ||
| 	}
 | ||
| 	KASSERT(rbt->rbt_count == count);
 | ||
| 	KASSERT(RB_SENTINEL_P(rbt->rbt_root)
 | ||
| 		|| rb_tree_count_black(rbt->rbt_root));
 | ||
| 
 | ||
| 	/*
 | ||
| 	 * The root must be black.
 | ||
| 	 * There can never be two adjacent red nodes. 
 | ||
| 	 */
 | ||
| 	if (red_check) {
 | ||
| 		KASSERT(rbt->rbt_root == NULL || RB_BLACK_P(rbt->rbt_root));
 | ||
| 		TAILQ_FOREACH(self, &rbt->rbt_nodes, rb_link) {
 | ||
| 			rb_tree_check_node(rbt, self, NULL, true);
 | ||
| 		}
 | ||
| 	}
 | ||
| }
 | ||
| #endif /* RBDEBUG */
 | 
