
- rewrite the semop(2) implementation so that it now conforms to the specification, including atomicity, support for blocking more than once, range checks, but also basic fairness support; - fix permissions checking; - fix missing time adjustments; - fix off-by-one errors and other bugs; - do not allocate dynamic memory for GETALL/SETALL; - add test88, which properly tests the semaphore functionality. Change-Id: I85f0d3408c0d6bba41cfb4c91a34c8b46b2a5959
791 lines
21 KiB
C
791 lines
21 KiB
C
#include "inc.h"
|
|
|
|
struct sem_struct;
|
|
|
|
/* IPC-server process table, currently used for semaphores only. */
|
|
struct iproc {
|
|
struct sem_struct *ip_sem; /* affected semaphore set, or NULL */
|
|
struct sembuf *ip_sops; /* pending operations (malloc'ed) */
|
|
unsigned int ip_nsops; /* number of pending operations */
|
|
struct sembuf *ip_blkop; /* pointer to operation that blocked */
|
|
endpoint_t ip_endpt; /* process endpoint */
|
|
pid_t ip_pid; /* process PID */
|
|
TAILQ_ENTRY(iproc) ip_next; /* next waiting process */
|
|
} iproc[NR_PROCS];
|
|
|
|
struct semaphore {
|
|
unsigned short semval; /* semaphore value */
|
|
unsigned short semzcnt; /* # waiting for zero */
|
|
unsigned short semncnt; /* # waiting for increase */
|
|
pid_t sempid; /* process that did last op */
|
|
};
|
|
|
|
/*
|
|
* For the list of waiting processes, we use a doubly linked tail queue. In
|
|
* order to maintain a basic degree of fairness, we keep the pending processes
|
|
* in FCFS (well, at least first tested) order, which means we need to be able
|
|
* to add new processes at the end of the list. In order to remove waiting
|
|
* processes O(1) instead of O(n) we need a doubly linked list; in the common
|
|
* case we do have the element's predecessor, but STAILQ_REMOVE is O(n) anyway
|
|
* and NetBSD has no STAILQ_REMOVE_AFTER yet.
|
|
*
|
|
* We use one list per semaphore set: semop(2) affects only one semaphore set,
|
|
* but it may involve operations on multiple semaphores within the set. While
|
|
* it is possible to recheck only semaphores that were affected by a particular
|
|
* operation, and associate waiting lists to individual semaphores, the number
|
|
* of expected waiting processes is currently not high enough to justify the
|
|
* extra complexity of such an implementation.
|
|
*/
|
|
struct sem_struct {
|
|
struct semid_ds semid_ds;
|
|
struct semaphore sems[SEMMSL];
|
|
TAILQ_HEAD(waiters, iproc) waiters;
|
|
};
|
|
|
|
static struct sem_struct sem_list[SEMMNI];
|
|
static unsigned int sem_list_nr = 0; /* highest in-use slot number plus one */
|
|
|
|
/*
|
|
* Find a semaphore set by key. The given key must not be IPC_PRIVATE. Return
|
|
* a pointer to the semaphore set if found, or NULL otherwise.
|
|
*/
|
|
static struct sem_struct *
|
|
sem_find_key(key_t key)
|
|
{
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < sem_list_nr; i++) {
|
|
if (!(sem_list[i].semid_ds.sem_perm.mode & SEM_ALLOC))
|
|
continue;
|
|
if (sem_list[i].semid_ds.sem_perm._key == key)
|
|
return &sem_list[i];
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Find a semaphore set by identifier. Return a pointer to the semaphore set
|
|
* if found, or NULL otherwise.
|
|
*/
|
|
static struct sem_struct *
|
|
sem_find_id(int id)
|
|
{
|
|
struct sem_struct *sem;
|
|
unsigned int i;
|
|
|
|
i = IPCID_TO_IX(id);
|
|
if (i >= sem_list_nr)
|
|
return NULL;
|
|
|
|
sem = &sem_list[i];
|
|
if (!(sem->semid_ds.sem_perm.mode & SEM_ALLOC))
|
|
return NULL;
|
|
if (sem->semid_ds.sem_perm._seq != IPCID_TO_SEQ(id))
|
|
return NULL;
|
|
return sem;
|
|
}
|
|
|
|
/*
|
|
* Implementation of the semget(2) system call.
|
|
*/
|
|
int
|
|
do_semget(message * m)
|
|
{
|
|
struct sem_struct *sem;
|
|
unsigned int i, seq;
|
|
key_t key;
|
|
int nsems, flag;
|
|
|
|
key = m->m_lc_ipc_semget.key;
|
|
nsems = m->m_lc_ipc_semget.nr;
|
|
flag = m->m_lc_ipc_semget.flag;
|
|
|
|
if (key != IPC_PRIVATE && (sem = sem_find_key(key)) != NULL) {
|
|
if ((flag & IPC_CREAT) && (flag & IPC_EXCL))
|
|
return EEXIST;
|
|
if (!check_perm(&sem->semid_ds.sem_perm, m->m_source, flag))
|
|
return EACCES;
|
|
if (nsems > sem->semid_ds.sem_nsems)
|
|
return EINVAL;
|
|
i = sem - sem_list;
|
|
} else {
|
|
if (key != IPC_PRIVATE && !(flag & IPC_CREAT))
|
|
return ENOENT;
|
|
if (nsems <= 0 || nsems > SEMMSL)
|
|
return EINVAL;
|
|
|
|
/* Find a free entry. */
|
|
for (i = 0; i < __arraycount(sem_list); i++)
|
|
if (!(sem_list[i].semid_ds.sem_perm.mode & SEM_ALLOC))
|
|
break;
|
|
if (i == __arraycount(sem_list))
|
|
return ENOSPC;
|
|
|
|
/* Initialize the entry. */
|
|
sem = &sem_list[i];
|
|
seq = sem->semid_ds.sem_perm._seq;
|
|
memset(sem, 0, sizeof(*sem));
|
|
sem->semid_ds.sem_perm._key = key;
|
|
sem->semid_ds.sem_perm.cuid =
|
|
sem->semid_ds.sem_perm.uid = getnuid(m->m_source);
|
|
sem->semid_ds.sem_perm.cgid =
|
|
sem->semid_ds.sem_perm.gid = getngid(m->m_source);
|
|
sem->semid_ds.sem_perm.mode = SEM_ALLOC | (flag & ACCESSPERMS);
|
|
sem->semid_ds.sem_perm._seq = (seq + 1) & 0x7fff;
|
|
sem->semid_ds.sem_nsems = nsems;
|
|
sem->semid_ds.sem_otime = 0;
|
|
sem->semid_ds.sem_ctime = clock_time(NULL);
|
|
TAILQ_INIT(&sem->waiters);
|
|
|
|
assert(i <= sem_list_nr);
|
|
if (i == sem_list_nr)
|
|
sem_list_nr++;
|
|
}
|
|
|
|
m->m_lc_ipc_semget.retid = IXSEQ_TO_IPCID(i, sem->semid_ds.sem_perm);
|
|
return OK;
|
|
}
|
|
|
|
/*
|
|
* Increase the proper suspension count (semncnt or semzcnt) of the semaphore
|
|
* on which the given process is blocked.
|
|
*/
|
|
static void
|
|
inc_susp_count(struct iproc * ip)
|
|
{
|
|
struct sembuf *blkop;
|
|
struct semaphore *sp;
|
|
|
|
blkop = ip->ip_blkop;
|
|
sp = &ip->ip_sem->sems[blkop->sem_num];
|
|
|
|
if (blkop->sem_op != 0) {
|
|
assert(sp->semncnt < USHRT_MAX);
|
|
sp->semncnt++;
|
|
} else {
|
|
assert(sp->semncnt < USHRT_MAX);
|
|
sp->semzcnt++;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Decrease the proper suspension count (semncnt or semzcnt) of the semaphore
|
|
* on which the given process is blocked.
|
|
*/
|
|
static void
|
|
dec_susp_count(struct iproc * ip)
|
|
{
|
|
struct sembuf *blkop;
|
|
struct semaphore *sp;
|
|
|
|
blkop = ip->ip_blkop;
|
|
sp = &ip->ip_sem->sems[blkop->sem_num];
|
|
|
|
if (blkop->sem_op != 0) {
|
|
assert(sp->semncnt > 0);
|
|
sp->semncnt--;
|
|
} else {
|
|
assert(sp->semzcnt > 0);
|
|
sp->semzcnt--;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Send a reply for a semop(2) call suspended earlier, thus waking up the
|
|
* process.
|
|
*/
|
|
static void
|
|
send_reply(endpoint_t who, int ret)
|
|
{
|
|
message m;
|
|
|
|
memset(&m, 0, sizeof(m));
|
|
m.m_type = ret;
|
|
|
|
ipc_sendnb(who, &m);
|
|
}
|
|
|
|
/*
|
|
* Satisfy or cancel the semop(2) call on which the given process is blocked,
|
|
* and send the given reply code (OK or a negative error code) to wake it up,
|
|
* unless the given code is EDONTREPLY.
|
|
*/
|
|
static void
|
|
complete_semop(struct iproc * ip, int code)
|
|
{
|
|
struct sem_struct *sem;
|
|
|
|
sem = ip->ip_sem;
|
|
|
|
assert(sem != NULL);
|
|
|
|
TAILQ_REMOVE(&sem->waiters, ip, ip_next);
|
|
|
|
dec_susp_count(ip);
|
|
|
|
assert(ip->ip_sops != NULL);
|
|
free(ip->ip_sops);
|
|
|
|
ip->ip_sops = NULL;
|
|
ip->ip_blkop = NULL;
|
|
ip->ip_sem = NULL;
|
|
|
|
if (code != EDONTREPLY)
|
|
send_reply(ip->ip_endpt, code);
|
|
}
|
|
|
|
/*
|
|
* Free up the given semaphore set. This includes cancelling any blocking
|
|
* semop(2) calls on any of its semaphores.
|
|
*/
|
|
static void
|
|
remove_set(struct sem_struct * sem)
|
|
{
|
|
struct iproc *ip;
|
|
|
|
/*
|
|
* Cancel all semop(2) operations on this semaphore set, with an EIDRM
|
|
* reply code.
|
|
*/
|
|
while (!TAILQ_EMPTY(&sem->waiters)) {
|
|
ip = TAILQ_FIRST(&sem->waiters);
|
|
|
|
complete_semop(ip, EIDRM);
|
|
}
|
|
|
|
/* Mark the entry as free. */
|
|
sem->semid_ds.sem_perm.mode &= ~SEM_ALLOC;
|
|
|
|
/*
|
|
* This may have been the last in-use slot in the list. Ensure that
|
|
* sem_list_nr again equals the highest in-use slot number plus one.
|
|
*/
|
|
while (sem_list_nr > 0 &&
|
|
!(sem_list[sem_list_nr - 1].semid_ds.sem_perm.mode & SEM_ALLOC))
|
|
sem_list_nr--;
|
|
}
|
|
|
|
/*
|
|
* Try to perform a set of semaphore operations, as given by semop(2), on a
|
|
* semaphore set. The entire action must be atomic, i.e., either succeed in
|
|
* its entirety or fail without making any changes. Return OK on success, in
|
|
* which case the PIDs of all affected semaphores will be updated to the given
|
|
* 'pid' value, and the semaphore set's sem_otime will be updated as well.
|
|
* Return SUSPEND if the call should be suspended, in which case 'blkop' will
|
|
* be set to a pointer to the operation causing the call to block. Return an
|
|
* error code if the call failed altogether.
|
|
*/
|
|
static int
|
|
try_semop(struct sem_struct *sem, struct sembuf *sops, unsigned int nsops,
|
|
pid_t pid, struct sembuf ** blkop)
|
|
{
|
|
struct semaphore *sp;
|
|
struct sembuf *op;
|
|
unsigned int i;
|
|
int r;
|
|
|
|
/*
|
|
* The operation must be processed atomically. However, it must also
|
|
* be processed "in array order," which we assume to mean that while
|
|
* processing one operation, the changes of the previous operations
|
|
* must be taken into account. This is relevant for cases where the
|
|
* same semaphore is referenced by more than one operation, for example
|
|
* to perform an atomic increase-if-zero action on a single semaphore.
|
|
* As a result, we must optimistically modify semaphore values and roll
|
|
* back on suspension or failure afterwards.
|
|
*/
|
|
r = OK;
|
|
op = NULL;
|
|
for (i = 0; i < nsops; i++) {
|
|
sp = &sem->sems[sops[i].sem_num];
|
|
op = &sops[i];
|
|
|
|
if (op->sem_op > 0) {
|
|
if (SEMVMX - sp->semval < op->sem_op) {
|
|
r = ERANGE;
|
|
break;
|
|
}
|
|
sp->semval += op->sem_op;
|
|
} else if (op->sem_op < 0) {
|
|
/*
|
|
* No SEMVMX check; if the process wants to deadlock
|
|
* itself by supplying -SEMVMX it is free to do so..
|
|
*/
|
|
if ((int)sp->semval < -(int)op->sem_op) {
|
|
r = (op->sem_flg & IPC_NOWAIT) ? EAGAIN :
|
|
SUSPEND;
|
|
break;
|
|
}
|
|
sp->semval += op->sem_op;
|
|
} else /* (op->sem_op == 0) */ {
|
|
if (sp->semval != 0) {
|
|
r = (op->sem_flg & IPC_NOWAIT) ? EAGAIN :
|
|
SUSPEND;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If we did not go through all the operations, then either an error
|
|
* occurred or the user process is to be suspended. In that case we
|
|
* must roll back any progress we have made so far, and return the
|
|
* operation that caused the call to block.
|
|
*/
|
|
if (i < nsops) {
|
|
assert(op != NULL);
|
|
*blkop = op;
|
|
|
|
/* Roll back all changes made so far. */
|
|
while (i-- > 0)
|
|
sem->sems[sops[i].sem_num].semval -= sops[i].sem_op;
|
|
|
|
assert(r != OK);
|
|
return r;
|
|
}
|
|
|
|
/*
|
|
* The operation has completed successfully. Also update all affected
|
|
* semaphores' PID values, and the semaphore set's last-semop time.
|
|
* The caller must do everything else.
|
|
*/
|
|
for (i = 0; i < nsops; i++)
|
|
sem->sems[sops[i].sem_num].sempid = pid;
|
|
|
|
sem->semid_ds.sem_otime = clock_time(NULL);
|
|
|
|
return OK;
|
|
}
|
|
|
|
/*
|
|
* Check whether any blocked operations can now be satisfied on any of the
|
|
* semaphores in the given semaphore set. Do this repeatedly as necessary, as
|
|
* any unblocked operation may in turn allow other operations to be resumed.
|
|
*/
|
|
static void
|
|
check_set(struct sem_struct * sem)
|
|
{
|
|
struct iproc *ip, *nextip;
|
|
struct sembuf *blkop;
|
|
int r, woken_up;
|
|
|
|
/*
|
|
* Go through all the waiting processes in FIFO order, which is our
|
|
* best attempt at providing at least some fairness. Keep trying as
|
|
* long as we woke up at least one process, which means we made actual
|
|
* progress.
|
|
*/
|
|
do {
|
|
woken_up = FALSE;
|
|
|
|
TAILQ_FOREACH_SAFE(ip, &sem->waiters, ip_next, nextip) {
|
|
/* Retry the entire semop(2) operation, atomically. */
|
|
r = try_semop(ip->ip_sem, ip->ip_sops, ip->ip_nsops,
|
|
ip->ip_pid, &blkop);
|
|
|
|
if (r != SUSPEND) {
|
|
/* Success or failure. */
|
|
complete_semop(ip, r);
|
|
|
|
/* No changes are made on failure. */
|
|
if (r == OK)
|
|
woken_up = TRUE;
|
|
} else if (blkop != ip->ip_blkop) {
|
|
/*
|
|
* The process stays suspended, but it is now
|
|
* blocked on a different semaphore. As a
|
|
* result, we need to adjust the semaphores'
|
|
* suspension counts.
|
|
*/
|
|
dec_susp_count(ip);
|
|
|
|
ip->ip_blkop = blkop;
|
|
|
|
inc_susp_count(ip);
|
|
}
|
|
}
|
|
} while (woken_up);
|
|
}
|
|
|
|
/*
|
|
* Implementation of the semctl(2) system call.
|
|
*/
|
|
int
|
|
do_semctl(message * m)
|
|
{
|
|
static unsigned short valbuf[SEMMSL];
|
|
unsigned int i;
|
|
vir_bytes opt;
|
|
uid_t uid;
|
|
int r, id, num, cmd, val;
|
|
struct semid_ds tmp_ds;
|
|
struct sem_struct *sem;
|
|
struct seminfo sinfo;
|
|
|
|
id = m->m_lc_ipc_semctl.id;
|
|
num = m->m_lc_ipc_semctl.num;
|
|
cmd = m->m_lc_ipc_semctl.cmd;
|
|
opt = m->m_lc_ipc_semctl.opt;
|
|
|
|
/*
|
|
* Look up the target semaphore set. The IPC_INFO and SEM_INFO
|
|
* commands have no associated semaphore set. The SEM_STAT command
|
|
* takes an array index into the semaphore set table. For all other
|
|
* commands, look up the semaphore set by its given identifier.
|
|
* */
|
|
switch (cmd) {
|
|
case IPC_INFO:
|
|
case SEM_INFO:
|
|
sem = NULL;
|
|
break;
|
|
case SEM_STAT:
|
|
if (id < 0 || (unsigned int)id >= sem_list_nr)
|
|
return EINVAL;
|
|
sem = &sem_list[id];
|
|
if (!(sem->semid_ds.sem_perm.mode & SEM_ALLOC))
|
|
return EINVAL;
|
|
break;
|
|
default:
|
|
if ((sem = sem_find_id(id)) == NULL)
|
|
return EINVAL;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Check if the caller has the appropriate permissions on the target
|
|
* semaphore set. SETVAL and SETALL require write permission. IPC_SET
|
|
* and IPC_RMID require ownership permission, and return EPERM instead
|
|
* of EACCES on failure. IPC_INFO and SEM_INFO are free for general
|
|
* use. All other calls require read permission.
|
|
*/
|
|
switch (cmd) {
|
|
case SETVAL:
|
|
case SETALL:
|
|
assert(sem != NULL);
|
|
if (!check_perm(&sem->semid_ds.sem_perm, m->m_source, IPC_W))
|
|
return EACCES;
|
|
break;
|
|
case IPC_SET:
|
|
case IPC_RMID:
|
|
assert(sem != NULL);
|
|
uid = getnuid(m->m_source);
|
|
if (uid != sem->semid_ds.sem_perm.cuid &&
|
|
uid != sem->semid_ds.sem_perm.uid && uid != 0)
|
|
return EPERM;
|
|
break;
|
|
case IPC_INFO:
|
|
case SEM_INFO:
|
|
break;
|
|
default:
|
|
assert(sem != NULL);
|
|
if (!check_perm(&sem->semid_ds.sem_perm, m->m_source, IPC_R))
|
|
return EACCES;
|
|
}
|
|
|
|
switch (cmd) {
|
|
case IPC_STAT:
|
|
case SEM_STAT:
|
|
if ((r = sys_datacopy(SELF, (vir_bytes)&sem->semid_ds,
|
|
m->m_source, opt, sizeof(sem->semid_ds))) != OK)
|
|
return r;
|
|
if (cmd == SEM_STAT)
|
|
m->m_lc_ipc_semctl.ret =
|
|
IXSEQ_TO_IPCID(id, sem->semid_ds.sem_perm);
|
|
break;
|
|
case IPC_SET:
|
|
if ((r = sys_datacopy(m->m_source, opt, SELF,
|
|
(vir_bytes)&tmp_ds, sizeof(tmp_ds))) != OK)
|
|
return r;
|
|
sem->semid_ds.sem_perm.uid = tmp_ds.sem_perm.uid;
|
|
sem->semid_ds.sem_perm.gid = tmp_ds.sem_perm.gid;
|
|
sem->semid_ds.sem_perm.mode &= ~ACCESSPERMS;
|
|
sem->semid_ds.sem_perm.mode |=
|
|
tmp_ds.sem_perm.mode & ACCESSPERMS;
|
|
sem->semid_ds.sem_ctime = clock_time(NULL);
|
|
break;
|
|
case IPC_RMID:
|
|
/*
|
|
* Awaken all processes blocked in semop(2) on any semaphore in
|
|
* this set, and remove the semaphore set itself.
|
|
*/
|
|
remove_set(sem);
|
|
break;
|
|
case IPC_INFO:
|
|
case SEM_INFO:
|
|
memset(&sinfo, 0, sizeof(sinfo));
|
|
sinfo.semmap = SEMMNI;
|
|
sinfo.semmni = SEMMNI;
|
|
sinfo.semmns = SEMMNI * SEMMSL;
|
|
sinfo.semmnu = 0; /* TODO: support for SEM_UNDO */
|
|
sinfo.semmsl = SEMMSL;
|
|
sinfo.semopm = SEMOPM;
|
|
sinfo.semume = 0; /* TODO: support for SEM_UNDO */
|
|
if (cmd == SEM_INFO) {
|
|
/*
|
|
* For SEM_INFO the semusz field is expected to contain
|
|
* the number of semaphore sets currently in use.
|
|
*/
|
|
sinfo.semusz = sem_list_nr;
|
|
} else
|
|
sinfo.semusz = 0; /* TODO: support for SEM_UNDO */
|
|
sinfo.semvmx = SEMVMX;
|
|
if (cmd == SEM_INFO) {
|
|
/*
|
|
* For SEM_INFO the semaem field is expected to contain
|
|
* the total number of allocated semaphores.
|
|
*/
|
|
for (i = 0; i < sem_list_nr; i++)
|
|
sinfo.semaem += sem_list[i].semid_ds.sem_nsems;
|
|
} else
|
|
sinfo.semaem = 0; /* TODO: support for SEM_UNDO */
|
|
|
|
if ((r = sys_datacopy(SELF, (vir_bytes)&sinfo, m->m_source,
|
|
opt, sizeof(sinfo))) != OK)
|
|
return r;
|
|
/* Return the highest in-use slot number if any, or zero. */
|
|
if (sem_list_nr > 0)
|
|
m->m_lc_ipc_semctl.ret = sem_list_nr - 1;
|
|
else
|
|
m->m_lc_ipc_semctl.ret = 0;
|
|
break;
|
|
case GETALL:
|
|
assert(sem->semid_ds.sem_nsems <= __arraycount(valbuf));
|
|
for (i = 0; i < sem->semid_ds.sem_nsems; i++)
|
|
valbuf[i] = sem->sems[i].semval;
|
|
r = sys_datacopy(SELF, (vir_bytes)valbuf, m->m_source,
|
|
opt, sizeof(unsigned short) * sem->semid_ds.sem_nsems);
|
|
if (r != OK)
|
|
return r;
|
|
break;
|
|
case GETNCNT:
|
|
if (num < 0 || num >= sem->semid_ds.sem_nsems)
|
|
return EINVAL;
|
|
m->m_lc_ipc_semctl.ret = sem->sems[num].semncnt;
|
|
break;
|
|
case GETPID:
|
|
if (num < 0 || num >= sem->semid_ds.sem_nsems)
|
|
return EINVAL;
|
|
m->m_lc_ipc_semctl.ret = sem->sems[num].sempid;
|
|
break;
|
|
case GETVAL:
|
|
if (num < 0 || num >= sem->semid_ds.sem_nsems)
|
|
return EINVAL;
|
|
m->m_lc_ipc_semctl.ret = sem->sems[num].semval;
|
|
break;
|
|
case GETZCNT:
|
|
if (num < 0 || num >= sem->semid_ds.sem_nsems)
|
|
return EINVAL;
|
|
m->m_lc_ipc_semctl.ret = sem->sems[num].semzcnt;
|
|
break;
|
|
case SETALL:
|
|
assert(sem->semid_ds.sem_nsems <= __arraycount(valbuf));
|
|
r = sys_datacopy(m->m_source, opt, SELF, (vir_bytes)valbuf,
|
|
sizeof(unsigned short) * sem->semid_ds.sem_nsems);
|
|
if (r != OK)
|
|
return r;
|
|
for (i = 0; i < sem->semid_ds.sem_nsems; i++)
|
|
if (valbuf[i] > SEMVMX)
|
|
return ERANGE;
|
|
#ifdef DEBUG_SEM
|
|
for (i = 0; i < sem->semid_ds.sem_nsems; i++)
|
|
printf("SEMCTL: SETALL val: [%d] %d\n", i, valbuf[i]);
|
|
#endif
|
|
for (i = 0; i < sem->semid_ds.sem_nsems; i++)
|
|
sem->sems[i].semval = valbuf[i];
|
|
sem->semid_ds.sem_ctime = clock_time(NULL);
|
|
/* Awaken any waiting parties if now possible. */
|
|
check_set(sem);
|
|
break;
|
|
case SETVAL:
|
|
val = (int)opt;
|
|
if (num < 0 || num >= sem->semid_ds.sem_nsems)
|
|
return EINVAL;
|
|
if (val < 0 || val > SEMVMX)
|
|
return ERANGE;
|
|
sem->sems[num].semval = val;
|
|
#ifdef DEBUG_SEM
|
|
printf("SEMCTL: SETVAL: %d %d\n", num, val);
|
|
#endif
|
|
sem->semid_ds.sem_ctime = clock_time(NULL);
|
|
/* Awaken any waiting parties if now possible. */
|
|
check_set(sem);
|
|
break;
|
|
default:
|
|
return EINVAL;
|
|
}
|
|
|
|
return OK;
|
|
}
|
|
|
|
/*
|
|
* Implementation of the semop(2) system call.
|
|
*/
|
|
int
|
|
do_semop(message * m)
|
|
{
|
|
unsigned int i, mask, slot;
|
|
int id, r;
|
|
struct sembuf *sops, *blkop;
|
|
unsigned int nsops;
|
|
struct sem_struct *sem;
|
|
struct iproc *ip;
|
|
pid_t pid;
|
|
|
|
id = m->m_lc_ipc_semop.id;
|
|
nsops = m->m_lc_ipc_semop.size;
|
|
|
|
if ((sem = sem_find_id(id)) == NULL)
|
|
return EINVAL;
|
|
|
|
if (nsops == 0)
|
|
return OK; /* nothing to do */
|
|
if (nsops > SEMOPM)
|
|
return E2BIG;
|
|
|
|
/* Get the array from the user process. */
|
|
sops = malloc(sizeof(sops[0]) * nsops);
|
|
if (sops == NULL)
|
|
return ENOMEM;
|
|
r = sys_datacopy(m->m_source, (vir_bytes)m->m_lc_ipc_semop.ops, SELF,
|
|
(vir_bytes)sops, sizeof(sops[0]) * nsops);
|
|
if (r != OK)
|
|
goto out_free;
|
|
|
|
#ifdef DEBUG_SEM
|
|
for (i = 0; i < nsops; i++)
|
|
printf("SEMOP: num:%d op:%d flg:%d\n",
|
|
sops[i].sem_num, sops[i].sem_op, sops[i].sem_flg);
|
|
#endif
|
|
/*
|
|
* Check for permissions. We do this only once, even though the call
|
|
* might suspend and the semaphore set's permissions might be changed
|
|
* before the call resumes. The specification is not clear on this.
|
|
* Either way, perform the permission check before checking on the
|
|
* validity of semaphore numbers, since obtaining the semaphore set
|
|
* size itself requires read permission (except through sysctl(2)..).
|
|
*/
|
|
mask = 0;
|
|
for (i = 0; i < nsops; i++) {
|
|
if (sops[i].sem_op != 0)
|
|
mask |= IPC_W; /* check for write permission */
|
|
else
|
|
mask |= IPC_R; /* check for read permission */
|
|
}
|
|
r = EACCES;
|
|
if (!check_perm(&sem->semid_ds.sem_perm, m->m_source, mask))
|
|
goto out_free;
|
|
|
|
/* Check that all given semaphore numbers are within range. */
|
|
r = EFBIG;
|
|
for (i = 0; i < nsops; i++)
|
|
if (sops[i].sem_num >= sem->semid_ds.sem_nsems)
|
|
goto out_free;
|
|
|
|
/*
|
|
* Do not check if the same semaphore is referenced more than once
|
|
* (there was such a check here originally), because that is actually
|
|
* a valid case. The result is however that it is possible to
|
|
* construct a semop(2) request that will never complete, and thus,
|
|
* care must be taken that such requests do not create potential
|
|
* deadlock situations etc.
|
|
*/
|
|
|
|
pid = getnpid(m->m_source);
|
|
|
|
/*
|
|
* We do not yet support SEM_UNDO at all, so we better not give the
|
|
* caller the impression that we do. For now, print a warning so that
|
|
* we know when an application actually fails for that reason.
|
|
*/
|
|
for (i = 0; i < nsops; i++) {
|
|
if (sops[i].sem_flg & SEM_UNDO) {
|
|
/* Print a warning only if this isn't the test set.. */
|
|
if (sops[i].sem_flg != SHRT_MAX)
|
|
printf("IPC: pid %d tried to use SEM_UNDO\n",
|
|
pid);
|
|
r = EINVAL;
|
|
goto out_free;
|
|
}
|
|
}
|
|
|
|
/* Try to perform the operation now. */
|
|
r = try_semop(sem, sops, nsops, pid, &blkop);
|
|
|
|
if (r == SUSPEND) {
|
|
/*
|
|
* The operation ended up blocking on a particular semaphore
|
|
* operation. Save all details in the slot for the user
|
|
* process, and add it to the list of processes waiting for
|
|
* this semaphore set.
|
|
*/
|
|
slot = _ENDPOINT_P(m->m_source);
|
|
assert(slot < __arraycount(iproc));
|
|
|
|
ip = &iproc[slot];
|
|
assert(ip->ip_sem == NULL); /* can't already be in use */
|
|
|
|
ip->ip_endpt = m->m_source;
|
|
ip->ip_pid = pid;
|
|
ip->ip_sem = sem;
|
|
ip->ip_sops = sops;
|
|
ip->ip_nsops = nsops;
|
|
ip->ip_blkop = blkop;
|
|
|
|
TAILQ_INSERT_TAIL(&sem->waiters, ip, ip_next);
|
|
|
|
inc_susp_count(ip);
|
|
|
|
return r;
|
|
}
|
|
|
|
out_free:
|
|
free(sops);
|
|
|
|
/* Awaken any other waiting parties if now possible. */
|
|
if (r == OK)
|
|
check_set(sem);
|
|
|
|
return r;
|
|
}
|
|
|
|
/*
|
|
* Return TRUE iff no semaphore sets are allocated.
|
|
*/
|
|
int
|
|
is_sem_nil(void)
|
|
{
|
|
|
|
return (sem_list_nr == 0);
|
|
}
|
|
|
|
/*
|
|
* Check if the given endpoint is blocked on a semop(2) call. If so, cancel
|
|
* the call, because either it is interrupted by a signal or the process was
|
|
* killed. In the former case, unblock the process by replying with EINTR.
|
|
*/
|
|
void
|
|
sem_process_event(endpoint_t endpt, int has_exited)
|
|
{
|
|
unsigned int slot;
|
|
struct iproc *ip;
|
|
|
|
slot = _ENDPOINT_P(endpt);
|
|
assert(slot < __arraycount(iproc));
|
|
|
|
ip = &iproc[slot];
|
|
|
|
/* Was the process blocked on a semop(2) call at all? */
|
|
if (ip->ip_sem == NULL)
|
|
return;
|
|
|
|
assert(ip->ip_endpt == endpt);
|
|
|
|
/*
|
|
* It was; cancel the semop(2) call. If the process is being removed
|
|
* because its call was interrupted by a signal, then we must wake it
|
|
* up with EINTR.
|
|
*/
|
|
complete_semop(ip, has_exited ? EDONTREPLY : EINTR);
|
|
}
|