 9e1d244cbe
			
		
	
	
		9e1d244cbe
		
	
	
	
	
		
			
			- non need to have free PDEs per CPU since we only run one instance of the kernel at any time
		
			
				
	
	
		
			1114 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1114 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| 
 | |
| #include "kernel/kernel.h"
 | |
| #include "kernel/proc.h"
 | |
| #include "kernel/vm.h"
 | |
| 
 | |
| #include <machine/vm.h>
 | |
| 
 | |
| #include <minix/type.h>
 | |
| #include <minix/syslib.h>
 | |
| #include <minix/cpufeature.h>
 | |
| #include <string.h>
 | |
| #include <assert.h>
 | |
| #include <signal.h>
 | |
| #include <stdlib.h>
 | |
| 
 | |
| #include <machine/vm.h>
 | |
| 
 | |
| #include "oxpcie.h"
 | |
| #include "arch_proto.h"
 | |
| #include "kernel/proto.h"
 | |
| #include "kernel/debug.h"
 | |
| 
 | |
| #ifdef USE_APIC
 | |
| #include "apic.h"
 | |
| #ifdef USE_WATCHDOG
 | |
| #include "kernel/watchdog.h"
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| PUBLIC int i386_paging_enabled = 0;
 | |
| 
 | |
| PRIVATE int psok = 0;
 | |
| 
 | |
| #define MAX_FREEPDES	2
 | |
| PRIVATE int nfreepdes = 0, freepdes[MAX_FREEPDES];
 | |
| 
 | |
| #define HASPT(procptr) ((procptr)->p_seg.p_cr3 != 0)
 | |
| 
 | |
| FORWARD _PROTOTYPE( u32_t phys_get32, (phys_bytes v)			);
 | |
| FORWARD _PROTOTYPE( void vm_enable_paging, (void)			);
 | |
| 
 | |
| 	
 | |
| PUBLIC void segmentation2paging(struct proc * current)
 | |
| {
 | |
| 	/* switch to the current process page tables before turning paging on */
 | |
| 	switch_address_space(current);
 | |
| 	vm_enable_paging();
 | |
| }
 | |
| 
 | |
| /* This function sets up a mapping from within the kernel's address
 | |
|  * space to any other area of memory, either straight physical
 | |
|  * memory (pr == NULL) or a process view of memory, in 4MB windows.
 | |
|  * I.e., it maps in 4MB chunks of virtual (or physical) address space
 | |
|  * to 4MB chunks of kernel virtual address space.
 | |
|  *
 | |
|  * It recognizes pr already being in memory as a special case (no
 | |
|  * mapping required).
 | |
|  *
 | |
|  * The target (i.e. in-kernel) mapping area is one of the freepdes[]
 | |
|  * VM has earlier already told the kernel about that is available. It is
 | |
|  * identified as the 'pde' parameter. This value can be chosen freely
 | |
|  * by the caller, as long as it is in range (i.e. 0 or higher and corresonds
 | |
|  * to a known freepde slot). It is up to the caller to keep track of which
 | |
|  * freepde's are in use, and to determine which ones are free to use.
 | |
|  *
 | |
|  * The logical number supplied by the caller is translated into an actual
 | |
|  * pde number to be used, and a pointer to it (linear address) is returned
 | |
|  * for actual use by phys_copy or phys_memset.
 | |
|  */
 | |
| PRIVATE phys_bytes createpde(
 | |
| 	const struct proc *pr,	/* Requested process, NULL for physical. */
 | |
| 	const phys_bytes linaddr,/* Address after segment translation. */
 | |
| 	phys_bytes *bytes,	/* Size of chunk, function may truncate it. */
 | |
| 	int free_pde_idx,	/* index of the free slot to use */
 | |
| 	int *changed		/* If mapping is made, this is set to 1. */
 | |
| 	)
 | |
| {
 | |
| 	u32_t pdeval;
 | |
| 	phys_bytes offset;
 | |
| 	int pde;
 | |
| 
 | |
| 	assert(free_pde_idx >= 0 && free_pde_idx < nfreepdes);
 | |
| 	pde = freepdes[free_pde_idx];
 | |
| 	assert(pde >= 0 && pde < 1024);
 | |
| 
 | |
| 	if(pr && ((pr == get_cpulocal_var(ptproc)) || !HASPT(pr))) {
 | |
| 		/* Process memory is requested, and
 | |
| 		 * it's a process that is already in current page table, or
 | |
| 		 * a process that is in every page table.
 | |
| 		 * Therefore linaddr is valid directly, with the requested
 | |
| 		 * size.
 | |
| 		 */
 | |
| 		return linaddr;
 | |
| 	}
 | |
| 
 | |
| 	if(pr) {
 | |
| 		/* Requested address is in a process that is not currently
 | |
| 		 * accessible directly. Grab the PDE entry of that process'
 | |
| 		 * page table that corresponds to the requested address.
 | |
| 		 */
 | |
| 		assert(pr->p_seg.p_cr3_v);
 | |
| 		pdeval = pr->p_seg.p_cr3_v[I386_VM_PDE(linaddr)];
 | |
| 	} else {
 | |
| 		/* Requested address is physical. Make up the PDE entry. */
 | |
| 		pdeval = (linaddr & I386_VM_ADDR_MASK_4MB) | 
 | |
| 			I386_VM_BIGPAGE | I386_VM_PRESENT | 
 | |
| 			I386_VM_WRITE | I386_VM_USER;
 | |
| 	}
 | |
| 
 | |
| 	/* Write the pde value that we need into a pde that the kernel
 | |
| 	 * can access, into the currently loaded page table so it becomes
 | |
| 	 * visible.
 | |
| 	 */
 | |
| 	assert(get_cpulocal_var(ptproc)->p_seg.p_cr3_v);
 | |
| 	if(get_cpulocal_var(ptproc)->p_seg.p_cr3_v[pde] != pdeval) {
 | |
| 		get_cpulocal_var(ptproc)->p_seg.p_cr3_v[pde] = pdeval;
 | |
| 		*changed = 1;
 | |
| 	}
 | |
| 
 | |
| 	/* Memory is now available, but only the 4MB window of virtual
 | |
| 	 * address space that we have mapped; calculate how much of
 | |
| 	 * the requested range is visible and return that in *bytes,
 | |
| 	 * if that is less than the requested range.
 | |
| 	 */
 | |
| 	offset = linaddr & I386_VM_OFFSET_MASK_4MB; /* Offset in 4MB window. */
 | |
| 	*bytes = MIN(*bytes, I386_BIG_PAGE_SIZE - offset); 
 | |
| 
 | |
| 	/* Return the linear address of the start of the new mapping. */
 | |
| 	return I386_BIG_PAGE_SIZE*pde + offset;
 | |
| }
 | |
|   
 | |
| /*===========================================================================*
 | |
|  *				lin_lin_copy				     *
 | |
|  *===========================================================================*/
 | |
| PRIVATE int lin_lin_copy(struct proc *srcproc, vir_bytes srclinaddr, 
 | |
| 	struct proc *dstproc, vir_bytes dstlinaddr, vir_bytes bytes)
 | |
| {
 | |
| 	u32_t addr;
 | |
| 	proc_nr_t procslot;
 | |
| 
 | |
| 	assert(vm_running);
 | |
| 	assert(nfreepdes >= MAX_FREEPDES);
 | |
| 
 | |
| 	assert(get_cpulocal_var(ptproc));
 | |
| 	assert(get_cpulocal_var(proc_ptr));
 | |
| 	assert(read_cr3() == get_cpulocal_var(ptproc)->p_seg.p_cr3);
 | |
| 
 | |
| 	procslot = get_cpulocal_var(ptproc)->p_nr;
 | |
| 
 | |
| 	assert(procslot >= 0 && procslot < I386_VM_DIR_ENTRIES);
 | |
| 
 | |
| 	if(srcproc) assert(!RTS_ISSET(srcproc, RTS_SLOT_FREE));
 | |
| 	if(dstproc) assert(!RTS_ISSET(dstproc, RTS_SLOT_FREE));
 | |
| 	assert(!RTS_ISSET(get_cpulocal_var(ptproc), RTS_SLOT_FREE));
 | |
| 	assert(get_cpulocal_var(ptproc)->p_seg.p_cr3_v);
 | |
| 	if(srcproc) assert(!RTS_ISSET(srcproc, RTS_VMINHIBIT));
 | |
| 	if(dstproc) assert(!RTS_ISSET(dstproc, RTS_VMINHIBIT));
 | |
| 
 | |
| 	while(bytes > 0) {
 | |
| 		phys_bytes srcptr, dstptr;
 | |
| 		vir_bytes chunk = bytes;
 | |
| 		int changed = 0;
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 		unsigned cpu = cpuid;
 | |
| 
 | |
| 		if (GET_BIT(srcproc->p_stale_tlb, cpu)) {
 | |
| 			changed = 1;
 | |
| 			UNSET_BIT(srcproc->p_stale_tlb, cpu);
 | |
| 		}
 | |
| 		if (GET_BIT(dstproc->p_stale_tlb, cpu)) {
 | |
| 			changed = 1;
 | |
| 			UNSET_BIT(dstproc->p_stale_tlb, cpu);
 | |
| 		}
 | |
| #endif
 | |
| 
 | |
| 		/* Set up 4MB ranges. */
 | |
| 		srcptr = createpde(srcproc, srclinaddr, &chunk, 0, &changed);
 | |
| 		dstptr = createpde(dstproc, dstlinaddr, &chunk, 1, &changed);
 | |
| 		if(changed)
 | |
| 			reload_cr3(); 
 | |
| 
 | |
| 		/* Copy pages. */
 | |
| 		PHYS_COPY_CATCH(srcptr, dstptr, chunk, addr);
 | |
| 
 | |
| 		if(addr) {
 | |
| 			/* If addr is nonzero, a page fault was caught. */
 | |
| 
 | |
| 			if(addr >= srcptr && addr < (srcptr + chunk)) {
 | |
| 				return EFAULT_SRC;
 | |
| 			}
 | |
| 			if(addr >= dstptr && addr < (dstptr + chunk)) {
 | |
| 				return EFAULT_DST;
 | |
| 			}
 | |
| 
 | |
| 			panic("lin_lin_copy fault out of range");
 | |
| 
 | |
| 			/* Not reached. */
 | |
| 			return EFAULT;
 | |
| 		}
 | |
| 
 | |
| 		/* Update counter and addresses for next iteration, if any. */
 | |
| 		bytes -= chunk;
 | |
| 		srclinaddr += chunk;
 | |
| 		dstlinaddr += chunk;
 | |
| 	}
 | |
| 
 | |
| 	if(srcproc) assert(!RTS_ISSET(srcproc, RTS_SLOT_FREE));
 | |
| 	if(dstproc) assert(!RTS_ISSET(dstproc, RTS_SLOT_FREE));
 | |
| 	assert(!RTS_ISSET(get_cpulocal_var(ptproc), RTS_SLOT_FREE));
 | |
| 	assert(get_cpulocal_var(ptproc)->p_seg.p_cr3_v);
 | |
| 
 | |
| 	return OK;
 | |
| }
 | |
| 
 | |
| 
 | |
| PRIVATE u32_t phys_get32(phys_bytes addr)
 | |
| {
 | |
| 	const u32_t v;
 | |
| 	int r;
 | |
| 
 | |
| 	if(!vm_running) {
 | |
| 		phys_copy(addr, vir2phys(&v), sizeof(v));
 | |
| 		return v;
 | |
| 	}
 | |
| 
 | |
| 	if((r=lin_lin_copy(NULL, addr, 
 | |
| 		proc_addr(SYSTEM), vir2phys(&v), sizeof(v))) != OK) {
 | |
| 		panic("lin_lin_copy for phys_get32 failed: %d",  r);
 | |
| 	}
 | |
| 
 | |
| 	return v;
 | |
| }
 | |
| 
 | |
| #if 0
 | |
| PRIVATE char *cr0_str(u32_t e)
 | |
| {
 | |
| 	static char str[80];
 | |
| 	strcpy(str, "");
 | |
| #define FLAG(v) do { if(e & (v)) { strcat(str, #v " "); e &= ~v; } } while(0)
 | |
| 	FLAG(I386_CR0_PE);
 | |
| 	FLAG(I386_CR0_MP);
 | |
| 	FLAG(I386_CR0_EM);
 | |
| 	FLAG(I386_CR0_TS);
 | |
| 	FLAG(I386_CR0_ET);
 | |
| 	FLAG(I386_CR0_PG);
 | |
| 	FLAG(I386_CR0_WP);
 | |
| 	if(e) { strcat(str, " (++)"); }
 | |
| 	return str;
 | |
| }
 | |
| 
 | |
| PRIVATE char *cr4_str(u32_t e)
 | |
| {
 | |
| 	static char str[80];
 | |
| 	strcpy(str, "");
 | |
| 	FLAG(I386_CR4_VME);
 | |
| 	FLAG(I386_CR4_PVI);
 | |
| 	FLAG(I386_CR4_TSD);
 | |
| 	FLAG(I386_CR4_DE);
 | |
| 	FLAG(I386_CR4_PSE);
 | |
| 	FLAG(I386_CR4_PAE);
 | |
| 	FLAG(I386_CR4_MCE);
 | |
| 	FLAG(I386_CR4_PGE);
 | |
| 	if(e) { strcat(str, " (++)"); }
 | |
| 	return str;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| PUBLIC void vm_stop(void)
 | |
| {
 | |
| 	write_cr0(read_cr0() & ~I386_CR0_PG);
 | |
| }
 | |
| 
 | |
| PRIVATE void vm_enable_paging(void)
 | |
| {
 | |
| 	u32_t cr0, cr4;
 | |
| 	int pgeok;
 | |
| 
 | |
| 	psok = _cpufeature(_CPUF_I386_PSE);
 | |
| 	pgeok = _cpufeature(_CPUF_I386_PGE);
 | |
| 
 | |
| 	cr0= read_cr0();
 | |
| 	cr4= read_cr4();
 | |
| 
 | |
| 	/* First clear PG and PGE flag, as PGE must be enabled after PG. */
 | |
| 	write_cr0(cr0 & ~I386_CR0_PG);
 | |
| 	write_cr4(cr4 & ~(I386_CR4_PGE | I386_CR4_PSE));
 | |
| 
 | |
| 	cr0= read_cr0();
 | |
| 	cr4= read_cr4();
 | |
| 
 | |
| 	/* Our first page table contains 4MB entries. */
 | |
| 	if(psok)
 | |
| 		cr4 |= I386_CR4_PSE;
 | |
| 
 | |
| 	write_cr4(cr4);
 | |
| 
 | |
| 	/* First enable paging, then enable global page flag. */
 | |
| 	cr0 |= I386_CR0_PG;
 | |
| 	write_cr0(cr0 );
 | |
| 	cr0 |= I386_CR0_WP;
 | |
| 	write_cr0(cr0);
 | |
| 
 | |
| 	/* May we enable these features? */
 | |
| 	if(pgeok)
 | |
| 		cr4 |= I386_CR4_PGE;
 | |
| 
 | |
| 	write_cr4(cr4);
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *                              umap_local                                   *
 | |
|  *===========================================================================*/
 | |
| PUBLIC phys_bytes umap_local(rp, seg, vir_addr, bytes)
 | |
| register struct proc *rp;       /* pointer to proc table entry for process */
 | |
| int seg;                        /* T, D, or S segment */
 | |
| vir_bytes vir_addr;             /* virtual address in bytes within the seg */
 | |
| vir_bytes bytes;                /* # of bytes to be copied */
 | |
| {
 | |
| /* Calculate the physical memory address for a given virtual address. */
 | |
|   vir_clicks vc;                /* the virtual address in clicks */
 | |
|   phys_bytes pa;                /* intermediate variables as phys_bytes */
 | |
|   phys_bytes seg_base;
 | |
| 
 | |
|   if(seg != T && seg != D && seg != S)
 | |
| 	panic("umap_local: wrong seg: %d",  seg);
 | |
| 
 | |
|   if (bytes <= 0) return( (phys_bytes) 0);
 | |
|   if (vir_addr + bytes <= vir_addr) return 0;   /* overflow */
 | |
|   vc = (vir_addr + bytes - 1) >> CLICK_SHIFT;   /* last click of data */
 | |
|  
 | |
|   if (seg != T)
 | |
|         seg = (vc < rp->p_memmap[D].mem_vir + rp->p_memmap[D].mem_len ? D : S);
 | |
|   else if (rp->p_memmap[T].mem_len == 0)	/* common I&D? */
 | |
|         seg = D;				/* ptrace needs this */
 | |
|  
 | |
|   if ((vir_addr>>CLICK_SHIFT) >= rp->p_memmap[seg].mem_vir +
 | |
|         rp->p_memmap[seg].mem_len) return( (phys_bytes) 0 );
 | |
|  
 | |
|   if (vc >= rp->p_memmap[seg].mem_vir +
 | |
|         rp->p_memmap[seg].mem_len) return( (phys_bytes) 0 );
 | |
|   
 | |
|   seg_base = (phys_bytes) rp->p_memmap[seg].mem_phys;
 | |
|   seg_base = seg_base << CLICK_SHIFT;   /* segment origin in bytes */
 | |
|   pa = (phys_bytes) vir_addr;
 | |
|   pa -= rp->p_memmap[seg].mem_vir << CLICK_SHIFT;
 | |
|   return(seg_base + pa);
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *                              umap_virtual                                 *
 | |
|  *===========================================================================*/
 | |
| PUBLIC phys_bytes umap_virtual(rp, seg, vir_addr, bytes)
 | |
| register struct proc *rp;       /* pointer to proc table entry for process */
 | |
| int seg;                        /* T, D, or S segment */
 | |
| vir_bytes vir_addr;             /* virtual address in bytes within the seg */
 | |
| vir_bytes bytes;                /* # of bytes to be copied */
 | |
| {
 | |
| 	vir_bytes linear;
 | |
| 	phys_bytes phys = 0;
 | |
| 
 | |
| 	if(!(linear = umap_local(rp, seg, vir_addr, bytes))) {
 | |
| 			printf("SYSTEM:umap_virtual: umap_local failed\n");
 | |
| 			phys = 0;
 | |
| 		} else {
 | |
| 			if(vm_lookup(rp, linear, &phys, NULL) != OK) {
 | |
| 				printf("SYSTEM:umap_virtual: vm_lookup of %s: seg 0x%x: 0x%lx failed\n", rp->p_name, seg, vir_addr);
 | |
| 				phys = 0;
 | |
| 			} else {
 | |
| 				if(phys == 0)
 | |
| 					panic("vm_lookup returned phys: %d",  phys);
 | |
| 			}
 | |
| 		}
 | |
| 	
 | |
| 
 | |
| 	if(phys == 0) {
 | |
| 		printf("SYSTEM:umap_virtual: lookup failed\n");
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* Now make sure addresses are contiguous in physical memory
 | |
| 	 * so that the umap makes sense.
 | |
| 	 */
 | |
| 	if(bytes > 0 && !vm_contiguous(rp, linear, bytes)) {
 | |
| 		printf("umap_virtual: %s: %lu at 0x%lx (vir 0x%lx) not contiguous\n",
 | |
| 			rp->p_name, bytes, linear, vir_addr);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* phys must be larger than 0 (or the caller will think the call
 | |
| 	 * failed), and address must not cross a page boundary.
 | |
| 	 */
 | |
| 	assert(phys);
 | |
| 
 | |
| 	return phys;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *                              vm_lookup                                    *
 | |
|  *===========================================================================*/
 | |
| PUBLIC int vm_lookup(const struct proc *proc, const vir_bytes virtual,
 | |
|  phys_bytes *physical, u32_t *ptent)
 | |
| {
 | |
| 	u32_t *root, *pt;
 | |
| 	int pde, pte;
 | |
| 	u32_t pde_v, pte_v;
 | |
| 
 | |
| 	assert(proc);
 | |
| 	assert(physical);
 | |
| 	assert(!isemptyp(proc));
 | |
| 
 | |
| 	if(!HASPT(proc)) {
 | |
| 		*physical = virtual;
 | |
| 		return OK;
 | |
| 	}
 | |
| 
 | |
| 	/* Retrieve page directory entry. */
 | |
| 	root = (u32_t *) proc->p_seg.p_cr3;
 | |
| 	assert(!((u32_t) root % I386_PAGE_SIZE));
 | |
| 	pde = I386_VM_PDE(virtual);
 | |
| 	assert(pde >= 0 && pde < I386_VM_DIR_ENTRIES);
 | |
| 	pde_v = phys_get32((u32_t) (root + pde));
 | |
| 
 | |
| 	if(!(pde_v & I386_VM_PRESENT)) {
 | |
| 		return EFAULT;
 | |
| 	}
 | |
| 
 | |
| 	/* We don't expect to ever see this. */
 | |
| 	if(pde_v & I386_VM_BIGPAGE) {
 | |
| 		*physical = pde_v & I386_VM_ADDR_MASK_4MB;
 | |
| 		if(ptent) *ptent = pde_v;
 | |
| 		*physical += virtual & I386_VM_OFFSET_MASK_4MB;
 | |
| 	} else {
 | |
| 		/* Retrieve page table entry. */
 | |
| 		pt = (u32_t *) I386_VM_PFA(pde_v);
 | |
| 		assert(!((u32_t) pt % I386_PAGE_SIZE));
 | |
| 		pte = I386_VM_PTE(virtual);
 | |
| 		assert(pte >= 0 && pte < I386_VM_PT_ENTRIES);
 | |
| 		pte_v = phys_get32((u32_t) (pt + pte));
 | |
| 		if(!(pte_v & I386_VM_PRESENT)) {
 | |
| 			return EFAULT;
 | |
| 		}
 | |
| 
 | |
| 		if(ptent) *ptent = pte_v;
 | |
| 
 | |
| 		/* Actual address now known; retrieve it and add page offset. */
 | |
| 		*physical = I386_VM_PFA(pte_v);
 | |
| 		*physical += virtual % I386_PAGE_SIZE;
 | |
| 	}
 | |
| 
 | |
| 	return OK;
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *                              vm_contiguous                                *
 | |
|  *===========================================================================*/
 | |
| PUBLIC int vm_contiguous(const struct proc *targetproc, vir_bytes vir_buf, size_t bytes)
 | |
| {
 | |
| 	int first = 1, r;
 | |
| 	phys_bytes prev_phys = 0;    /* Keep lints happy. */
 | |
| 	u32_t po;
 | |
| 
 | |
| 	assert(targetproc);
 | |
| 	assert(bytes > 0);
 | |
| 
 | |
| 	if(!HASPT(targetproc))
 | |
| 		return 1;
 | |
| 
 | |
| 	/* Start and end at page boundary to make logic simpler. */
 | |
| 	po = vir_buf % I386_PAGE_SIZE;
 | |
| 	if(po > 0) {
 | |
| 		bytes += po;
 | |
| 		vir_buf -= po;
 | |
| 	}
 | |
| 	po = (vir_buf + bytes) % I386_PAGE_SIZE;
 | |
| 	if(po > 0)
 | |
| 		bytes += I386_PAGE_SIZE - po;
 | |
| 
 | |
| 	/* Keep going as long as we cross a page boundary. */
 | |
| 	while(bytes > 0) {
 | |
| 		phys_bytes phys;
 | |
| 
 | |
| 		if((r=vm_lookup(targetproc, vir_buf, &phys, NULL)) != OK) {
 | |
| 			printf("vm_contiguous: vm_lookup failed, %d\n", r);
 | |
| 			printf("kernel stack: ");
 | |
| 			util_stacktrace();
 | |
| 			return 0;
 | |
| 		}
 | |
| 
 | |
| 		if(!first) {
 | |
| 			if(prev_phys+I386_PAGE_SIZE != phys) {
 | |
| 				printf("vm_contiguous: no (0x%lx, 0x%lx)\n",
 | |
| 					prev_phys, phys);
 | |
| 				printf("kernel stack: ");
 | |
| 				util_stacktrace();
 | |
| 				return 0;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		first = 0;
 | |
| 
 | |
| 		prev_phys = phys;
 | |
| 		vir_buf += I386_PAGE_SIZE;
 | |
| 		bytes -= I386_PAGE_SIZE;
 | |
| 	}
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *                              vm_suspend                                *
 | |
|  *===========================================================================*/
 | |
| PRIVATE void vm_suspend(struct proc *caller, const struct proc *target,
 | |
| 	const vir_bytes linaddr, const vir_bytes len, const int type)
 | |
| {
 | |
| 	/* This range is not OK for this process. Set parameters  
 | |
| 	 * of the request and notify VM about the pending request. 
 | |
| 	 */								
 | |
| 	assert(!RTS_ISSET(caller, RTS_VMREQUEST));
 | |
| 	assert(!RTS_ISSET(target, RTS_VMREQUEST));
 | |
| 
 | |
| 	RTS_SET(caller, RTS_VMREQUEST);
 | |
| 
 | |
| 	caller->p_vmrequest.req_type = VMPTYPE_CHECK;
 | |
| 	caller->p_vmrequest.target = target->p_endpoint;
 | |
| 	caller->p_vmrequest.params.check.start = linaddr;
 | |
| 	caller->p_vmrequest.params.check.length = len;
 | |
| 	caller->p_vmrequest.params.check.writeflag = 1;
 | |
| 	caller->p_vmrequest.type = type;
 | |
| 							
 | |
| 	/* Connect caller on vmrequest wait queue. */	
 | |
| 	if(!(caller->p_vmrequest.nextrequestor = vmrequest))
 | |
| 		send_sig(VM_PROC_NR, SIGKMEM);
 | |
| 	vmrequest = caller;
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *                              delivermsg                                *
 | |
|  *===========================================================================*/
 | |
| PUBLIC void delivermsg(struct proc *rp)
 | |
| {
 | |
| 	int r;
 | |
| 
 | |
| 	assert(rp->p_misc_flags & MF_DELIVERMSG);
 | |
| 	assert(rp->p_delivermsg.m_source != NONE);
 | |
| 
 | |
| 	if (copy_msg_to_user(rp, &rp->p_delivermsg,
 | |
| 				(message *) rp->p_delivermsg_vir)) {
 | |
| 		printf("WARNING wrong user pointer 0x%08lx from "
 | |
| 				"process %s / %d\n",
 | |
| 				rp->p_delivermsg_vir,
 | |
| 				rp->p_name,
 | |
| 				rp->p_endpoint);
 | |
| 		r = EFAULT;
 | |
| 	} else {
 | |
| 		/* Indicate message has been delivered; address is 'used'. */
 | |
| 		rp->p_delivermsg.m_source = NONE;
 | |
| 		rp->p_misc_flags &= ~MF_DELIVERMSG;
 | |
| 		r = OK;
 | |
| 	}
 | |
| 
 | |
| 	if(!(rp->p_misc_flags & MF_CONTEXT_SET)) {
 | |
| 		rp->p_reg.retreg = r;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #if 0
 | |
| PRIVATE char *flagstr(u32_t e, const int dir)
 | |
| {
 | |
| 	static char str[80];
 | |
| 	strcpy(str, "");
 | |
| 	FLAG(I386_VM_PRESENT);
 | |
| 	FLAG(I386_VM_WRITE);
 | |
| 	FLAG(I386_VM_USER);
 | |
| 	FLAG(I386_VM_PWT);
 | |
| 	FLAG(I386_VM_PCD);
 | |
| 	FLAG(I386_VM_GLOBAL);
 | |
| 	if(dir)
 | |
| 		FLAG(I386_VM_BIGPAGE);	/* Page directory entry only */
 | |
| 	else
 | |
| 		FLAG(I386_VM_DIRTY);	/* Page table entry only */
 | |
| 	return str;
 | |
| }
 | |
| 
 | |
| PRIVATE void vm_pt_print(u32_t *pagetable, const u32_t v)
 | |
| {
 | |
| 	int pte;
 | |
| 	int col = 0;
 | |
| 
 | |
| 	assert(!((u32_t) pagetable % I386_PAGE_SIZE));
 | |
| 
 | |
| 	for(pte = 0; pte < I386_VM_PT_ENTRIES; pte++) {
 | |
| 		u32_t pte_v, pfa;
 | |
| 		pte_v = phys_get32((u32_t) (pagetable + pte));
 | |
| 		if(!(pte_v & I386_VM_PRESENT))
 | |
| 			continue;
 | |
| 		pfa = I386_VM_PFA(pte_v);
 | |
| 		printf("%4d:%08lx:%08lx %2s ",
 | |
| 			pte, v + I386_PAGE_SIZE*pte, pfa,
 | |
| 			(pte_v & I386_VM_WRITE) ? "rw":"RO");
 | |
| 		col++;
 | |
| 		if(col == 3) { printf("\n"); col = 0; }
 | |
| 	}
 | |
| 	if(col > 0) printf("\n");
 | |
| 
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| PRIVATE void vm_print(u32_t *root)
 | |
| {
 | |
| 	int pde;
 | |
| 
 | |
| 	assert(!((u32_t) root % I386_PAGE_SIZE));
 | |
| 
 | |
| 	printf("page table 0x%lx:\n", root);
 | |
| 
 | |
| 	for(pde = 0; pde < I386_VM_DIR_ENTRIES; pde++) {
 | |
| 		u32_t pde_v;
 | |
| 		u32_t *pte_a;
 | |
| 		pde_v = phys_get32((u32_t) (root + pde));
 | |
| 		if(!(pde_v & I386_VM_PRESENT))
 | |
| 			continue;
 | |
| 		if(pde_v & I386_VM_BIGPAGE) {
 | |
| 			printf("%4d: 0x%lx, flags %s\n",
 | |
| 				pde, I386_VM_PFA(pde_v), flagstr(pde_v, 1));
 | |
| 		} else {
 | |
| 			pte_a = (u32_t *) I386_VM_PFA(pde_v);
 | |
| 			printf("%4d: pt %08lx %s\n",
 | |
| 				pde, pte_a, flagstr(pde_v, 1));
 | |
| 			vm_pt_print(pte_a, pde * I386_VM_PT_ENTRIES * I386_PAGE_SIZE);
 | |
| 			printf("\n");
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	return;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				lin_memset				     *
 | |
|  *===========================================================================*/
 | |
| int vm_phys_memset(phys_bytes ph, const u8_t c, phys_bytes bytes)
 | |
| {
 | |
| 	u32_t p;
 | |
| 
 | |
| 	p = c | (c << 8) | (c << 16) | (c << 24);
 | |
| 
 | |
| 	if(!vm_running) {
 | |
| 		phys_memset(ph, p, bytes);
 | |
| 		return OK;
 | |
| 	}
 | |
| 
 | |
| 	assert(nfreepdes >= MAX_FREEPDES);
 | |
| 
 | |
| 	assert(get_cpulocal_var(ptproc)->p_seg.p_cr3_v);
 | |
| 
 | |
| 	/* With VM, we have to map in the physical memory. 
 | |
| 	 * We can do this 4MB at a time.
 | |
| 	 */
 | |
| 	while(bytes > 0) {
 | |
| 		int changed = 0;
 | |
| 		phys_bytes chunk = bytes, ptr;
 | |
| 		ptr = createpde(NULL, ph, &chunk, 0, &changed);
 | |
| 		if(changed)
 | |
| 			reload_cr3(); 
 | |
| 
 | |
| 		/* We can memset as many bytes as we have remaining,
 | |
| 		 * or as many as remain in the 4MB chunk we mapped in.
 | |
| 		 */
 | |
| 		phys_memset(ptr, p, chunk);
 | |
| 		bytes -= chunk;
 | |
| 		ph += chunk;
 | |
| 	}
 | |
| 
 | |
| 	assert(get_cpulocal_var(ptproc)->p_seg.p_cr3_v);
 | |
| 
 | |
| 	return OK;
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				virtual_copy_f				     *
 | |
|  *===========================================================================*/
 | |
| PUBLIC int virtual_copy_f(caller, src_addr, dst_addr, bytes, vmcheck)
 | |
| struct proc * caller;
 | |
| struct vir_addr *src_addr;	/* source virtual address */
 | |
| struct vir_addr *dst_addr;	/* destination virtual address */
 | |
| vir_bytes bytes;		/* # of bytes to copy  */
 | |
| int vmcheck;			/* if nonzero, can return VMSUSPEND */
 | |
| {
 | |
| /* Copy bytes from virtual address src_addr to virtual address dst_addr. 
 | |
|  * Virtual addresses can be in ABS, LOCAL_SEG, or BIOS_SEG.
 | |
|  */
 | |
|   struct vir_addr *vir_addr[2];	/* virtual source and destination address */
 | |
|   phys_bytes phys_addr[2];	/* absolute source and destination */ 
 | |
|   int seg_index;
 | |
|   int i;
 | |
|   struct proc *procs[2];
 | |
| 
 | |
|   assert((vmcheck && caller) || (!vmcheck && !caller));
 | |
| 
 | |
|   /* Check copy count. */
 | |
|   if (bytes <= 0) return(EDOM);
 | |
| 
 | |
|   /* Do some more checks and map virtual addresses to physical addresses. */
 | |
|   vir_addr[_SRC_] = src_addr;
 | |
|   vir_addr[_DST_] = dst_addr;
 | |
| 
 | |
|   for (i=_SRC_; i<=_DST_; i++) {
 | |
| 	int proc_nr, type;
 | |
| 	struct proc *p;
 | |
| 
 | |
|  	type = vir_addr[i]->segment & SEGMENT_TYPE;
 | |
| 	if((type != PHYS_SEG && type != BIOS_SEG) &&
 | |
| 	   isokendpt(vir_addr[i]->proc_nr_e, &proc_nr))
 | |
| 		p = proc_addr(proc_nr);
 | |
| 	else 
 | |
| 		p = NULL;
 | |
| 
 | |
| 	procs[i] = p;
 | |
| 
 | |
|       /* Get physical address. */
 | |
|       switch(type) {
 | |
|       case LOCAL_SEG:
 | |
|       case LOCAL_VM_SEG:
 | |
| 	  if(!p) {
 | |
| 		return EDEADSRCDST;
 | |
| 	  }
 | |
|           seg_index = vir_addr[i]->segment & SEGMENT_INDEX;
 | |
| 	  if(type == LOCAL_SEG)
 | |
| 	          phys_addr[i] = umap_local(p, seg_index, vir_addr[i]->offset,
 | |
| 			bytes);
 | |
| 	  else
 | |
| 	  	phys_addr[i] = umap_virtual(p, seg_index,
 | |
| 				vir_addr[i]->offset, bytes);
 | |
| 	  if(phys_addr[i] == 0) {
 | |
| 		printf("virtual_copy: map 0x%x failed for %s seg %d, "
 | |
| 			"offset %lx, len %lu, i %d\n",
 | |
| 			type, p->p_name, seg_index, vir_addr[i]->offset,
 | |
| 			bytes, i);
 | |
| 	  }
 | |
|           break;
 | |
| #if _MINIX_CHIP == _CHIP_INTEL
 | |
|       case BIOS_SEG:
 | |
|           phys_addr[i] = umap_bios(vir_addr[i]->offset, bytes );
 | |
|           break;
 | |
| #endif
 | |
|       case PHYS_SEG:
 | |
|           phys_addr[i] = vir_addr[i]->offset;
 | |
|           break;
 | |
|       default:
 | |
| 	  printf("virtual_copy: strange type 0x%x\n", type);
 | |
| 	  return EINVAL;
 | |
|       }
 | |
| 
 | |
|       /* Check if mapping succeeded. */
 | |
|       if (phys_addr[i] <= 0 && vir_addr[i]->segment != PHYS_SEG)  {
 | |
|       printf("virtual_copy EFAULT\n");
 | |
| 	  return EFAULT;
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   if(vm_running) {
 | |
| 	int r;
 | |
| 
 | |
| 	if(caller && (caller->p_misc_flags & MF_KCALL_RESUME)) {
 | |
| 		assert(caller->p_vmrequest.vmresult != VMSUSPEND);
 | |
| 		if(caller->p_vmrequest.vmresult != OK) {
 | |
| 	  		return caller->p_vmrequest.vmresult;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if((r=lin_lin_copy(procs[_SRC_], phys_addr[_SRC_],
 | |
| 		procs[_DST_], phys_addr[_DST_], bytes)) != OK) {
 | |
| 		struct proc *target = NULL;
 | |
| 		phys_bytes lin;
 | |
| 		if(r != EFAULT_SRC && r != EFAULT_DST)
 | |
| 			panic("lin_lin_copy failed: %d",  r);
 | |
| 		if(!vmcheck || !caller) {
 | |
| 	  		return r;
 | |
| 		}
 | |
| 
 | |
| 		if(r == EFAULT_SRC) {
 | |
| 			lin = phys_addr[_SRC_];
 | |
| 			target = procs[_SRC_];
 | |
| 		} else if(r == EFAULT_DST) {
 | |
| 			lin = phys_addr[_DST_];
 | |
| 			target = procs[_DST_];
 | |
| 		} else {
 | |
| 			panic("r strange: %d",  r);
 | |
| 		}
 | |
| 
 | |
| 		assert(caller);
 | |
| 		assert(target);
 | |
| 
 | |
| 		vm_suspend(caller, target, lin, bytes, VMSTYPE_KERNELCALL);
 | |
| 		return VMSUSPEND;
 | |
| 	}
 | |
| 
 | |
|   	return OK;
 | |
|   }
 | |
| 
 | |
|   assert(!vm_running);
 | |
| 
 | |
|   /* can't copy to/from process with PT without VM */
 | |
| #define NOPT(p) (!(p) || !HASPT(p))
 | |
|   if(!NOPT(procs[_SRC_])) {
 | |
| 	printf("ignoring page table src: %s / %d at 0x%x\n",
 | |
| 		procs[_SRC_]->p_name, procs[_SRC_]->p_endpoint, procs[_SRC_]->p_seg.p_cr3);
 | |
| }
 | |
|   if(!NOPT(procs[_DST_])) {
 | |
| 	printf("ignoring page table dst: %s / %d at 0x%x\n",
 | |
| 		procs[_DST_]->p_name, procs[_DST_]->p_endpoint,
 | |
| 		procs[_DST_]->p_seg.p_cr3);
 | |
|   }
 | |
| 
 | |
|   /* Now copy bytes between physical addresseses. */
 | |
|   if(phys_copy(phys_addr[_SRC_], phys_addr[_DST_], (phys_bytes) bytes))
 | |
|   	return EFAULT;
 | |
|  
 | |
|   return OK;
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				data_copy				     *
 | |
|  *===========================================================================*/
 | |
| PUBLIC int data_copy(const endpoint_t from_proc, const vir_bytes from_addr,
 | |
| 	const endpoint_t to_proc, const vir_bytes to_addr,
 | |
| 	size_t bytes)
 | |
| {
 | |
|   struct vir_addr src, dst;
 | |
| 
 | |
|   src.segment = dst.segment = D;
 | |
|   src.offset = from_addr;
 | |
|   dst.offset = to_addr;
 | |
|   src.proc_nr_e = from_proc;
 | |
|   dst.proc_nr_e = to_proc;
 | |
| 
 | |
|   return virtual_copy(&src, &dst, bytes);
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				data_copy_vmcheck			     *
 | |
|  *===========================================================================*/
 | |
| PUBLIC int data_copy_vmcheck(struct proc * caller,
 | |
| 	const endpoint_t from_proc, const vir_bytes from_addr,
 | |
| 	const endpoint_t to_proc, const vir_bytes to_addr,
 | |
| 	size_t bytes)
 | |
| {
 | |
|   struct vir_addr src, dst;
 | |
| 
 | |
|   src.segment = dst.segment = D;
 | |
|   src.offset = from_addr;
 | |
|   dst.offset = to_addr;
 | |
|   src.proc_nr_e = from_proc;
 | |
|   dst.proc_nr_e = to_proc;
 | |
| 
 | |
|   return virtual_copy_vmcheck(caller, &src, &dst, bytes);
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				arch_pre_exec				     *
 | |
|  *===========================================================================*/
 | |
| PUBLIC void arch_pre_exec(struct proc *pr, const u32_t ip, const u32_t sp)
 | |
| {
 | |
| /* set program counter and stack pointer. */
 | |
| 	pr->p_reg.pc = ip;
 | |
| 	pr->p_reg.sp = sp;
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				arch_umap				     *
 | |
|  *===========================================================================*/
 | |
| PUBLIC int arch_umap(const struct proc *pr, vir_bytes offset, vir_bytes count,
 | |
| 	int seg, phys_bytes *addr)
 | |
| {
 | |
| 	switch(seg) {
 | |
| 		case BIOS_SEG:
 | |
| 			*addr = umap_bios(offset, count);
 | |
| 			return OK;
 | |
| 	}
 | |
| 
 | |
| 	/* This must be EINVAL; the umap fallback function in
 | |
| 	 * lib/syslib/alloc_util.c depends on it to detect an
 | |
| 	 * older kernel (as opposed to mapping error).
 | |
| 	 */
 | |
| 	return EINVAL;
 | |
| }
 | |
| 
 | |
| /* VM reports page directory slot we're allowed to use freely. */
 | |
| void i386_freepde(const int pde)
 | |
| {
 | |
| 	if(nfreepdes >= MAX_FREEPDES)
 | |
| 		return;
 | |
| 	freepdes[nfreepdes++] = pde;
 | |
| }
 | |
| 
 | |
| PRIVATE int oxpcie_mapping_index = -1,
 | |
| 	lapic_mapping_index = -1,
 | |
| 	ioapic_first_index = -1,
 | |
| 	ioapic_last_index = -1;
 | |
| 
 | |
| PUBLIC int arch_phys_map(const int index,
 | |
| 			phys_bytes *addr,
 | |
| 			phys_bytes *len,
 | |
| 			int *flags)
 | |
| {
 | |
| 	static int first = 1;
 | |
| 	int freeidx = 0;
 | |
| 	static char *ser_var = NULL;
 | |
| 
 | |
| 	if(first) {
 | |
| #ifdef USE_APIC
 | |
| 		if(lapic_addr)
 | |
| 			lapic_mapping_index = freeidx++;
 | |
| 		if (ioapic_enabled) {
 | |
| 			ioapic_first_index = freeidx;
 | |
| 			assert(nioapics > 0);
 | |
| 			freeidx += nioapics;
 | |
| 			ioapic_last_index = freeidx-1;
 | |
| 		}
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_OXPCIE
 | |
| 		if((ser_var = env_get("oxpcie"))) {
 | |
| 			if(ser_var[0] != '0' || ser_var[1] != 'x') {
 | |
| 				printf("oxpcie address in hex please\n");
 | |
| 			} else {
 | |
| 				printf("oxpcie address is %s\n", ser_var);
 | |
| 				oxpcie_mapping_index = freeidx++;
 | |
| 			}
 | |
| 		}
 | |
| #endif
 | |
| 		first = 0;
 | |
| 	}
 | |
| 
 | |
| #ifdef USE_APIC
 | |
| 	/* map the local APIC if enabled */
 | |
| 	if (index == lapic_mapping_index) {
 | |
| 		if (!lapic_addr)
 | |
| 			return EINVAL;
 | |
| 		*addr = vir2phys(lapic_addr);
 | |
| 		*len = 4 << 10 /* 4kB */;
 | |
| 		*flags = VMMF_UNCACHED;
 | |
| 		return OK;
 | |
| 	}
 | |
| 	else if (ioapic_enabled && index <= nioapics) {
 | |
| 		*addr = io_apic[index - 1].paddr;
 | |
| 		*len = 4 << 10 /* 4kB */;
 | |
| 		*flags = VMMF_UNCACHED;
 | |
| 		return OK;
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| #if CONFIG_OXPCIE
 | |
| 	if(index == oxpcie_mapping_index) {
 | |
| 		*addr = strtoul(ser_var+2, NULL, 16);
 | |
| 		*len = 0x4000;
 | |
| 		*flags = VMMF_UNCACHED;
 | |
| 		return OK;
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	return EINVAL;
 | |
| }
 | |
| 
 | |
| PUBLIC int arch_phys_map_reply(const int index, const vir_bytes addr)
 | |
| {
 | |
| #ifdef USE_APIC
 | |
| 	/* if local APIC is enabled */
 | |
| 	if (index == lapic_mapping_index && lapic_addr) {
 | |
| 		lapic_addr_vaddr = addr;
 | |
| 		return OK;
 | |
| 	}
 | |
| 	else if (ioapic_enabled && index >= ioapic_first_index &&
 | |
| 		index <= ioapic_last_index) {
 | |
| 		io_apic[index - ioapic_first_index].vaddr = addr;
 | |
| 		return OK;
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| #if CONFIG_OXPCIE
 | |
| 	if (index == oxpcie_mapping_index) {
 | |
| 		oxpcie_set_vaddr((unsigned char *) addr);
 | |
| 		return OK;
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	return EINVAL;
 | |
| }
 | |
| 
 | |
| PUBLIC int arch_enable_paging(struct proc * caller, const message * m_ptr)
 | |
| {
 | |
| 	struct vm_ep_data ep_data;
 | |
| 	int r;
 | |
| 
 | |
| 	/* switch_address_space() checks what is in cr3, and do nothing if it's
 | |
| 	 * the same as the cr3 of its argument, newptproc.  If MINIX was
 | |
| 	 * previously booted, this could very well be the case.
 | |
| 	 *
 | |
| 	 * The first time switch_address_space() is called, we want to
 | |
| 	 * force it to do something (load cr3 and set newptproc), so we
 | |
| 	 * zero cr3, and force paging off to make that a safe thing to do.
 | |
| 	 *
 | |
| 	 * After that, segmentation2paging() enables paging with the page table
 | |
| 	 * of caller loaded.
 | |
| 	 */
 | |
| 
 | |
| 	vm_stop();
 | |
| 	write_cr3(0);
 | |
| 
 | |
| 	/* switch from segmentation only to paging */
 | |
| 	segmentation2paging(caller);
 | |
| 
 | |
| 	vm_running = 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * copy the extra data associated with the call from userspace
 | |
| 	 */
 | |
| 	if((r=data_copy(caller->p_endpoint, (vir_bytes)m_ptr->SVMCTL_VALUE,
 | |
| 		KERNEL, (vir_bytes) &ep_data, sizeof(ep_data))) != OK) {
 | |
| 		printf("vmctl_enable_paging: data_copy failed! (%d)\n", r);
 | |
| 		return r;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * when turning paging on i386 we also change the segment limits to make
 | |
| 	 * the special mappings requested by the kernel reachable
 | |
| 	 */
 | |
| 	if ((r = prot_set_kern_seg_limit(ep_data.data_seg_limit)) != OK)
 | |
| 		return r;
 | |
| 
 | |
| 	/*
 | |
| 	 * install the new map provided by the call
 | |
| 	 */
 | |
| 	if (newmap(caller, caller, ep_data.mem_map) != OK)
 | |
| 		panic("arch_enable_paging: newmap failed");
 | |
| 
 | |
| #ifdef USE_APIC
 | |
| 	/* start using the virtual addresses */
 | |
| 
 | |
| 	/* if local APIC is enabled */
 | |
| 	if (lapic_addr) {
 | |
| 		lapic_addr = lapic_addr_vaddr;
 | |
| 		lapic_eoi_addr = LAPIC_EOI;
 | |
| 	}
 | |
| 	/* if IO apics are enabled */
 | |
| 	if (ioapic_enabled) {
 | |
| 		int i;
 | |
| 
 | |
| 		for (i = 0; i < nioapics; i++) {
 | |
| 			io_apic[i].addr = io_apic[i].vaddr;
 | |
| 		}
 | |
| 	}
 | |
| #if CONFIG_SMP
 | |
| 	barrier();
 | |
| 
 | |
| 	i386_paging_enabled = 1;
 | |
| 
 | |
| 	wait_for_APs_to_finish_booting();
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| #ifdef USE_WATCHDOG
 | |
| 	/*
 | |
| 	 * We make sure that we don't enable the watchdog until paging is turned
 | |
| 	 * on as we might get an NMI while switching and we might still use wrong
 | |
| 	 * lapic address. Bad things would happen. It is unfortunate but such is
 | |
| 	 * life
 | |
| 	 */
 | |
| 	if (watchdog_enabled)
 | |
| 		i386_watchdog_start();
 | |
| #endif
 | |
| 
 | |
| 	return OK;
 | |
| }
 | |
| 
 | |
| PUBLIC void release_address_space(struct proc *pr)
 | |
| {
 | |
| 	pr->p_seg.p_cr3_v = NULL;
 | |
| }
 | |
| 
 | |
| /* computes a checksum of a buffer of a given length. The byte sum must be zero */
 | |
| PUBLIC int platform_tbl_checksum_ok(void *ptr, unsigned int length)
 | |
| {
 | |
| 	u8_t total = 0;
 | |
| 	unsigned int i;
 | |
| 	for (i = 0; i < length; i++)
 | |
| 		total += ((unsigned char *)ptr)[i];
 | |
| 	return !total;
 | |
| }
 | |
| 
 | |
| PUBLIC int platform_tbl_ptr(phys_bytes start,
 | |
| 					phys_bytes end,
 | |
| 					unsigned increment,
 | |
| 					void * buff,
 | |
| 					unsigned size,
 | |
| 					phys_bytes * phys_addr,
 | |
| 					int ((* cmp_f)(void *)))
 | |
| {
 | |
| 	phys_bytes addr;
 | |
| 
 | |
| 	for (addr = start; addr < end; addr += increment) {
 | |
| 		phys_copy (addr, vir2phys(buff), size);
 | |
| 		if (cmp_f(buff)) {
 | |
| 			if (phys_addr)
 | |
| 				*phys_addr = addr;
 | |
| 			return 1;
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 |