267 lines
		
	
	
		
			6.1 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			267 lines
		
	
	
		
			6.1 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| /*
 | |
|   (c) copyright 1988 by the Vrije Universiteit, Amsterdam, The Netherlands.
 | |
|   See the copyright notice in the ACK home directory, in the file "Copyright".
 | |
| */
 | |
| 
 | |
| /* $Header$ */
 | |
| 
 | |
| /*
 | |
| 	DIVIDE EXTENDED FORMAT
 | |
| */
 | |
| 
 | |
| #include "FP_bias.h"
 | |
| #include "FP_trap.h"
 | |
| #include "FP_types.h"
 | |
| 
 | |
| /*
 | |
| 	November 15, 1984
 | |
| 
 | |
| 	This is a routine to do the work.
 | |
| 	There are two versions: 
 | |
| 	One is based on the partial products method
 | |
| 	and makes no use possible machine instructions
 | |
| 	to divide (hardware dividers).
 | |
| 	The other is used when USE_DIVIDE is defined. It is much faster on
 | |
| 	machines with fast 4 byte operations.
 | |
| */
 | |
| /********************************************************/
 | |
| 
 | |
| void
 | |
| div_ext(e1,e2)
 | |
| EXTEND	*e1,*e2;
 | |
| {
 | |
| 	short	error = 0;
 | |
| 	B64		result;
 | |
| 	register	unsigned long	*lp;
 | |
| #ifndef USE_DIVIDE
 | |
| 	short	count;
 | |
| #else
 | |
| 	unsigned short u[9], v[5];
 | |
| 	register int j;
 | |
| 	register unsigned short *u_p = u;
 | |
| 	int maxv = 4;
 | |
| #endif
 | |
| 
 | |
| 	if ((e2->m1 | e2->m2) == 0) {
 | |
|                 /*
 | |
|                  * Exception 8.2 - Divide by zero
 | |
|                  */
 | |
| 		trap(EFDIVZ);
 | |
| 		e1->m1 = e1->m2 = 0L;
 | |
| 		e1->exp = EXT_MAX;
 | |
| 		return;
 | |
| 	}
 | |
| 	if ((e1->m1 | e1->m2) == 0) {	/* 0 / anything == 0 */
 | |
| 		e1->exp = 0;	/* make sure */
 | |
| 		return;
 | |
| 	}
 | |
| #ifndef USE_DIVIDE
 | |
| 	/*
 | |
| 	 * numbers are right shifted one bit to make sure
 | |
| 	 * that m1 is quaranteed to be larger if its
 | |
| 	 * maximum bit is set
 | |
| 	 */
 | |
| 	b64_rsft(&e1->mantissa);	/* 64 bit shift right */
 | |
| 	b64_rsft(&e2->mantissa);	/* 64 bit shift right */
 | |
| 	e1->exp++;
 | |
| 	e2->exp++;
 | |
| #endif
 | |
| 	/*	check for underflow, divide by zero, etc	*/
 | |
| 	e1->sign ^= e2->sign;
 | |
| 	e1->exp -= e2->exp;
 | |
| 
 | |
| #ifndef USE_DIVIDE
 | |
| 		/* do division of mantissas	*/
 | |
| 		/* uses partial product method	*/
 | |
| 		/* init control variables	*/
 | |
| 
 | |
| 	count = 64;
 | |
| 	result.h_32 = 0L;
 | |
| 	result.l_32 = 0L;
 | |
| 
 | |
| 		/* partial product division loop */
 | |
| 
 | |
| 	while (count--)	{
 | |
| 		/* first left shift result 1 bit	*/
 | |
| 		/* this is ALWAYS done			*/
 | |
| 
 | |
| 		b64_lsft(&result);
 | |
| 
 | |
| 		/* compare dividend and divisor		*/
 | |
| 		/* if dividend >= divisor add a bit	*/
 | |
| 		/* and subtract divisior from dividend	*/
 | |
| 
 | |
| 		if ( (e1->m1 < e2->m1) ||
 | |
| 			((e1->m1 == e2->m1) && (e1->m2 < e2->m2) ))
 | |
| 			;	/* null statement */
 | |
| 				/* i.e., don't add or subtract */
 | |
| 		else	{
 | |
| 			result.l_32++;	/* ADD	*/
 | |
| 			if (e2->m2 > e1->m2)
 | |
| 				e1->m1 -= 1;	/* carry in */
 | |
| 			e1->m1 -= e2->m1;	/* do SUBTRACTION */
 | |
| 			e1->m2 -= e2->m2;	/*    SUBTRACTION */
 | |
| 		}
 | |
| 
 | |
| 		/*	shift dividend left one bit OR	*/
 | |
| 		/*	IF it equals ZERO we can break out	*/
 | |
| 		/*	of the loop, but still must shift	*/
 | |
| 		/*	the quotient the remaining count bits	*/
 | |
| 		/* NB	save the results of this test in error	*/
 | |
| 		/*	if not zero, then the result is inexact. */
 | |
| 		/* 	this would be reported in IEEE standard	*/
 | |
| 
 | |
| 		/*	lp points to dividend			*/
 | |
| 		lp = &e1->m1;
 | |
| 
 | |
| 		error = ((*lp | *(lp+1)) != 0L) ? 1 : 0;
 | |
| 		if (error)	{	/* more work */
 | |
| 			/*	assume max bit == 0 (see above)	*/
 | |
| 			b64_lsft(&e1->mantissa);
 | |
| 			continue;
 | |
| 		}
 | |
| 		else
 | |
| 			break;	/* leave loop	*/
 | |
| 	}	/* end of divide by subtraction loop	*/
 | |
| 
 | |
| 	if (count > 0)	{
 | |
| 		lp = &result.h_32;
 | |
| 		if (count > 31) {	/* move to higher word */
 | |
| 			*lp = *(lp+1);
 | |
| 			count -= 32;
 | |
| 			*(lp+1) = 0L;	/* clear low word	*/
 | |
| 		}
 | |
| 		if (*lp)
 | |
| 			*lp <<= count;	/* shift rest of way	*/
 | |
| 		lp++;	/*  == &result.l_32	*/
 | |
| 		if (*lp) {
 | |
| 			result.h_32 |= (*lp >> 32-count);
 | |
| 			*lp <<= count;
 | |
| 		}
 | |
| 	}
 | |
| #else /* USE_DIVIDE */
 | |
| 
 | |
| 	u[4] = (e1->m2 & 1) << 15;
 | |
| 	b64_rsft(&(e1->mantissa));
 | |
| 	u[0] = e1->m1 >> 16;
 | |
| 	u[1] = e1->m1;
 | |
| 	u[2] = e1->m2 >> 16;
 | |
| 	u[3] = e1->m2;
 | |
| 	u[5] = 0; u[6] = 0; u[7] = 0;
 | |
| 	v[1] = e2->m1 >> 16;
 | |
| 	v[2] = e2->m1;
 | |
| 	v[3] = e2->m2 >> 16;
 | |
| 	v[4] = e2->m2;
 | |
| 	while (! v[maxv]) maxv--;
 | |
| 	result.h_32 = 0;
 | |
| 	result.l_32 = 0;
 | |
| 	lp = &result.h_32;
 | |
| 
 | |
| 	/*
 | |
| 	 * Use an algorithm of Knuth (The art of programming, Seminumerical
 | |
| 	 * algorithms), to divide u by v. u and v are both seen as numbers
 | |
| 	 * with base 65536. 
 | |
| 	 */
 | |
| 	for (j = 0; j <= 3; j++, u_p++) {
 | |
| 		unsigned long q_est, temp;
 | |
| 
 | |
| 		if (j == 2) lp++;
 | |
| 		if (u_p[0] == 0 && u_p[1] < v[1]) continue;
 | |
| 		temp = ((unsigned long)u_p[0] << 16) + u_p[1];
 | |
| 		if (u_p[0] >= v[1]) {
 | |
| 			q_est = 0x0000FFFFL;
 | |
| 		}
 | |
| 		else {
 | |
| 			q_est = temp / v[1];
 | |
| 		}
 | |
| 		temp -= q_est * v[1];
 | |
| 		while (temp < 0x10000 && v[2]*q_est > ((temp<<16)+u_p[2])) {
 | |
| 			q_est--;
 | |
| 			temp += v[1];
 | |
| 		}
 | |
| 		/*	Now, according to Knuth, we have an estimate of the
 | |
| 			quotient, that is either correct or one too big, but
 | |
| 			almost always correct.
 | |
| 		*/
 | |
| 		if (q_est != 0)  {
 | |
| 			int i;
 | |
| 			unsigned long k = 0;
 | |
| 			int borrow = 0;
 | |
| 
 | |
| 			for (i = maxv; i > 0; i--) {
 | |
| 				unsigned long tmp = q_est * v[i] + k + borrow;
 | |
| 				unsigned short md = tmp;
 | |
| 
 | |
| 				borrow = (md > u_p[i]);
 | |
| 				u_p[i] -= md;
 | |
| 				k = tmp >> 16;
 | |
| 			}
 | |
| 			k += borrow;
 | |
| 			borrow = u_p[0] < k;
 | |
| 			u_p[0] -= k;
 | |
| 
 | |
| 			if (borrow) {
 | |
| 				/* So, this does not happen often; the estimate
 | |
| 				   was one too big; correct this
 | |
| 				*/
 | |
| 				*lp |= (j & 1) ? (q_est - 1) : ((q_est-1)<<16);
 | |
| 				borrow = 0;
 | |
| 				for (i = maxv; i > 0; i--) {
 | |
| 					unsigned long tmp 
 | |
| 					    = v[i]+(unsigned long)u_p[i]+borrow;
 | |
| 					
 | |
| 					u_p[i] = tmp;
 | |
| 					borrow = tmp >> 16;
 | |
| 				}
 | |
| 				u_p[0] += borrow;
 | |
| 			}
 | |
| 			else *lp |= (j & 1) ? q_est : (q_est<<16);
 | |
| 		}
 | |
| 	}
 | |
| #ifdef	EXCEPTION_INEXACT
 | |
| 	u_p = &u[0];
 | |
| 	for (j = 7; j >= 0; j--) {
 | |
| 		if (*u_p++) {
 | |
| 			error = 1;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| #ifdef  EXCEPTION_INEXACT
 | |
|         if (error)      {
 | |
|                 /*
 | |
|                  * report here exception 8.5 - Inexact
 | |
|                  * from Draft 8.0 of IEEE P754:
 | |
|                  * In the absence of an invalid operation exception,
 | |
|                  * if the rounded result of an operation is not exact or if
 | |
|                  * it overflows without a trap, then the inexact exception
 | |
|                  * shall be assigned. The rounded or overflowed result
 | |
|                  * shall be delivered to the destination.
 | |
|                  */
 | |
|                 INEXACT();
 | |
| #endif
 | |
| 	e1->mantissa = result;
 | |
| 
 | |
| 	nrm_ext(e1);
 | |
| 	if (e1->exp < EXT_MIN)	{
 | |
| 		/*
 | |
| 		 * Exception 8.4 - Underflow
 | |
| 		 */
 | |
| 		trap(EFUNFL);	/* underflow */
 | |
| 		e1->exp = EXT_MIN;
 | |
| 		e1->m1 = e1->m2 = 0L;
 | |
| 		return;
 | |
| 	}
 | |
| 	if (e1->exp >= EXT_MAX) {
 | |
|                 /*
 | |
|                  * Exception 8.3 - Overflow
 | |
|                  */
 | |
|                 trap(EFOVFL);   /* overflow */
 | |
|                 e1->exp = EXT_MAX;
 | |
|                 e1->m1 = e1->m2 = 0L;
 | |
|                 return;
 | |
|         }
 | |
| }
 | 
