 0dc9e0996a
			
		
	
	
		0dc9e0996a
		
	
	
	
	
		
			
			As the current libc includes a libm implementation, with the new libc this is needed. Unneeded (for the moment) archs have been removed.
		
			
				
	
	
		
			228 lines
		
	
	
		
			6.6 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			228 lines
		
	
	
		
			6.6 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*      $NetBSD: n_cabs.c,v 1.5 2003/08/07 16:44:50 agc Exp $ */
 | |
| /*
 | |
|  * Copyright (c) 1985, 1993
 | |
|  *	The Regents of the University of California.  All rights reserved.
 | |
|  *
 | |
|  * Redistribution and use in source and binary forms, with or without
 | |
|  * modification, are permitted provided that the following conditions
 | |
|  * are met:
 | |
|  * 1. Redistributions of source code must retain the above copyright
 | |
|  *    notice, this list of conditions and the following disclaimer.
 | |
|  * 2. Redistributions in binary form must reproduce the above copyright
 | |
|  *    notice, this list of conditions and the following disclaimer in the
 | |
|  *    documentation and/or other materials provided with the distribution.
 | |
|  * 3. Neither the name of the University nor the names of its contributors
 | |
|  *    may be used to endorse or promote products derived from this software
 | |
|  *    without specific prior written permission.
 | |
|  *
 | |
|  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
 | |
|  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 | |
|  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 | |
|  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 | |
|  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 | |
|  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 | |
|  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 | |
|  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 | |
|  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 | |
|  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 | |
|  * SUCH DAMAGE.
 | |
|  */
 | |
| 
 | |
| #ifndef lint
 | |
| static char sccsid[] = "@(#)cabs.c	8.1 (Berkeley) 6/4/93";
 | |
| #endif /* not lint */
 | |
| 
 | |
| /* HYPOT(X,Y)
 | |
|  * RETURN THE SQUARE ROOT OF X^2 + Y^2  WHERE Z=X+iY
 | |
|  * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS)
 | |
|  * CODED IN C BY K.C. NG, 11/28/84;
 | |
|  * REVISED BY K.C. NG, 7/12/85.
 | |
|  *
 | |
|  * Required system supported functions :
 | |
|  *	copysign(x,y)
 | |
|  *	finite(x)
 | |
|  *	scalb(x,N)
 | |
|  *	sqrt(x)
 | |
|  *
 | |
|  * Method :
 | |
|  *	1. replace x by |x| and y by |y|, and swap x and
 | |
|  *	   y if y > x (hence x is never smaller than y).
 | |
|  *	2. Hypot(x,y) is computed by:
 | |
|  *	   Case I, x/y > 2
 | |
|  *
 | |
|  *				       y
 | |
|  *		hypot = x + -----------------------------
 | |
|  *			 		    2
 | |
|  *			    sqrt ( 1 + [x/y]  )  +  x/y
 | |
|  *
 | |
|  *	   Case II, x/y <= 2
 | |
|  *				                   y
 | |
|  *		hypot = x + --------------------------------------------------
 | |
|  *				          		     2
 | |
|  *				     			[x/y]   -  2
 | |
|  *			   (sqrt(2)+1) + (x-y)/y + -----------------------------
 | |
|  *			 		    			  2
 | |
|  *			    			  sqrt ( 1 + [x/y]  )  + sqrt(2)
 | |
|  *
 | |
|  *
 | |
|  *
 | |
|  * Special cases:
 | |
|  *	hypot(x,y) is INF if x or y is +INF or -INF; else
 | |
|  *	hypot(x,y) is NAN if x or y is NAN.
 | |
|  *
 | |
|  * Accuracy:
 | |
|  * 	hypot(x,y) returns the sqrt(x^2+y^2) with error less than 1 ulps (units
 | |
|  *	in the last place). See Kahan's "Interval Arithmetic Options in the
 | |
|  *	Proposed IEEE Floating Point Arithmetic Standard", Interval Mathematics
 | |
|  *      1980, Edited by Karl L.E. Nickel, pp 99-128. (A faster but less accurate
 | |
|  *	code follows in	comments.) In a test run with 500,000 random arguments
 | |
|  *	on a VAX, the maximum observed error was .959 ulps.
 | |
|  *
 | |
|  * Constants:
 | |
|  * The hexadecimal values are the intended ones for the following constants.
 | |
|  * The decimal values may be used, provided that the compiler will convert
 | |
|  * from decimal to binary accurately enough to produce the hexadecimal values
 | |
|  * shown.
 | |
|  */
 | |
| #define _LIBM_STATIC
 | |
| #include "mathimpl.h"
 | |
| 
 | |
| vc(r2p1hi, 2.4142135623730950345E0   ,8279,411a,ef32,99fc,   2, .9A827999FCEF32)
 | |
| vc(r2p1lo, 1.4349369327986523769E-17 ,597d,2484,754b,89b3, -55, .84597D89B3754B)
 | |
| vc(sqrt2,  1.4142135623730950622E0   ,04f3,40b5,de65,33f9,   1, .B504F333F9DE65)
 | |
| 
 | |
| ic(r2p1hi, 2.4142135623730949234E0   ,   1, 1.3504F333F9DE6)
 | |
| ic(r2p1lo, 1.2537167179050217666E-16 , -53, 1.21165F626CDD5)
 | |
| ic(sqrt2,  1.4142135623730951455E0   ,   0, 1.6A09E667F3BCD)
 | |
| 
 | |
| #ifdef vccast
 | |
| #define	r2p1hi	vccast(r2p1hi)
 | |
| #define	r2p1lo	vccast(r2p1lo)
 | |
| #define	sqrt2	vccast(sqrt2)
 | |
| #endif
 | |
| 
 | |
| double
 | |
| hypot(double x, double y)
 | |
| {
 | |
| 	static const double zero=0, one=1,
 | |
| 		      small=1.0E-18;	/* fl(1+small)==1 */
 | |
| 	static const ibig=30;	/* fl(1+2**(2*ibig))==1 */
 | |
| 	double t,r;
 | |
| 	int exp;
 | |
| 
 | |
| 	if(finite(x))
 | |
| 	    if(finite(y))
 | |
| 	    {
 | |
| 		x=copysign(x,one);
 | |
| 		y=copysign(y,one);
 | |
| 		if(y > x)
 | |
| 		    { t=x; x=y; y=t; }
 | |
| 		if(x == zero) return(zero);
 | |
| 		if(y == zero) return(x);
 | |
| 		exp= logb(x);
 | |
| 		if(exp-(int)logb(y) > ibig )
 | |
| 			/* raise inexact flag and return |x| */
 | |
| 		   { one+small; return(x); }
 | |
| 
 | |
| 	    /* start computing sqrt(x^2 + y^2) */
 | |
| 		r=x-y;
 | |
| 		if(r>y) { 	/* x/y > 2 */
 | |
| 		    r=x/y;
 | |
| 		    r=r+sqrt(one+r*r); }
 | |
| 		else {		/* 1 <= x/y <= 2 */
 | |
| 		    r/=y; t=r*(r+2.0);
 | |
| 		    r+=t/(sqrt2+sqrt(2.0+t));
 | |
| 		    r+=r2p1lo; r+=r2p1hi; }
 | |
| 
 | |
| 		r=y/r;
 | |
| 		return(x+r);
 | |
| 
 | |
| 	    }
 | |
| 
 | |
| 	    else if(y==y)   	   /* y is +-INF */
 | |
| 		     return(copysign(y,one));
 | |
| 	    else
 | |
| 		     return(y);	   /* y is NaN and x is finite */
 | |
| 
 | |
| 	else if(x==x) 		   /* x is +-INF */
 | |
| 	         return (copysign(x,one));
 | |
| 	else if(finite(y))
 | |
| 	         return(x);		   /* x is NaN, y is finite */
 | |
| #if !defined(__vax__)&&!defined(tahoe)
 | |
| 	else if(y!=y) return(y);  /* x and y is NaN */
 | |
| #endif	/* !defined(__vax__)&&!defined(tahoe) */
 | |
| 	else return(copysign(y,one));   /* y is INF */
 | |
| }
 | |
| 
 | |
| /* CABS(Z)
 | |
|  * RETURN THE ABSOLUTE VALUE OF THE COMPLEX NUMBER  Z = X + iY
 | |
|  * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS)
 | |
|  * CODED IN C BY K.C. NG, 11/28/84.
 | |
|  * REVISED BY K.C. NG, 7/12/85.
 | |
|  *
 | |
|  * Required kernel function :
 | |
|  *	hypot(x,y)
 | |
|  *
 | |
|  * Method :
 | |
|  *	cabs(z) = hypot(x,y) .
 | |
|  */
 | |
| 
 | |
| struct complex { double x, y; };
 | |
| 
 | |
| double
 | |
| cabs(z)
 | |
| struct complex z;
 | |
| {
 | |
| 	return hypot(z.x,z.y);
 | |
| }
 | |
| 
 | |
| double
 | |
| z_abs(z)
 | |
| struct complex *z;
 | |
| {
 | |
| 	return hypot(z->x,z->y);
 | |
| }
 | |
| 
 | |
| /* A faster but less accurate version of cabs(x,y) */
 | |
| #if 0
 | |
| double hypot(x,y)
 | |
| double x, y;
 | |
| {
 | |
| 	static const double zero=0, one=1;
 | |
| 		      small=1.0E-18;	/* fl(1+small)==1 */
 | |
| 	static const ibig=30;	/* fl(1+2**(2*ibig))==1 */
 | |
| 	double temp;
 | |
| 	int exp;
 | |
| 
 | |
| 	if(finite(x))
 | |
| 	    if(finite(y))
 | |
| 	    {
 | |
| 		x=copysign(x,one);
 | |
| 		y=copysign(y,one);
 | |
| 		if(y > x)
 | |
| 		    { temp=x; x=y; y=temp; }
 | |
| 		if(x == zero) return(zero);
 | |
| 		if(y == zero) return(x);
 | |
| 		exp= logb(x);
 | |
| 		x=scalb(x,-exp);
 | |
| 		if(exp-(int)logb(y) > ibig )
 | |
| 			/* raise inexact flag and return |x| */
 | |
| 		   { one+small; return(scalb(x,exp)); }
 | |
| 		else y=scalb(y,-exp);
 | |
| 		return(scalb(sqrt(x*x+y*y),exp));
 | |
| 	    }
 | |
| 
 | |
| 	    else if(y==y)   	   /* y is +-INF */
 | |
| 		     return(copysign(y,one));
 | |
| 	    else
 | |
| 		     return(y);	   /* y is NaN and x is finite */
 | |
| 
 | |
| 	else if(x==x) 		   /* x is +-INF */
 | |
| 	         return (copysign(x,one));
 | |
| 	else if(finite(y))
 | |
| 	         return(x);		   /* x is NaN, y is finite */
 | |
| 	else if(y!=y) return(y);  	/* x and y is NaN */
 | |
| 	else return(copysign(y,one));   /* y is INF */
 | |
| }
 | |
| #endif
 |