256 lines
		
	
	
		
			5.2 KiB
		
	
	
	
		
			Brainfuck
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			256 lines
		
	
	
		
			5.2 KiB
		
	
	
	
		
			Brainfuck
		
	
	
		
			Executable File
		
	
	
	
	
/* libmath.b for bc for minix.  */
 | 
						|
 | 
						|
/*  This file is part of bc written for MINIX.
 | 
						|
    Copyright (C) 1991, 1992 Free Software Foundation, Inc.
 | 
						|
 | 
						|
    This program is free software; you can redistribute it and/or modify
 | 
						|
    it under the terms of the GNU General Public License as published by
 | 
						|
    the Free Software Foundation; either version 2 of the License , or
 | 
						|
    (at your option) any later version.
 | 
						|
 | 
						|
    This program is distributed in the hope that it will be useful,
 | 
						|
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
						|
    GNU General Public License for more details.
 | 
						|
 | 
						|
    You should have received a copy of the GNU General Public License
 | 
						|
    along with this program; see the file COPYING.  If not, write to
 | 
						|
    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
 | 
						|
 | 
						|
    You may contact the author by:
 | 
						|
       e-mail:  phil@cs.wwu.edu
 | 
						|
      us-mail:  Philip A. Nelson
 | 
						|
                Computer Science Department, 9062
 | 
						|
                Western Washington University
 | 
						|
                Bellingham, WA 98226-9062
 | 
						|
       
 | 
						|
*************************************************************************/
 | 
						|
 | 
						|
 | 
						|
scale = 20
 | 
						|
 | 
						|
/* Uses the fact that e^x = (e^(x/2))^2
 | 
						|
   When x is small enough, we use the series:
 | 
						|
     e^x = 1 + x + x^2/2! + x^3/3! + ...
 | 
						|
*/
 | 
						|
 | 
						|
define e(x) {
 | 
						|
  auto  a, d, e, f, i, m, v, z
 | 
						|
 | 
						|
  /* Check the sign of x. */
 | 
						|
  if (x<0) {
 | 
						|
    m = 1
 | 
						|
    x = -x
 | 
						|
  } 
 | 
						|
 | 
						|
  /* Precondition x. */
 | 
						|
  z = scale;
 | 
						|
  scale = 4 + z + .44*x;
 | 
						|
  while (x > 1) {
 | 
						|
    f += 1;
 | 
						|
    x /= 2;
 | 
						|
  }
 | 
						|
 | 
						|
  /* Initialize the variables. */
 | 
						|
  v = 1+x
 | 
						|
  a = x
 | 
						|
  d = 1
 | 
						|
 | 
						|
  for (i=2; 1; i++) {
 | 
						|
    e = (a *= x) / (d *= i)
 | 
						|
    if (e == 0) {
 | 
						|
      if (f>0) while (f--)  v = v*v;
 | 
						|
      scale = z
 | 
						|
      if (m) return (1/v);
 | 
						|
      return (v/1);
 | 
						|
    }
 | 
						|
    v += e
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/* Natural log. Uses the fact that ln(x^2) = 2*ln(x)
 | 
						|
    The series used is:
 | 
						|
       ln(x) = 2(a+a^3/3+a^5/5+...) where a=(x-1)/(x+1)
 | 
						|
*/
 | 
						|
 | 
						|
define l(x) {
 | 
						|
  auto e, f, i, m, n, v, z
 | 
						|
 | 
						|
  /* return something for the special case. */
 | 
						|
  if (x <= 0) return (1 - 10^scale)
 | 
						|
 | 
						|
  /* Precondition x to make .5 < x < 2.0. */
 | 
						|
  z = scale;
 | 
						|
  scale += 4;
 | 
						|
  f = 2;
 | 
						|
  i=0
 | 
						|
  while (x >= 2) {  /* for large numbers */
 | 
						|
    f *= 2;
 | 
						|
    x = sqrt(x);
 | 
						|
  }
 | 
						|
  while (x <= .5) {  /* for small numbers */
 | 
						|
    f *= 2;
 | 
						|
    x = sqrt(x);
 | 
						|
  }
 | 
						|
 | 
						|
  /* Set up the loop. */
 | 
						|
  v = n = (x-1)/(x+1)
 | 
						|
  m = n*n
 | 
						|
 | 
						|
  /* Sum the series. */
 | 
						|
  for (i=3; 1; i+=2) {
 | 
						|
    e = (n *= m) / i
 | 
						|
    if (e == 0) {
 | 
						|
      v = f*v
 | 
						|
      scale = z
 | 
						|
      return (v/1)
 | 
						|
    }
 | 
						|
    v += e
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/* Sin(x)  uses the standard series:
 | 
						|
   sin(x) = x - x^3/3! + x^5/5! - x^7/7! ... */
 | 
						|
 | 
						|
define s(x) {
 | 
						|
  auto  e, i, m, n, s, v, z
 | 
						|
 | 
						|
  /* precondition x. */
 | 
						|
  z = scale 
 | 
						|
  scale = 1.1*z + 1;
 | 
						|
  v = a(1)
 | 
						|
  if (x < 0) {
 | 
						|
    m = 1;
 | 
						|
    x = -x;
 | 
						|
  }
 | 
						|
  scale = 0
 | 
						|
  n = (x / v + 2 )/4
 | 
						|
  x = x - 4*n*v
 | 
						|
  if (n%2) x = -x
 | 
						|
 | 
						|
  /* Do the loop. */
 | 
						|
  scale = z + 2;
 | 
						|
  v = e = x
 | 
						|
  s = -x*x
 | 
						|
  for (i=3; 1; i+=2) {
 | 
						|
    e *= s/(i*(i-1))
 | 
						|
    if (e == 0) {
 | 
						|
      scale = z
 | 
						|
      if (m) return (-v/1);
 | 
						|
      return (v/1);
 | 
						|
    }
 | 
						|
    v += e
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/* Cosine : cos(x) = sin(x+pi/2) */
 | 
						|
define c(x) {
 | 
						|
  auto v;
 | 
						|
  scale += 1;
 | 
						|
  v = s(x+a(1)*2);
 | 
						|
  scale -= 1;
 | 
						|
  return (v/1);
 | 
						|
}
 | 
						|
 | 
						|
/* Arctan: Using the formula:
 | 
						|
     atan(x) = atan(c) + atan((x-c)/(1+xc)) for a small c (.2 here)
 | 
						|
   For under .2, use the series:
 | 
						|
     atan(x) = x - x^3/3 + x^5/5 - x^7/7 + ...   */
 | 
						|
 | 
						|
define a(x) {
 | 
						|
  auto a, e, f, i, m, n, s, v, z
 | 
						|
 | 
						|
  /* Special case and for fast answers */
 | 
						|
  if (x==1) {
 | 
						|
    if (scale <= 25) return (.7853981633974483096156608/1)
 | 
						|
    if (scale <= 40) return (.7853981633974483096156608458198757210492/1)
 | 
						|
    if (scale <= 60) \
 | 
						|
      return (.785398163397448309615660845819875721049292349843776455243736/1)
 | 
						|
  }
 | 
						|
  if (x==.2) {
 | 
						|
    if (scale <= 25) return (.1973955598498807583700497/1)
 | 
						|
    if (scale <= 40) return (.1973955598498807583700497651947902934475/1)
 | 
						|
    if (scale <= 60) \
 | 
						|
      return (.197395559849880758370049765194790293447585103787852101517688/1)
 | 
						|
  }
 | 
						|
 | 
						|
  /* Negative x? */
 | 
						|
  if (x<0) {
 | 
						|
    m = 1;
 | 
						|
    x = -x;
 | 
						|
  }
 | 
						|
 | 
						|
  /* Save the scale. */
 | 
						|
  z = scale;
 | 
						|
 | 
						|
  /* Note: a and f are known to be zero due to being auto vars. */
 | 
						|
  /* Calculate atan of a known number. */ 
 | 
						|
  if (x > .2)  {
 | 
						|
    scale = z+4;
 | 
						|
    a = a(.2);
 | 
						|
  }
 | 
						|
   
 | 
						|
  /* Precondition x. */
 | 
						|
  scale = z+2;
 | 
						|
  while (x > .2) {
 | 
						|
    f += 1;
 | 
						|
    x = (x-.2) / (1+x*.2);
 | 
						|
  }
 | 
						|
 | 
						|
  /* Initialize the series. */
 | 
						|
  v = n = x;
 | 
						|
  s = -x*x;
 | 
						|
 | 
						|
  /* Calculate the series. */
 | 
						|
  for (i=3; 1; i+=2) {
 | 
						|
    e = (n *= s) / i;
 | 
						|
    if (e == 0) {
 | 
						|
      scale = z;
 | 
						|
      if (m) return ((f*a+v)/-1);
 | 
						|
      return ((f*a+v)/1);
 | 
						|
    }
 | 
						|
    v += e
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* Bessel function of integer order.  Uses the following:
 | 
						|
   j(-n,x) = (-1)^n*j(n,x) 
 | 
						|
   j(n,x) = x^n/(2^n*n!) * (1 - x^2/(2^2*1!*(n+1)) + x^4/(2^4*2!*(n+1)*(n+2))
 | 
						|
            - x^6/(2^6*3!*(n+1)*(n+2)*(n+3)) .... )
 | 
						|
*/
 | 
						|
define j(n,x) {
 | 
						|
  auto a, d, e, f, i, m, s, v, z
 | 
						|
 | 
						|
  /* Make n an integer and check for negative n. */
 | 
						|
  z = scale;
 | 
						|
  scale = 0;
 | 
						|
  n = n/1;
 | 
						|
  if (n<0) {
 | 
						|
    n = -n;
 | 
						|
    if (n%2 == 1) m = 1;
 | 
						|
  }
 | 
						|
 | 
						|
  /* Compute the factor of x^n/(2^n*n!) */
 | 
						|
  f = 1;
 | 
						|
  for (i=2; i<=n; i++) f = f*i;
 | 
						|
  scale = 1.5*z;
 | 
						|
  f = x^n / 2^n / f;
 | 
						|
 | 
						|
  /* Initialize the loop .*/
 | 
						|
  v = e = 1;
 | 
						|
  s = -x*x/4
 | 
						|
  scale = 1.5*z
 | 
						|
 | 
						|
  /* The Loop.... */
 | 
						|
  for (i=1; 1; i++) {
 | 
						|
    e =  e * s / i / (n+i);
 | 
						|
    if (e == 0) {
 | 
						|
       scale = z
 | 
						|
       if (m) return (-f*v/1);
 | 
						|
       return (f*v/1);
 | 
						|
    }
 | 
						|
    v += e;
 | 
						|
  }
 | 
						|
}
 |