838 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			838 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| 
 | |
| #include "../../kernel.h"
 | |
| #include "../../proc.h"
 | |
| #include "../../vm.h"
 | |
| 
 | |
| #include <minix/type.h>
 | |
| #include <minix/syslib.h>
 | |
| #include <minix/sysutil.h>
 | |
| #include <string.h>
 | |
| 
 | |
| #include <sys/vm_i386.h>
 | |
| 
 | |
| #include <minix/portio.h>
 | |
| 
 | |
| #include "proto.h"
 | |
| #include "../../proto.h"
 | |
| #include "../../debug.h"
 | |
| 
 | |
| /* VM functions and data. */
 | |
| PRIVATE u32_t vm_cr3;
 | |
| PUBLIC u32_t kernel_cr3;
 | |
| extern u32_t cswitch;
 | |
| u32_t last_cr3 = 0;
 | |
| 
 | |
| FORWARD _PROTOTYPE( void phys_put32, (phys_bytes addr, u32_t value)	);
 | |
| FORWARD _PROTOTYPE( u32_t phys_get32, (phys_bytes addr)			);
 | |
| FORWARD _PROTOTYPE( void vm_set_cr3, (u32_t value)			);
 | |
| FORWARD _PROTOTYPE( void set_cr3, (void)				);
 | |
| FORWARD _PROTOTYPE( void vm_enable_paging, (void)			);
 | |
| 
 | |
| #if DEBUG_VMASSERT
 | |
| #define vmassert(t) { \
 | |
| 	if(!(t)) { minix_panic("vm: assert " #t " failed\n", __LINE__); } }
 | |
| #else
 | |
| #define vmassert(t) { }
 | |
| #endif
 | |
| 
 | |
| /* *** Internal VM Functions *** */
 | |
| 
 | |
| PUBLIC void vm_init(void)
 | |
| {
 | |
| 	int o;
 | |
| 	phys_bytes p, pt_size;
 | |
| 	phys_bytes vm_dir_base, vm_pt_base, phys_mem;
 | |
| 	u32_t entry;
 | |
| 	unsigned pages;
 | |
| 	struct proc* rp;
 | |
| 	struct proc *sys = proc_addr(SYSTEM);
 | |
| 
 | |
| 	if (!vm_size)
 | |
| 		minix_panic("i386_vm_init: no space for page tables", NO_NUM);
 | |
| 
 | |
| 	if(vm_running)
 | |
| 		return;
 | |
| 
 | |
| 	/* Align page directory */
 | |
| 	o= (vm_base % I386_PAGE_SIZE);
 | |
| 	if (o != 0)
 | |
| 		o= I386_PAGE_SIZE-o;
 | |
| 	vm_dir_base= vm_base+o;
 | |
| 
 | |
| 	/* Page tables start after the page directory */
 | |
| 	vm_pt_base= vm_dir_base+I386_PAGE_SIZE;
 | |
| 
 | |
| 	pt_size= (vm_base+vm_size)-vm_pt_base;
 | |
| 	pt_size -= (pt_size % I386_PAGE_SIZE);
 | |
| 
 | |
| 	/* Compute the number of pages based on vm_mem_high */
 | |
| 	pages= (vm_mem_high-1)/I386_PAGE_SIZE + 1;
 | |
| 
 | |
| 	if (pages * I386_VM_PT_ENT_SIZE > pt_size)
 | |
| 		minix_panic("i386_vm_init: page table too small", NO_NUM);
 | |
| 
 | |
| 	for (p= 0; p*I386_VM_PT_ENT_SIZE < pt_size; p++)
 | |
| 	{
 | |
| 		phys_mem= p*I386_PAGE_SIZE;
 | |
| 		entry= phys_mem | I386_VM_USER | I386_VM_WRITE |
 | |
| 			I386_VM_PRESENT;
 | |
| 		if (phys_mem >= vm_mem_high)
 | |
| 			entry= 0;
 | |
| #if VM_KERN_NOPAGEZERO
 | |
| 		if (phys_mem == (sys->p_memmap[T].mem_phys << CLICK_SHIFT) ||
 | |
| 		    phys_mem == (sys->p_memmap[D].mem_phys << CLICK_SHIFT)) {
 | |
| 			entry = 0;
 | |
| 		}
 | |
| #endif
 | |
| 		phys_put32(vm_pt_base + p*I386_VM_PT_ENT_SIZE, entry);
 | |
| 	}
 | |
| 
 | |
| 	for (p= 0; p < I386_VM_DIR_ENTRIES; p++)
 | |
| 	{
 | |
| 		phys_mem= vm_pt_base + p*I386_PAGE_SIZE;
 | |
| 		entry= phys_mem | I386_VM_USER | I386_VM_WRITE |
 | |
| 			I386_VM_PRESENT;
 | |
| 		if (phys_mem >= vm_pt_base + pt_size)
 | |
| 			entry= 0;
 | |
| 		phys_put32(vm_dir_base + p*I386_VM_PT_ENT_SIZE, entry);
 | |
| 	}
 | |
| 
 | |
| 	/* Set this cr3 in all currently running processes for
 | |
| 	 * future context switches.
 | |
| 	 */
 | |
| 	for (rp=BEG_PROC_ADDR; rp<END_PROC_ADDR; rp++) {
 | |
| 		u32_t mycr3;
 | |
| 		if(isemptyp(rp)) continue;
 | |
| 		rp->p_seg.p_cr3 = vm_dir_base;
 | |
| 	}
 | |
| 
 | |
| 	kernel_cr3 = vm_dir_base;
 | |
| 
 | |
| 	/* Set this cr3 now (not active until paging enabled). */
 | |
| 	vm_set_cr3(vm_dir_base);
 | |
| 
 | |
| 	/* Actually enable paging (activating cr3 load above). */
 | |
| 	level0(vm_enable_paging);
 | |
| 
 | |
| 	/* Don't do this init in the future. */
 | |
| 	vm_running = 1;
 | |
| }
 | |
| 
 | |
| PRIVATE void phys_put32(addr, value)
 | |
| phys_bytes addr;
 | |
| u32_t value;
 | |
| {
 | |
| 	phys_copy(vir2phys((vir_bytes)&value), addr, sizeof(value));
 | |
| }
 | |
| 
 | |
| PRIVATE u32_t phys_get32(addr)
 | |
| phys_bytes addr;
 | |
| {
 | |
| 	u32_t value;
 | |
| 
 | |
| 	phys_copy(addr, vir2phys((vir_bytes)&value), sizeof(value));
 | |
| 
 | |
| 	return value;
 | |
| }
 | |
| 
 | |
| PRIVATE void vm_set_cr3(value)
 | |
| u32_t value;
 | |
| {
 | |
| 	vm_cr3= value;
 | |
| 	level0(set_cr3);
 | |
| }
 | |
| 
 | |
| PRIVATE void set_cr3()
 | |
| {
 | |
| 	write_cr3(vm_cr3);
 | |
| }
 | |
| 
 | |
| PRIVATE void vm_enable_paging(void)
 | |
| {
 | |
| 	u32_t cr0, cr4;
 | |
| 
 | |
| 
 | |
| 	cr0= read_cr0();
 | |
| 	cr4= read_cr4();
 | |
| 
 | |
| 	/* First clear PG and PGE flag, as PGE must be enabled after PG. */
 | |
| 	write_cr0(cr0 & ~I386_CR0_PG);
 | |
| 	write_cr4(cr4 & ~I386_CR4_PGE);
 | |
| 
 | |
| 	cr0= read_cr0();
 | |
| 	cr4= read_cr4();
 | |
| 
 | |
| 	/* First enable paging, then enable global page flag. */
 | |
| 	write_cr0(cr0 | I386_CR0_PG);
 | |
| 	write_cr4(cr4 | I386_CR4_PGE);
 | |
| 
 | |
| {
 | |
| 	u32_t cr4v;
 | |
| 	cr4v = read_cr4();
 | |
| 	kprintf("cr4 = 0x%lx\n", cr4v);
 | |
| }
 | |
| }
 | |
| 
 | |
| PUBLIC vir_bytes alloc_remote_segment(u32_t *selector,
 | |
| 	segframe_t *segments, int index, phys_bytes phys, vir_bytes size,
 | |
| 	int priv)
 | |
| {
 | |
| 	phys_bytes offset = 0;
 | |
| 	/* Check if the segment size can be recorded in bytes, that is, check
 | |
| 	 * if descriptor's limit field can delimited the allowed memory region
 | |
| 	 * precisely. This works up to 1MB. If the size is larger, 4K pages
 | |
| 	 * instead of bytes are used.
 | |
| 	*/
 | |
| 	if (size < BYTE_GRAN_MAX) {
 | |
| 		init_dataseg(&segments->p_ldt[EXTRA_LDT_INDEX+index],
 | |
| 			phys, size, priv);
 | |
| 		*selector = ((EXTRA_LDT_INDEX+index)*0x08) | (1*0x04) | priv;
 | |
| 		offset = 0;
 | |
| 	} else {
 | |
| 		init_dataseg(&segments->p_ldt[EXTRA_LDT_INDEX+index],
 | |
| 			phys & ~0xFFFF, 0, priv);
 | |
| 		*selector = ((EXTRA_LDT_INDEX+index)*0x08) | (1*0x04) | priv;
 | |
| 		offset = phys & 0xFFFF;
 | |
| 	}
 | |
| 
 | |
| 	return offset;
 | |
| }
 | |
| 
 | |
| PUBLIC phys_bytes umap_remote(struct proc* rp, int seg,
 | |
| 	vir_bytes vir_addr, vir_bytes bytes)
 | |
| {
 | |
| /* Calculate the physical memory address for a given virtual address. */
 | |
|   struct far_mem *fm;
 | |
| 
 | |
| #if 0
 | |
|   if(rp->p_misc_flags & MF_FULLVM) return 0;
 | |
| #endif
 | |
| 
 | |
|   if (bytes <= 0) return( (phys_bytes) 0);
 | |
|   if (seg < 0 || seg >= NR_REMOTE_SEGS) return( (phys_bytes) 0);
 | |
| 
 | |
|   fm = &rp->p_priv->s_farmem[seg];
 | |
|   if (! fm->in_use) return( (phys_bytes) 0);
 | |
|   if (vir_addr + bytes > fm->mem_len) return( (phys_bytes) 0);
 | |
| 
 | |
|   return(fm->mem_phys + (phys_bytes) vir_addr);
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *                              umap_local                                   *
 | |
|  *===========================================================================*/
 | |
| PUBLIC phys_bytes umap_local(rp, seg, vir_addr, bytes)
 | |
| register struct proc *rp;       /* pointer to proc table entry for process */
 | |
| int seg;                        /* T, D, or S segment */
 | |
| vir_bytes vir_addr;             /* virtual address in bytes within the seg */
 | |
| vir_bytes bytes;                /* # of bytes to be copied */
 | |
| {
 | |
| /* Calculate the physical memory address for a given virtual address. */
 | |
|   vir_clicks vc;                /* the virtual address in clicks */
 | |
|   phys_bytes pa;                /* intermediate variables as phys_bytes */
 | |
|   phys_bytes seg_base;
 | |
| 
 | |
|   if(seg != T && seg != D && seg != S)
 | |
| 	minix_panic("umap_local: wrong seg", seg);
 | |
| 
 | |
|   if (bytes <= 0) return( (phys_bytes) 0);
 | |
|   if (vir_addr + bytes <= vir_addr) return 0;   /* overflow */
 | |
|   vc = (vir_addr + bytes - 1) >> CLICK_SHIFT;   /* last click of data */
 | |
|  
 | |
|   if (seg != T)
 | |
|         seg = (vc < rp->p_memmap[D].mem_vir + rp->p_memmap[D].mem_len ? D : S);
 | |
|  
 | |
|   if ((vir_addr>>CLICK_SHIFT) >= rp->p_memmap[seg].mem_vir +
 | |
|         rp->p_memmap[seg].mem_len) return( (phys_bytes) 0 );
 | |
|  
 | |
|   if (vc >= rp->p_memmap[seg].mem_vir +
 | |
|         rp->p_memmap[seg].mem_len) return( (phys_bytes) 0 );
 | |
|   
 | |
|   seg_base = (phys_bytes) rp->p_memmap[seg].mem_phys;
 | |
|   seg_base = seg_base << CLICK_SHIFT;   /* segment origin in bytes */
 | |
|   pa = (phys_bytes) vir_addr;
 | |
|   pa -= rp->p_memmap[seg].mem_vir << CLICK_SHIFT;
 | |
|   return(seg_base + pa);
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *                              umap_virtual                                 *
 | |
|  *===========================================================================*/
 | |
| PUBLIC phys_bytes umap_virtual(rp, seg, vir_addr, bytes)
 | |
| register struct proc *rp;       /* pointer to proc table entry for process */
 | |
| int seg;                        /* T, D, or S segment */
 | |
| vir_bytes vir_addr;             /* virtual address in bytes within the seg */
 | |
| vir_bytes bytes;                /* # of bytes to be copied */
 | |
| {
 | |
| 	vir_bytes linear;
 | |
| 	u32_t phys = 0;
 | |
| 
 | |
| 	if(seg == MEM_GRANT) {
 | |
| 		phys = umap_grant(rp, vir_addr, bytes);
 | |
| 	} else {
 | |
| 		if(!(linear = umap_local(rp, seg, vir_addr, bytes))) {
 | |
| 			kprintf("SYSTEM:umap_virtual: umap_local failed\n");
 | |
| 			phys = 0;
 | |
| 		} else {
 | |
| 			if(vm_lookup(rp, linear, &phys, NULL) != OK) {
 | |
| 				kprintf("SYSTEM:umap_virtual: vm_lookup of %s: seg 0x%lx: 0x%lx failed\n", rp->p_name, seg, vir_addr);
 | |
| 				phys = 0;
 | |
| 			}
 | |
| 			if(phys == 0)
 | |
| 				minix_panic("vm_lookup returned phys", phys);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if(phys == 0) {
 | |
| 		kprintf("SYSTEM:umap_virtual: lookup failed\n");
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* Now make sure addresses are contiguous in physical memory
 | |
| 	 * so that the umap makes sense.
 | |
| 	 */
 | |
| 	if(bytes > 0 && !vm_contiguous(rp, linear, bytes)) {
 | |
| 		kprintf("umap_virtual: %s: %d at 0x%lx (vir 0x%lx) not contiguous\n",
 | |
| 			rp->p_name, bytes, linear, vir_addr);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* phys must be larger than 0 (or the caller will think the call
 | |
| 	 * failed), and address must not cross a page boundary.
 | |
| 	 */
 | |
| 	vmassert(phys);
 | |
| 
 | |
| 	return phys;
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *                              vm_lookup                                    *
 | |
|  *===========================================================================*/
 | |
| PUBLIC int vm_lookup(struct proc *proc, vir_bytes virtual, vir_bytes *physical, u32_t *ptent)
 | |
| {
 | |
| 	u32_t *root, *pt;
 | |
| 	int pde, pte;
 | |
| 	u32_t pde_v, pte_v;
 | |
| 
 | |
| 	vmassert(proc);
 | |
| 	vmassert(physical);
 | |
| 	vmassert(!(proc->p_rts_flags & SLOT_FREE));
 | |
| 
 | |
| 	/* Retrieve page directory entry. */
 | |
| 	root = (u32_t *) proc->p_seg.p_cr3;
 | |
| 	vmassert(!((u32_t) root % I386_PAGE_SIZE));
 | |
| 	pde = I386_VM_PDE(virtual);
 | |
| 	vmassert(pde >= 0 && pde < I386_VM_DIR_ENTRIES);
 | |
| 	pde_v = phys_get32((u32_t) (root + pde));
 | |
| 	if(!(pde_v & I386_VM_PRESENT)) {
 | |
| #if 0
 | |
| 		kprintf("vm_lookup: %d:%s:0x%lx: cr3 0x%lx: pde %d not present\n",
 | |
| 			proc->p_endpoint, proc->p_name, virtual, root, pde);
 | |
| 		kprintf("kernel stack: ");
 | |
| 		util_stacktrace();
 | |
| #endif
 | |
| 		return EFAULT;
 | |
| 	}
 | |
| 
 | |
| 	/* Retrieve page table entry. */
 | |
| 	pt = (u32_t *) I386_VM_PFA(pde_v);
 | |
| 	vmassert(!((u32_t) pt % I386_PAGE_SIZE));
 | |
| 	pte = I386_VM_PTE(virtual);
 | |
| 	vmassert(pte >= 0 && pte < I386_VM_PT_ENTRIES);
 | |
| 	pte_v = phys_get32((u32_t) (pt + pte));
 | |
| 	if(!(pte_v & I386_VM_PRESENT)) {
 | |
| #if 0
 | |
| 		kprintf("vm_lookup: %d:%s:0x%lx: cr3 %lx: pde %d: pte %d not present\n",
 | |
| 			proc->p_endpoint, proc->p_name, virtual, root, pde, pte);
 | |
| 		kprintf("kernel stack: ");
 | |
| 		util_stacktrace();
 | |
| #endif
 | |
| 		return EFAULT;
 | |
| 	}
 | |
| 
 | |
| 	if(ptent) *ptent = pte_v;
 | |
| 
 | |
| 	/* Actual address now known; retrieve it and add page offset. */
 | |
| 	*physical = I386_VM_PFA(pte_v);
 | |
| 	*physical += virtual % I386_PAGE_SIZE;
 | |
| 
 | |
| 	return OK;
 | |
| }
 | |
| 
 | |
| /* From virtual address v in process p,
 | |
|  * lookup physical address and assign it to d.
 | |
|  * If p is NULL, assume it's already a physical address.
 | |
|  */
 | |
| #define LOOKUP(d, p, v, flagsp) {	\
 | |
| 	int r; 				\
 | |
| 	if(!(p)) { (d) = (v); } 	\
 | |
| 	else {				\
 | |
| 		if((r=vm_lookup((p), (v), &(d), flagsp)) != OK) { \
 | |
| 			kprintf("vm_copy: lookup failed of 0x%lx in %d (%s)\n"\
 | |
| 				"kernel stacktrace: ", (v), (p)->p_endpoint, \
 | |
| 					(p)->p_name);		\
 | |
| 			util_stacktrace();			\
 | |
| 			return r;				\
 | |
| 		} } }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *                              vm_copy                                      *
 | |
|  *===========================================================================*/
 | |
| int vm_copy(vir_bytes src, struct proc *srcproc,
 | |
| 	 vir_bytes dst, struct proc *dstproc, phys_bytes bytes)
 | |
| {
 | |
| #define WRAPS(v) (ULONG_MAX - (v) <= bytes)
 | |
| 
 | |
| 	if(WRAPS(src) || WRAPS(dst))
 | |
| 		minix_panic("vm_copy: linear address wraps", NO_NUM);
 | |
| 
 | |
| 	while(bytes > 0) {
 | |
| 		u32_t n, flags;
 | |
| 		phys_bytes p_src, p_dst;
 | |
| #define PAGEREMAIN(v) (I386_PAGE_SIZE - ((v) % I386_PAGE_SIZE))
 | |
| 
 | |
| 		/* We can copy this number of bytes without
 | |
| 		 * crossing a page boundary, but don't copy more
 | |
| 		 * than asked.
 | |
| 		 */
 | |
| 		n = MIN(PAGEREMAIN(src), PAGEREMAIN(dst));
 | |
| 		n = MIN(n, bytes);
 | |
| 		vmassert(n > 0);
 | |
| 		vmassert(n <= I386_PAGE_SIZE);
 | |
| 
 | |
| 		/* Convert both virtual addresses to physical and do
 | |
| 		 * copy.
 | |
| 		 */
 | |
| 		LOOKUP(p_src, srcproc, src, NULL);
 | |
| 		LOOKUP(p_dst, dstproc, dst, &flags);
 | |
| 		if(!(flags & I386_VM_WRITE)) {
 | |
| 			kprintf("vm_copy: copying to nonwritable page\n");
 | |
| 			kprintf("kernel stack: ");
 | |
| 			util_stacktrace();
 | |
| 			return EFAULT;
 | |
| 		}
 | |
| 		phys_copy(p_src, p_dst, n);
 | |
| 
 | |
| 		/* Book number of bytes copied. */
 | |
| 		vmassert(bytes >= n);
 | |
| 		bytes -= n;
 | |
| 		src += n;
 | |
| 		dst += n;
 | |
| 	}
 | |
| 
 | |
| 	return OK;
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *                              vm_contiguous                                *
 | |
|  *===========================================================================*/
 | |
| PUBLIC int vm_contiguous(struct proc *targetproc, u32_t vir_buf, size_t bytes)
 | |
| {
 | |
| 	int first = 1, r, boundaries = 0;
 | |
| 	u32_t prev_phys, po;
 | |
| 	u32_t prev_vir;
 | |
| 
 | |
| 	vmassert(targetproc);
 | |
| 	vmassert(bytes > 0);
 | |
| 	vmassert(vm_running);
 | |
| 
 | |
| 	/* Start and end at page boundary to make logic simpler. */
 | |
| 	po = vir_buf % I386_PAGE_SIZE;
 | |
| 	if(po > 0) {
 | |
| 		bytes += po;
 | |
| 		vir_buf -= po;
 | |
| 	}
 | |
| 	po = (vir_buf + bytes) % I386_PAGE_SIZE;
 | |
| 	if(po > 0)
 | |
| 		bytes += I386_PAGE_SIZE - po;
 | |
| 
 | |
| 	/* Keep going as long as we cross a page boundary. */
 | |
| 	while(bytes > 0) {
 | |
| 		u32_t phys;
 | |
| 
 | |
| 		if((r=vm_lookup(targetproc, vir_buf, &phys, NULL)) != OK) {
 | |
| 			kprintf("vm_contiguous: vm_lookup failed, %d\n", r);
 | |
| 			kprintf("kernel stack: ");
 | |
| 			util_stacktrace();
 | |
| 			return 0;
 | |
| 		}
 | |
| 
 | |
| 		if(!first) {
 | |
| 			if(prev_phys+I386_PAGE_SIZE != phys) {
 | |
| 				kprintf("vm_contiguous: no (0x%lx, 0x%lx)\n",
 | |
| 					prev_phys, phys);
 | |
| 				kprintf("kernel stack: ");
 | |
| 				util_stacktrace();
 | |
| 				return 0;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		first = 0;
 | |
| 
 | |
| 		prev_phys = phys;
 | |
| 		prev_vir = vir_buf;
 | |
| 		vir_buf += I386_PAGE_SIZE;
 | |
| 		bytes -= I386_PAGE_SIZE;
 | |
| 		boundaries++;
 | |
| 	}
 | |
| 
 | |
| 	if(verbose_vm)
 | |
| 		kprintf("vm_contiguous: yes (%d boundaries tested)\n",
 | |
| 			boundaries);
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| int vm_checkrange_verbose = 0;
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *                              vm_checkrange                                *
 | |
|  *===========================================================================*/
 | |
| PUBLIC int vm_checkrange(struct proc *caller, struct proc *target,
 | |
| 	vir_bytes vir, vir_bytes bytes, int wrfl, int checkonly)
 | |
| {
 | |
| 	u32_t flags, po, v;
 | |
| 	int r;
 | |
| 
 | |
| 	vmassert(vm_running);
 | |
| 
 | |
| 
 | |
| 	/* If caller has had a reply to this request, return it. */
 | |
| 	if(RTS_ISSET(caller, VMREQUEST)) {
 | |
| 		if(caller->p_vmrequest.who == target->p_endpoint) {
 | |
| 			if(caller->p_vmrequest.vmresult == VMSUSPEND)
 | |
| 				minix_panic("check sees VMSUSPEND?", NO_NUM);
 | |
| 			RTS_LOCK_UNSET(caller, VMREQUEST);
 | |
| #if 0
 | |
| 			kprintf("SYSTEM: vm_checkrange: returning vmresult %d\n",
 | |
| 				caller->p_vmrequest.vmresult);
 | |
| #endif
 | |
| 			return caller->p_vmrequest.vmresult;
 | |
| 		} else {
 | |
| #if 0
 | |
| 			kprintf("SYSTEM: vm_checkrange: caller has a request for %d, "
 | |
| 				"but our target is %d\n",
 | |
| 				caller->p_vmrequest.who, target->p_endpoint);
 | |
| #endif
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	po = vir % I386_PAGE_SIZE;
 | |
| 	if(po > 0) {
 | |
| 		vir -= po;
 | |
| 		bytes += po;
 | |
| 	}
 | |
| 
 | |
| 	vmassert(target);
 | |
| 	vmassert(bytes > 0);
 | |
| 
 | |
| 	for(v = vir; v < vir + bytes;  v+= I386_PAGE_SIZE) {
 | |
| 		u32_t phys;
 | |
| 
 | |
| 		/* If page exists and it's writable if desired, we're OK
 | |
| 		 * for this page.
 | |
| 		 */
 | |
| 		if(vm_lookup(target, v, &phys, &flags) == OK &&
 | |
| 			!(wrfl && !(flags & I386_VM_WRITE))) {
 | |
| 			if(vm_checkrange_verbose) {
 | |
| #if 0
 | |
| 				kprintf("SYSTEM: checkrange:%s:%d: 0x%lx: write 0x%lx, flags 0x%lx, phys 0x%lx, OK\n",
 | |
| 				target->p_name, target->p_endpoint, v, wrfl, flags, phys);
 | |
| #endif
 | |
| 			}
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if(vm_checkrange_verbose) {
 | |
| 			kprintf("SYSTEM: checkrange:%s:%d: 0x%lx: write 0x%lx, flags 0x%lx, phys 0x%lx, NOT OK\n",
 | |
| 			target->p_name, target->p_endpoint, v, wrfl, flags, phys);
 | |
| 		}
 | |
| 
 | |
| 		if(checkonly) {
 | |
| 			return VMSUSPEND;
 | |
| 		}
 | |
| 
 | |
| 		/* This range is not OK for this process. Set parameters
 | |
| 		 * of the request and notify VM about the pending request.
 | |
| 		 */
 | |
| 		if(RTS_ISSET(caller, VMREQUEST))
 | |
| 			minix_panic("VMREQUEST already set", caller->p_endpoint);
 | |
| 		RTS_LOCK_SET(caller, VMREQUEST);
 | |
| 
 | |
| 		/* Set parameters in caller. */
 | |
| 		caller->p_vmrequest.writeflag = wrfl;
 | |
| 		caller->p_vmrequest.start = vir;
 | |
| 		caller->p_vmrequest.length = bytes;
 | |
| 		caller->p_vmrequest.who = target->p_endpoint;
 | |
| 
 | |
| 		/* Set caller in target. */
 | |
| 		target->p_vmrequest.requestor = caller;
 | |
| 
 | |
| 		/* Connect caller on vmrequest wait queue. */
 | |
| 		caller->p_vmrequest.nextrequestor = vmrequest;
 | |
| 		vmrequest = caller;
 | |
| 		if(!caller->p_vmrequest.nextrequestor) {
 | |
| 			int n = 0;
 | |
| 			struct proc *vmr;
 | |
| 			for(vmr = vmrequest; vmr; vmr = vmr->p_vmrequest.nextrequestor)
 | |
| 				n++;
 | |
| 			soft_notify(VM_PROC_NR);
 | |
| #if 0
 | |
| 			kprintf("(%d) ", n);
 | |
| 			kprintf("%d/%d ",
 | |
| 				caller->p_endpoint, target->p_endpoint);
 | |
| 			util_stacktrace();
 | |
| #endif
 | |
| 		}
 | |
| 
 | |
| #if 0
 | |
| 		kprintf("SYSTEM: vm_checkrange: range bad for "
 | |
| 			"target %s:0x%lx-0x%lx, caller %s\n",
 | |
| 				target->p_name, vir, vir+bytes, caller->p_name);
 | |
| 
 | |
| 		kprintf("vm_checkrange kernel trace: ");
 | |
| 		util_stacktrace();
 | |
| 		kprintf("target trace: ");
 | |
| 		proc_stacktrace(target);
 | |
| #endif
 | |
| 
 | |
| 		if(target->p_endpoint == VM_PROC_NR) {
 | |
| 			kprintf("caller trace: ");
 | |
| 			proc_stacktrace(caller);
 | |
| 			kprintf("target trace: ");
 | |
| 			proc_stacktrace(target);
 | |
| 			minix_panic("VM ranges should be OK", NO_NUM);
 | |
| 		}
 | |
| 
 | |
| 		return VMSUSPEND;
 | |
| 	}
 | |
| 
 | |
| 	return OK;
 | |
| }
 | |
| 
 | |
| char *flagstr(u32_t e, int dir)
 | |
| {
 | |
| 	static char str[80];
 | |
| 	strcpy(str, "");
 | |
| #define FLAG(v) do { if(e & (v)) { strcat(str, #v " "); } } while(0)
 | |
| 	FLAG(I386_VM_PRESENT);
 | |
| 	FLAG(I386_VM_WRITE);
 | |
| 	FLAG(I386_VM_USER);
 | |
| 	FLAG(I386_VM_PWT);
 | |
| 	FLAG(I386_VM_PCD);
 | |
| 	if(dir)
 | |
| 		FLAG(I386_VM_BIGPAGE);	/* Page directory entry only */
 | |
| 	else
 | |
| 		FLAG(I386_VM_DIRTY);	/* Page table entry only */
 | |
| 
 | |
| 	return str;
 | |
| }
 | |
| 
 | |
| void vm_pt_print(u32_t *pagetable, u32_t v)
 | |
| {
 | |
| 	int pte, l = 0;
 | |
| 	int col = 0;
 | |
| 
 | |
| 	vmassert(!((u32_t) pagetable % I386_PAGE_SIZE));
 | |
| 
 | |
| 	for(pte = 0; pte < I386_VM_PT_ENTRIES; pte++) {
 | |
| 		u32_t pte_v, pfa;
 | |
| 		pte_v = phys_get32((u32_t) (pagetable + pte));
 | |
| 		if(!(pte_v & I386_VM_PRESENT))
 | |
| 			continue;
 | |
| 		pfa = I386_VM_PFA(pte_v);
 | |
| 		kprintf("%4d:%08lx:%08lx ",
 | |
| 			pte, v + I386_PAGE_SIZE*pte, pfa);
 | |
| 		col++;
 | |
| 		if(col == 3) { kprintf("\n"); col = 0; }
 | |
| 	}
 | |
| 	if(col > 0) kprintf("\n");
 | |
| 
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *                              vm_print                                     *
 | |
|  *===========================================================================*/
 | |
| void vm_print(u32_t *root)
 | |
| {
 | |
| 	int pde;
 | |
| 
 | |
| 	vmassert(!((u32_t) root % I386_PAGE_SIZE));
 | |
| 
 | |
| 	for(pde = 0; pde < I386_VM_DIR_ENTRIES; pde++) {
 | |
| 		u32_t pde_v;
 | |
| 		u32_t *pte_a;
 | |
| 		pde_v = phys_get32((u32_t) (root + pde));
 | |
| 		if(!(pde_v & I386_VM_PRESENT))
 | |
| 			continue;
 | |
| 		pte_a = (u32_t *) I386_VM_PFA(pde_v);
 | |
| 		kprintf("%4d: pt %08lx %s\n",
 | |
| 			pde, pte_a, flagstr(pde_v, 1));
 | |
| 		vm_pt_print(pte_a, pde * I386_VM_PT_ENTRIES * I386_PAGE_SIZE);
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				virtual_copy_f				     *
 | |
|  *===========================================================================*/
 | |
| PUBLIC int virtual_copy_f(src_addr, dst_addr, bytes, vmcheck)
 | |
| struct vir_addr *src_addr;	/* source virtual address */
 | |
| struct vir_addr *dst_addr;	/* destination virtual address */
 | |
| vir_bytes bytes;		/* # of bytes to copy  */
 | |
| int vmcheck;			/* if nonzero, can return VMSUSPEND */
 | |
| {
 | |
| /* Copy bytes from virtual address src_addr to virtual address dst_addr. 
 | |
|  * Virtual addresses can be in ABS, LOCAL_SEG, REMOTE_SEG, or BIOS_SEG.
 | |
|  */
 | |
|   struct vir_addr *vir_addr[2];	/* virtual source and destination address */
 | |
|   phys_bytes phys_addr[2];	/* absolute source and destination */ 
 | |
|   int seg_index;
 | |
|   int i, r;
 | |
|   struct proc *procs[2];
 | |
| 
 | |
|   /* Check copy count. */
 | |
|   if (bytes <= 0) return(EDOM);
 | |
| 
 | |
|   /* Do some more checks and map virtual addresses to physical addresses. */
 | |
|   vir_addr[_SRC_] = src_addr;
 | |
|   vir_addr[_DST_] = dst_addr;
 | |
| 
 | |
|   for (i=_SRC_; i<=_DST_; i++) {
 | |
| 	int proc_nr, type;
 | |
| 	struct proc *p;
 | |
| 
 | |
|  	type = vir_addr[i]->segment & SEGMENT_TYPE;
 | |
| 	if((type != PHYS_SEG && type != BIOS_SEG) &&
 | |
| 	   isokendpt(vir_addr[i]->proc_nr_e, &proc_nr))
 | |
| 		p = proc_addr(proc_nr);
 | |
| 	else 
 | |
| 		p = NULL;
 | |
| 
 | |
| 	procs[i] = p;
 | |
| 
 | |
|       /* Get physical address. */
 | |
|       switch(type) {
 | |
|       case LOCAL_SEG:
 | |
|       case LOCAL_VM_SEG:
 | |
| 	  if(!p) return EDEADSRCDST;
 | |
|           seg_index = vir_addr[i]->segment & SEGMENT_INDEX;
 | |
| 	  if(type == LOCAL_SEG)
 | |
| 	          phys_addr[i] = umap_local(p, seg_index, vir_addr[i]->offset,
 | |
| 			bytes);
 | |
| 	  else
 | |
| 	  	phys_addr[i] = umap_virtual(p, seg_index, vir_addr[i]->offset,
 | |
| 			bytes);
 | |
| 	  if(phys_addr[i] == 0) {
 | |
| 		kprintf("virtual_copy: map 0x%x failed for %s seg %d, "
 | |
| 			"offset %lx, len %d, i %d\n",
 | |
| 			type, p->p_name, seg_index, vir_addr[i]->offset,
 | |
| 			bytes, i);
 | |
| 	  }
 | |
|           break;
 | |
|       case REMOTE_SEG:
 | |
| 	  if(!p) return EDEADSRCDST;
 | |
|           seg_index = vir_addr[i]->segment & SEGMENT_INDEX;
 | |
|           phys_addr[i] = umap_remote(p, seg_index, vir_addr[i]->offset, bytes);
 | |
|           break;
 | |
| #if _MINIX_CHIP == _CHIP_INTEL
 | |
|       case BIOS_SEG:
 | |
|           phys_addr[i] = umap_bios(vir_addr[i]->offset, bytes );
 | |
|           break;
 | |
| #endif
 | |
|       case PHYS_SEG:
 | |
|           phys_addr[i] = vir_addr[i]->offset;
 | |
|           break;
 | |
|       case GRANT_SEG:
 | |
| 	  phys_addr[i] = umap_grant(p, vir_addr[i]->offset, bytes);
 | |
| 	  break;
 | |
|       default:
 | |
| 	  kprintf("virtual_copy: strange type 0x%x\n", type);
 | |
|           return(EINVAL);
 | |
|       }
 | |
| 
 | |
|       /* Check if mapping succeeded. */
 | |
|       if (phys_addr[i] <= 0 && vir_addr[i]->segment != PHYS_SEG)  {
 | |
|       kprintf("virtual_copy EFAULT\n");
 | |
|           return(EFAULT);
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   if(vmcheck && procs[_SRC_])
 | |
| 	CHECKRANGE_OR_SUSPEND(procs[_SRC_], phys_addr[_SRC_], bytes, 0);
 | |
|   if(vmcheck && procs[_DST_])
 | |
| 	CHECKRANGE_OR_SUSPEND(procs[_DST_], phys_addr[_DST_], bytes, 1);
 | |
| 
 | |
|   /* Now copy bytes between physical addresseses. */
 | |
|   if(!vm_running || (procs[_SRC_] == NULL && procs[_DST_] == NULL)) {
 | |
| 	/* Without vm, address ranges actually are physical. */
 | |
| 	phys_copy(phys_addr[_SRC_], phys_addr[_DST_], (phys_bytes) bytes);
 | |
| 	r = OK;
 | |
|   } else {
 | |
| 	/* With vm, addresses need further interpretation. */
 | |
| 	r = vm_copy(phys_addr[_SRC_], procs[_SRC_], 
 | |
| 		phys_addr[_DST_], procs[_DST_], (phys_bytes) bytes);
 | |
| 	if(r != OK) {
 | |
| 		kprintf("vm_copy: %lx to %lx failed\n",
 | |
| 			phys_addr[_SRC_],phys_addr[_DST_]);
 | |
| 	}
 | |
|   }
 | |
| 
 | |
|   return(r);
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				data_copy				     *
 | |
|  *===========================================================================*/
 | |
| PUBLIC int data_copy(
 | |
| 	endpoint_t from_proc, vir_bytes from_addr,
 | |
| 	endpoint_t to_proc, vir_bytes to_addr,
 | |
| 	size_t bytes)
 | |
| {
 | |
|   struct vir_addr src, dst;
 | |
| 
 | |
|   src.segment = dst.segment = D;
 | |
|   src.offset = from_addr;
 | |
|   dst.offset = to_addr;
 | |
|   src.proc_nr_e = from_proc;
 | |
|   dst.proc_nr_e = to_proc;
 | |
| 
 | |
|   return virtual_copy(&src, &dst, bytes);
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				arch_pre_exec				     *
 | |
|  *===========================================================================*/
 | |
| PUBLIC int arch_pre_exec(struct proc *pr, u32_t ip, u32_t sp)
 | |
| {
 | |
| /* wipe extra LDT entries, set program counter, and stack pointer. */
 | |
| 	memset(pr->p_seg.p_ldt + EXTRA_LDT_INDEX, 0,
 | |
| 		sizeof(pr->p_seg.p_ldt[0]) * (LDT_SIZE - EXTRA_LDT_INDEX));
 | |
| 	pr->p_reg.pc = ip;
 | |
| 	pr->p_reg.sp = sp;
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				arch_umap				     *
 | |
|  *===========================================================================*/
 | |
| PUBLIC int arch_umap(struct proc *pr, vir_bytes offset, vir_bytes count,
 | |
| 	int seg, phys_bytes *addr)
 | |
| {
 | |
| 	switch(seg) {
 | |
| 		case BIOS_SEG:
 | |
| 			*addr = umap_bios(offset, count);
 | |
| 			return OK;
 | |
| 	}
 | |
| 
 | |
| 	/* This must be EINVAL; the umap fallback function in
 | |
| 	 * lib/syslib/alloc_util.c depends on it to detect an
 | |
| 	 * older kernel (as opposed to mapping error).
 | |
| 	 */
 | |
| 	return EINVAL;
 | |
| }
 | |
| 
 | |
| 
 | 
