 6f77685609
			
		
	
	
		6f77685609
		
	
	
	
	
		
			
			mainly in the kernel and headers. This split based on work by Ingmar Alting <iaalting@cs.vu.nl> done for his Minix PowerPC architecture port. . kernel does not program the interrupt controller directly, do any other architecture-dependent operations, or contain assembly any more, but uses architecture-dependent functions in arch/$(ARCH)/. . architecture-dependent constants and types defined in arch/$(ARCH)/include. . <ibm/portio.h> moved to <minix/portio.h>, as they have become, for now, architecture-independent functions. . int86, sdevio, readbios, and iopenable are now i386-specific kernel calls and live in arch/i386/do_* now. . i386 arch now supports even less 86 code; e.g. mpx86.s and klib86.s have gone, and 'machine.protected' is gone (and always taken to be 1 in i386). If 86 support is to return, it should be a new architecture. . prototypes for the architecture-dependent functions defined in kernel/arch/$(ARCH)/*.c but used in kernel/ are in kernel/proto.h . /etc/make.conf included in makefiles and shell scripts that need to know the building architecture; it defines ARCH=<arch>, currently only i386. . some basic per-architecture build support outside of the kernel (lib) . in clock.c, only dequeue a process if it was ready . fixes for new include files files deleted: . mpx/klib.s - only for choosing between mpx/klib86 and -386 . klib86.s - only for 86 i386-specific files files moved (or arch-dependent stuff moved) to arch/i386/: . mpx386.s (entry point) . klib386.s . sconst.h . exception.c . protect.c . protect.h . i8269.c
		
			
				
	
	
		
			235 lines
		
	
	
		
			6.1 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			235 lines
		
	
	
		
			6.1 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| 
 | |
| #include "../../kernel.h"
 | |
| #include "../../proc.h"
 | |
| 
 | |
| #include <minix/type.h>
 | |
| #include <string.h>
 | |
| 
 | |
| #include <sys/vm.h>
 | |
| 
 | |
| #include <minix/portio.h>
 | |
| 
 | |
| #include "proto.h"
 | |
| 
 | |
| /* VM functions and data. */
 | |
| 
 | |
| PRIVATE int vm_needs_init= 1;
 | |
| PRIVATE u32_t vm_cr3;
 | |
| 
 | |
| FORWARD _PROTOTYPE( void phys_put32, (phys_bytes addr, u32_t value)	);
 | |
| FORWARD _PROTOTYPE( u32_t phys_get32, (phys_bytes addr)			);
 | |
| FORWARD _PROTOTYPE( void vm_set_cr3, (u32_t value)			);
 | |
| FORWARD _PROTOTYPE( void set_cr3, (void)				);
 | |
| FORWARD _PROTOTYPE( void vm_enable_paging, (void)			);
 | |
| 
 | |
| /* *** Internal VM Functions *** */
 | |
| 
 | |
| PUBLIC void vm_init(void)
 | |
| {
 | |
| 	int o;
 | |
| 	phys_bytes p, pt_size;
 | |
| 	phys_bytes vm_dir_base, vm_pt_base, phys_mem;
 | |
| 	u32_t entry;
 | |
| 	unsigned pages;
 | |
| 
 | |
| 	if (!vm_size)
 | |
| 		panic("i386_vm_init: no space for page tables", NO_NUM);
 | |
| 
 | |
| 	/* Align page directory */
 | |
| 	o= (vm_base % PAGE_SIZE);
 | |
| 	if (o != 0)
 | |
| 		o= PAGE_SIZE-o;
 | |
| 	vm_dir_base= vm_base+o;
 | |
| 
 | |
| 	/* Page tables start after the page directory */
 | |
| 	vm_pt_base= vm_dir_base+PAGE_SIZE;
 | |
| 
 | |
| 	pt_size= (vm_base+vm_size)-vm_pt_base;
 | |
| 	pt_size -= (pt_size % PAGE_SIZE);
 | |
| 
 | |
| 	/* Compute the number of pages based on vm_mem_high */
 | |
| 	pages= (vm_mem_high-1)/PAGE_SIZE + 1;
 | |
| 
 | |
| 	if (pages * I386_VM_PT_ENT_SIZE > pt_size)
 | |
| 		panic("i386_vm_init: page table too small", NO_NUM);
 | |
| 
 | |
| 	for (p= 0; p*I386_VM_PT_ENT_SIZE < pt_size; p++)
 | |
| 	{
 | |
| 		phys_mem= p*PAGE_SIZE;
 | |
| 		entry= phys_mem | I386_VM_USER | I386_VM_WRITE |
 | |
| 			I386_VM_PRESENT;
 | |
| 		if (phys_mem >= vm_mem_high)
 | |
| 			entry= 0;
 | |
| 		phys_put32(vm_pt_base + p*I386_VM_PT_ENT_SIZE, entry);
 | |
| 	}
 | |
| 
 | |
| 	for (p= 0; p < I386_VM_DIR_ENTRIES; p++)
 | |
| 	{
 | |
| 		phys_mem= vm_pt_base + p*PAGE_SIZE;
 | |
| 		entry= phys_mem | I386_VM_USER | I386_VM_WRITE |
 | |
| 			I386_VM_PRESENT;
 | |
| 		if (phys_mem >= vm_pt_base + pt_size)
 | |
| 			entry= 0;
 | |
| 		phys_put32(vm_dir_base + p*I386_VM_PT_ENT_SIZE, entry);
 | |
| 	}
 | |
| 	vm_set_cr3(vm_dir_base);
 | |
| 	level0(vm_enable_paging);
 | |
| }
 | |
| 
 | |
| PRIVATE void phys_put32(addr, value)
 | |
| phys_bytes addr;
 | |
| u32_t value;
 | |
| {
 | |
| 	phys_copy(vir2phys((vir_bytes)&value), addr, sizeof(value));
 | |
| }
 | |
| 
 | |
| PRIVATE u32_t phys_get32(addr)
 | |
| phys_bytes addr;
 | |
| {
 | |
| 	u32_t value;
 | |
| 
 | |
| 	phys_copy(addr, vir2phys((vir_bytes)&value), sizeof(value));
 | |
| 
 | |
| 	return value;
 | |
| }
 | |
| 
 | |
| PRIVATE void vm_set_cr3(value)
 | |
| u32_t value;
 | |
| {
 | |
| 	vm_cr3= value;
 | |
| 	level0(set_cr3);
 | |
| }
 | |
| 
 | |
| PRIVATE void set_cr3()
 | |
| {
 | |
| 	write_cr3(vm_cr3);
 | |
| }
 | |
| 
 | |
| PRIVATE void vm_enable_paging(void)
 | |
| {
 | |
| 	u32_t cr0;
 | |
| 
 | |
| 	cr0= read_cr0();
 | |
| 	write_cr0(cr0 | I386_CR0_PG);
 | |
| }
 | |
| 
 | |
| PUBLIC void vm_map_range(base, size, offset)
 | |
| u32_t base;
 | |
| u32_t size;
 | |
| u32_t offset;
 | |
| {
 | |
| 	u32_t curr_pt, curr_pt_addr, entry;
 | |
| 	int dir_ent, pt_ent;
 | |
| 
 | |
| 	if (base % PAGE_SIZE != 0)
 | |
| 		panic("map_range: bad base", base);
 | |
| 	if (size % PAGE_SIZE != 0)
 | |
| 		panic("map_range: bad size", size);
 | |
| 	if (offset % PAGE_SIZE != 0)
 | |
| 		panic("map_range: bad offset", offset);
 | |
| 
 | |
| 	curr_pt= -1;
 | |
| 	curr_pt_addr= 0;
 | |
| 	while (size != 0)
 | |
| 	{
 | |
| 		dir_ent= (base >> I386_VM_DIR_ENT_SHIFT);
 | |
| 		pt_ent= (base >> I386_VM_PT_ENT_SHIFT) & I386_VM_PT_ENT_MASK;
 | |
| 		if (dir_ent != curr_pt)
 | |
| 		{
 | |
| 			/* Get address of page table */
 | |
| 			curr_pt= dir_ent;
 | |
| 			curr_pt_addr= phys_get32(vm_cr3 +
 | |
| 				dir_ent * I386_VM_PT_ENT_SIZE);
 | |
| 			curr_pt_addr &= I386_VM_ADDR_MASK;
 | |
| 		}
 | |
| 		entry= offset | I386_VM_USER | I386_VM_WRITE |
 | |
| 			I386_VM_PRESENT;
 | |
| #if 0	/* Do we need this for memory mapped I/O? */
 | |
| 		entry |= I386_VM_PCD | I386_VM_PWT;
 | |
| #endif
 | |
| 		phys_put32(curr_pt_addr + pt_ent * I386_VM_PT_ENT_SIZE, entry);
 | |
| 		offset += PAGE_SIZE;
 | |
| 		base += PAGE_SIZE;
 | |
| 		size -= PAGE_SIZE;
 | |
| 	}
 | |
| 
 | |
| 	/* reload root of page table. */
 | |
| 	vm_set_cr3(vm_cr3);
 | |
| }
 | |
| 
 | |
| PUBLIC vir_bytes alloc_remote_segment(u32_t *selector,
 | |
| 	segframe_t *segments, int index, phys_bytes phys, vir_bytes size,
 | |
| 	int priv)
 | |
| {
 | |
| 	phys_bytes offset = 0;
 | |
| 	/* Check if the segment size can be recorded in bytes, that is, check
 | |
| 	 * if descriptor's limit field can delimited the allowed memory region
 | |
| 	 * precisely. This works up to 1MB. If the size is larger, 4K pages
 | |
| 	 * instead of bytes are used.
 | |
| 	*/
 | |
| 	if (size < BYTE_GRAN_MAX) {
 | |
| 		init_dataseg(&segments->p_ldt[EXTRA_LDT_INDEX+index],
 | |
| 			phys, size, priv);
 | |
| 		*selector = ((EXTRA_LDT_INDEX+index)*0x08) | (1*0x04) | priv;
 | |
| 		offset = 0;
 | |
| 	} else {
 | |
| 		init_dataseg(&segments->p_ldt[EXTRA_LDT_INDEX+index],
 | |
| 			phys & ~0xFFFF, 0, priv);
 | |
| 		*selector = ((EXTRA_LDT_INDEX+index)*0x08) | (1*0x04) | priv;
 | |
| 		offset = phys & 0xFFFF;
 | |
| 	}
 | |
| 
 | |
| 	return offset;
 | |
| }
 | |
| 
 | |
| PUBLIC phys_bytes umap_remote(struct proc* rp, int seg,
 | |
| 	vir_bytes vir_addr, vir_bytes bytes)
 | |
| {
 | |
| /* Calculate the physical memory address for a given virtual address. */
 | |
|   struct far_mem *fm;
 | |
| 
 | |
|   if (bytes <= 0) return( (phys_bytes) 0);
 | |
|   if (seg < 0 || seg >= NR_REMOTE_SEGS) return( (phys_bytes) 0);
 | |
| 
 | |
|   fm = &rp->p_priv->s_farmem[seg];
 | |
|   if (! fm->in_use) return( (phys_bytes) 0);
 | |
|   if (vir_addr + bytes > fm->mem_len) return( (phys_bytes) 0);
 | |
| 
 | |
|   return(fm->mem_phys + (phys_bytes) vir_addr);
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *                              umap_local                                   *
 | |
|  *===========================================================================*/
 | |
| PUBLIC phys_bytes umap_local(rp, seg, vir_addr, bytes)
 | |
| register struct proc *rp;       /* pointer to proc table entry for process */
 | |
| int seg;                        /* T, D, or S segment */
 | |
| vir_bytes vir_addr;             /* virtual address in bytes within the seg */
 | |
| vir_bytes bytes;                /* # of bytes to be copied */
 | |
| {
 | |
| /* Calculate the physical memory address for a given virtual address. */
 | |
|   vir_clicks vc;                /* the virtual address in clicks */
 | |
|   phys_bytes pa;                /* intermediate variables as phys_bytes */
 | |
|   phys_bytes seg_base;
 | |
| 
 | |
|   if (bytes <= 0) return( (phys_bytes) 0);
 | |
|   if (vir_addr + bytes <= vir_addr) return 0;   /* overflow */
 | |
|   vc = (vir_addr + bytes - 1) >> CLICK_SHIFT;   /* last click of data */
 | |
|  
 | |
|   if (seg != T)
 | |
|         seg = (vc < rp->p_memmap[D].mem_vir + rp->p_memmap[D].mem_len ? D : S);
 | |
|  
 | |
|   if ((vir_addr>>CLICK_SHIFT) >= rp->p_memmap[seg].mem_vir +
 | |
|         rp->p_memmap[seg].mem_len) return( (phys_bytes) 0 );
 | |
|  
 | |
|   if (vc >= rp->p_memmap[seg].mem_vir +
 | |
|         rp->p_memmap[seg].mem_len) return( (phys_bytes) 0 );
 | |
|   
 | |
|   seg_base = (phys_bytes) rp->p_memmap[seg].mem_phys;
 | |
|   seg_base = seg_base << CLICK_SHIFT;   /* segment origin in bytes */
 | |
|   pa = (phys_bytes) vir_addr;
 | |
|   pa -= rp->p_memmap[seg].mem_vir << CLICK_SHIFT;
 | |
|   return(seg_base + pa);
 | |
| }
 | |
| 
 |