313 lines
9.4 KiB
C
313 lines
9.4 KiB
C
/* This file contains the architecture-independent clock functionality, which
|
|
* handles time related functions. Important events that are handled here
|
|
* include setting and monitoring alarm timers and deciding when to
|
|
* (re)schedule processes. System services can access its services through
|
|
* system calls, such as sys_setalarm().
|
|
*
|
|
* Changes:
|
|
* Aug 18, 2006 removed direct hardware access etc, MinixPPC (Ingmar Alting)
|
|
* Oct 08, 2005 reordering and comment editing (A. S. Woodhull)
|
|
* Mar 18, 2004 clock interface moved to SYSTEM task (Jorrit N. Herder)
|
|
* Sep 30, 2004 source code documentation updated (Jorrit N. Herder)
|
|
* Sep 24, 2004 redesigned alarm timers (Jorrit N. Herder)
|
|
*/
|
|
|
|
#include <minix/endpoint.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
|
|
#include "clock.h"
|
|
|
|
#ifdef USE_WATCHDOG
|
|
#include "watchdog.h"
|
|
#endif
|
|
|
|
/* Function prototype for PRIVATE functions.
|
|
*/
|
|
static void load_update(void);
|
|
|
|
/* The CLOCK's timers queue. The functions in <minix/timers.h> operate on this.
|
|
* Each system process possesses a single synchronous alarm timer. If other
|
|
* kernel parts want to use additional timers, they must declare their own
|
|
* persistent (static) timer structure, which can be passed to the clock
|
|
* via (re)set_kernel_timer().
|
|
* When a timer expires its watchdog function is run by the CLOCK task.
|
|
*/
|
|
static minix_timer_t *clock_timers; /* queue of CLOCK timers */
|
|
|
|
/* Number of ticks to adjust realtime by. A negative value implies slowing
|
|
* down realtime, a positive value implies speeding it up.
|
|
*/
|
|
static int32_t adjtime_delta = 0;
|
|
|
|
/*
|
|
* Initialize the clock variables.
|
|
*/
|
|
void
|
|
init_clock(void)
|
|
{
|
|
char *value;
|
|
|
|
/* Initialize clock information structure. */
|
|
memset(&kclockinfo, 0, sizeof(kclockinfo));
|
|
|
|
/* Get clock tick frequency. */
|
|
value = env_get("hz");
|
|
if (value != NULL)
|
|
kclockinfo.hz = atoi(value);
|
|
if (value == NULL || kclockinfo.hz < 2 || kclockinfo.hz > 50000)
|
|
kclockinfo.hz = DEFAULT_HZ;
|
|
|
|
/* Load average data initialization. */
|
|
memset(&kloadinfo, 0, sizeof(kloadinfo));
|
|
}
|
|
|
|
/*
|
|
* The boot processor's timer interrupt handler. In addition to non-boot cpus
|
|
* it keeps real time and notifies the clock task if need be.
|
|
*/
|
|
int timer_int_handler(void)
|
|
{
|
|
/* Update user and system accounting times. Charge the current process
|
|
* for user time. If the current process is not billable, that is, if a
|
|
* non-user process is running, charge the billable process for system
|
|
* time as well. Thus the unbillable process' user time is the billable
|
|
* user's system time.
|
|
*/
|
|
|
|
struct proc * p, * billp;
|
|
|
|
/* FIXME watchdog for slave cpus! */
|
|
#ifdef USE_WATCHDOG
|
|
/*
|
|
* we need to know whether local timer ticks are happening or whether
|
|
* the kernel is locked up. We don't care about overflows as we only
|
|
* need to know that it's still ticking or not
|
|
*/
|
|
watchdog_local_timer_ticks++;
|
|
#endif
|
|
|
|
if (cpu_is_bsp(cpuid)) {
|
|
kclockinfo.uptime++;
|
|
|
|
/* if adjtime_delta has ticks remaining, apply one to realtime.
|
|
* limit changes to every other interrupt.
|
|
*/
|
|
if (adjtime_delta != 0 && kclockinfo.uptime & 0x1) {
|
|
/* go forward or stay behind */
|
|
kclockinfo.realtime += (adjtime_delta > 0) ? 2 : 0;
|
|
adjtime_delta += (adjtime_delta > 0) ? -1 : +1;
|
|
} else {
|
|
kclockinfo.realtime++;
|
|
}
|
|
}
|
|
|
|
/* Update user and system accounting times. Charge the current process
|
|
* for user time. If the current process is not billable, that is, if a
|
|
* non-user process is running, charge the billable process for system
|
|
* time as well. Thus the unbillable process' user time is the billable
|
|
* user's system time.
|
|
*/
|
|
|
|
p = get_cpulocal_var(proc_ptr);
|
|
billp = get_cpulocal_var(bill_ptr);
|
|
|
|
p->p_user_time++;
|
|
|
|
if (! (priv(p)->s_flags & BILLABLE)) {
|
|
billp->p_sys_time++;
|
|
}
|
|
|
|
/* Decrement virtual timers, if applicable. We decrement both the
|
|
* virtual and the profile timer of the current process, and if the
|
|
* current process is not billable, the timer of the billed process as
|
|
* well. If any of the timers expire, do_clocktick() will send out
|
|
* signals.
|
|
*/
|
|
if ((p->p_misc_flags & MF_VIRT_TIMER) && (p->p_virt_left > 0)) {
|
|
p->p_virt_left--;
|
|
}
|
|
if ((p->p_misc_flags & MF_PROF_TIMER) && (p->p_prof_left > 0)) {
|
|
p->p_prof_left--;
|
|
}
|
|
if (! (priv(p)->s_flags & BILLABLE) &&
|
|
(billp->p_misc_flags & MF_PROF_TIMER) &&
|
|
(billp->p_prof_left > 0)) {
|
|
billp->p_prof_left--;
|
|
}
|
|
|
|
/*
|
|
* Check if a process-virtual timer expired. Check current process, but
|
|
* also bill_ptr - one process's user time is another's system time, and
|
|
* the profile timer decreases for both!
|
|
*/
|
|
vtimer_check(p);
|
|
|
|
if (p != billp)
|
|
vtimer_check(billp);
|
|
|
|
/* Update load average. */
|
|
load_update();
|
|
|
|
if (cpu_is_bsp(cpuid)) {
|
|
/*
|
|
* If a timer expired, notify the clock task. Keep in mind
|
|
* that clock tick values may overflow, so we must only look at
|
|
* relative differences, and only if there are timers at all.
|
|
*/
|
|
if (clock_timers != NULL &&
|
|
tmr_has_expired(clock_timers, kclockinfo.uptime))
|
|
tmrs_exptimers(&clock_timers, kclockinfo.uptime, NULL);
|
|
|
|
#ifdef DEBUG_SERIAL
|
|
if (kinfo.do_serial_debug)
|
|
do_ser_debug();
|
|
#endif
|
|
|
|
}
|
|
|
|
arch_timer_int_handler();
|
|
|
|
return(1); /* reenable interrupts */
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* get_realtime *
|
|
*===========================================================================*/
|
|
clock_t get_realtime(void)
|
|
{
|
|
/* Get and return the current wall time in ticks since boot. */
|
|
return(kclockinfo.realtime);
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* set_realtime *
|
|
*===========================================================================*/
|
|
void set_realtime(clock_t newrealtime)
|
|
{
|
|
kclockinfo.realtime = newrealtime;
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* set_adjtime_delta *
|
|
*===========================================================================*/
|
|
void set_adjtime_delta(int32_t ticks)
|
|
{
|
|
adjtime_delta = ticks;
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* get_monotonic *
|
|
*===========================================================================*/
|
|
clock_t get_monotonic(void)
|
|
{
|
|
/* Get and return the number of ticks since boot. */
|
|
return(kclockinfo.uptime);
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* set_boottime *
|
|
*===========================================================================*/
|
|
void set_boottime(time_t newboottime)
|
|
{
|
|
kclockinfo.boottime = newboottime;
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* get_boottime *
|
|
*===========================================================================*/
|
|
time_t get_boottime(void)
|
|
{
|
|
/* Get and return the number of seconds since the UNIX epoch. */
|
|
return(kclockinfo.boottime);
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* set_kernel_timer *
|
|
*===========================================================================*/
|
|
void set_kernel_timer(
|
|
minix_timer_t *tp, /* pointer to timer structure */
|
|
clock_t exp_time, /* expiration monotonic time */
|
|
tmr_func_t watchdog, /* watchdog to be called */
|
|
int arg /* argument for watchdog function */
|
|
)
|
|
{
|
|
/* Insert the new timer in the active timers list. Always update the
|
|
* next timeout time by setting it to the front of the active list.
|
|
*/
|
|
(void)tmrs_settimer(&clock_timers, tp, exp_time, watchdog, arg, NULL, NULL);
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* reset_kernel_timer *
|
|
*===========================================================================*/
|
|
void reset_kernel_timer(
|
|
minix_timer_t *tp /* pointer to timer structure */
|
|
)
|
|
{
|
|
/* The timer pointed to by 'tp' is no longer needed. Remove it from both the
|
|
* active and expired lists. Always update the next timeout time by setting
|
|
* it to the front of the active list.
|
|
*/
|
|
if (tmr_is_set(tp))
|
|
(void)tmrs_clrtimer(&clock_timers, tp, NULL, NULL);
|
|
}
|
|
|
|
/*===========================================================================*
|
|
* load_update *
|
|
*===========================================================================*/
|
|
static void load_update(void)
|
|
{
|
|
u16_t slot;
|
|
int enqueued = 0, q;
|
|
struct proc *p;
|
|
struct proc **rdy_head;
|
|
|
|
/* Load average data is stored as a list of numbers in a circular
|
|
* buffer. Each slot accumulates _LOAD_UNIT_SECS of samples of
|
|
* the number of runnable processes. Computations can then
|
|
* be made of the load average over variable periods, in the
|
|
* user library (see getloadavg(3)).
|
|
*/
|
|
slot = (kclockinfo.uptime / system_hz / _LOAD_UNIT_SECS) %
|
|
_LOAD_HISTORY;
|
|
if(slot != kloadinfo.proc_last_slot) {
|
|
kloadinfo.proc_load_history[slot] = 0;
|
|
kloadinfo.proc_last_slot = slot;
|
|
}
|
|
|
|
rdy_head = get_cpulocal_var(run_q_head);
|
|
/* Cumulation. How many processes are ready now? */
|
|
for(q = 0; q < NR_SCHED_QUEUES; q++) {
|
|
for(p = rdy_head[q]; p != NULL; p = p->p_nextready) {
|
|
enqueued++;
|
|
}
|
|
}
|
|
|
|
kloadinfo.proc_load_history[slot] += enqueued;
|
|
|
|
/* Up-to-dateness. */
|
|
kloadinfo.last_clock = kclockinfo.uptime;
|
|
}
|
|
|
|
int boot_cpu_init_timer(unsigned freq)
|
|
{
|
|
if (init_local_timer(freq))
|
|
return -1;
|
|
|
|
if (register_local_timer_handler(
|
|
(irq_handler_t) timer_int_handler))
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int app_cpu_init_timer(unsigned freq)
|
|
{
|
|
if (init_local_timer(freq))
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|