872 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			872 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/* This file handles signals, which are asynchronous events and are generally
 | 
						|
 * a messy and unpleasant business.  Signals can be generated by the KILL
 | 
						|
 * system call, or from the keyboard (SIGINT) or from the clock (SIGALRM).
 | 
						|
 * In all cases control eventually passes to check_sig() to see which processes
 | 
						|
 * can be signaled.  The actual signaling is done by sig_proc().
 | 
						|
 *
 | 
						|
 * The entry points into this file are:
 | 
						|
 *   do_sigaction:	perform the SIGACTION system call
 | 
						|
 *   do_sigpending:	perform the SIGPENDING system call
 | 
						|
 *   do_sigprocmask:	perform the SIGPROCMASK system call
 | 
						|
 *   do_sigreturn:	perform the SIGRETURN system call
 | 
						|
 *   do_sigsuspend:	perform the SIGSUSPEND system call
 | 
						|
 *   do_kill:		perform the KILL system call
 | 
						|
 *   process_ksig:	process a signal an behalf of the kernel
 | 
						|
 *   sig_proc:		interrupt or terminate a signaled process
 | 
						|
 *   check_sig:		check which processes to signal with sig_proc()
 | 
						|
 *   check_pending:	check if a pending signal can now be delivered
 | 
						|
 *   restart_sigs: 	restart signal work after finishing a VFS call
 | 
						|
 */
 | 
						|
 | 
						|
#include "pm.h"
 | 
						|
#include <sys/stat.h>
 | 
						|
#include <sys/ptrace.h>
 | 
						|
#include <minix/callnr.h>
 | 
						|
#include <minix/endpoint.h>
 | 
						|
#include <minix/com.h>
 | 
						|
#include <minix/vm.h>
 | 
						|
#include <signal.h>
 | 
						|
#include <sys/resource.h>
 | 
						|
#include <assert.h>
 | 
						|
#include "mproc.h"
 | 
						|
 | 
						|
static int unpause(struct mproc *rmp);
 | 
						|
static int sig_send(struct mproc *rmp, int signo);
 | 
						|
static void sig_proc_exit(struct mproc *rmp, int signo);
 | 
						|
 | 
						|
/*===========================================================================*
 | 
						|
 *				do_sigaction				     *
 | 
						|
 *===========================================================================*/
 | 
						|
int do_sigaction(void)
 | 
						|
{
 | 
						|
  int r, sig_nr;
 | 
						|
  struct sigaction svec;
 | 
						|
  struct sigaction *svp;
 | 
						|
 | 
						|
  assert(!(mp->mp_flags & (PROC_STOPPED | VFS_CALL | UNPAUSED)));
 | 
						|
 | 
						|
  sig_nr = m_in.m_lc_pm_sig.nr;
 | 
						|
  if (sig_nr == SIGKILL) return(OK);
 | 
						|
  if (sig_nr < 1 || sig_nr >= _NSIG) return(EINVAL);
 | 
						|
 | 
						|
  svp = &mp->mp_sigact[sig_nr];
 | 
						|
  if (m_in.m_lc_pm_sig.oact != 0) {
 | 
						|
	r = sys_datacopy(PM_PROC_NR,(vir_bytes) svp, who_e,
 | 
						|
		m_in.m_lc_pm_sig.oact, (phys_bytes) sizeof(svec));
 | 
						|
	if (r != OK) return(r);
 | 
						|
  }
 | 
						|
 | 
						|
  if (m_in.m_lc_pm_sig.act == 0)
 | 
						|
  	return(OK);
 | 
						|
 | 
						|
  /* Read in the sigaction structure. */
 | 
						|
  r = sys_datacopy(who_e, m_in.m_lc_pm_sig.act, PM_PROC_NR, (vir_bytes) &svec,
 | 
						|
	  (phys_bytes) sizeof(svec));
 | 
						|
  if (r != OK) return(r);
 | 
						|
 | 
						|
  if (svec.sa_handler == SIG_IGN) {
 | 
						|
	sigaddset(&mp->mp_ignore, sig_nr);
 | 
						|
	sigdelset(&mp->mp_sigpending, sig_nr);
 | 
						|
	sigdelset(&mp->mp_ksigpending, sig_nr);
 | 
						|
	sigdelset(&mp->mp_catch, sig_nr);
 | 
						|
  } else if (svec.sa_handler == SIG_DFL) {
 | 
						|
	sigdelset(&mp->mp_ignore, sig_nr);
 | 
						|
	sigdelset(&mp->mp_catch, sig_nr);
 | 
						|
  } else {
 | 
						|
	sigdelset(&mp->mp_ignore, sig_nr);
 | 
						|
	sigaddset(&mp->mp_catch, sig_nr);
 | 
						|
  }
 | 
						|
  mp->mp_sigact[sig_nr].sa_handler = svec.sa_handler;
 | 
						|
  sigdelset(&svec.sa_mask, SIGKILL);
 | 
						|
  sigdelset(&svec.sa_mask, SIGSTOP);
 | 
						|
  mp->mp_sigact[sig_nr].sa_mask = svec.sa_mask;
 | 
						|
  mp->mp_sigact[sig_nr].sa_flags = svec.sa_flags;
 | 
						|
  mp->mp_sigreturn = m_in.m_lc_pm_sig.ret;
 | 
						|
  return(OK);
 | 
						|
}
 | 
						|
 | 
						|
/*===========================================================================*
 | 
						|
 *				do_sigpending                                *
 | 
						|
 *===========================================================================*/
 | 
						|
int do_sigpending(void)
 | 
						|
{
 | 
						|
  assert(!(mp->mp_flags & (PROC_STOPPED | VFS_CALL | UNPAUSED)));
 | 
						|
 | 
						|
  mp->mp_reply.m_pm_lc_sigset.set = mp->mp_sigpending;
 | 
						|
  return OK;
 | 
						|
}
 | 
						|
 | 
						|
/*===========================================================================*
 | 
						|
 *				do_sigprocmask                               *
 | 
						|
 *===========================================================================*/
 | 
						|
int do_sigprocmask(void)
 | 
						|
{
 | 
						|
/* Note that the library interface passes the actual mask in sigmask_set,
 | 
						|
 * not a pointer to the mask, in order to save a copy.  Similarly,
 | 
						|
 * the old mask is placed in the return message which the library
 | 
						|
 * interface copies (if requested) to the user specified address.
 | 
						|
 *
 | 
						|
 * The library interface must set SIG_INQUIRE if the 'act' argument
 | 
						|
 * is NULL.
 | 
						|
 *
 | 
						|
 * KILL and STOP can't be masked.
 | 
						|
 */
 | 
						|
  sigset_t set;
 | 
						|
  int i;
 | 
						|
 | 
						|
  assert(!(mp->mp_flags & (PROC_STOPPED | VFS_CALL | UNPAUSED)));
 | 
						|
 | 
						|
  set = m_in.m_lc_pm_sigset.set;
 | 
						|
  mp->mp_reply.m_pm_lc_sigset.set = mp->mp_sigmask;
 | 
						|
 | 
						|
  switch (m_in.m_lc_pm_sigset.how) {
 | 
						|
      case SIG_BLOCK:
 | 
						|
	sigdelset(&set, SIGKILL);
 | 
						|
	sigdelset(&set, SIGSTOP);
 | 
						|
	for (i = 1; i < _NSIG; i++) {
 | 
						|
		if (sigismember(&set, i))
 | 
						|
			sigaddset(&mp->mp_sigmask, i);
 | 
						|
	}
 | 
						|
	break;
 | 
						|
 | 
						|
      case SIG_UNBLOCK:
 | 
						|
	for (i = 1; i < _NSIG; i++) {
 | 
						|
		if (sigismember(&set, i))
 | 
						|
			sigdelset(&mp->mp_sigmask, i);
 | 
						|
	}
 | 
						|
	check_pending(mp);
 | 
						|
	break;
 | 
						|
 | 
						|
      case SIG_SETMASK:
 | 
						|
	sigdelset(&set, SIGKILL);
 | 
						|
	sigdelset(&set, SIGSTOP);
 | 
						|
	mp->mp_sigmask = set;
 | 
						|
	check_pending(mp);
 | 
						|
	break;
 | 
						|
 | 
						|
      case SIG_INQUIRE:
 | 
						|
	break;
 | 
						|
 | 
						|
      default:
 | 
						|
	return(EINVAL);
 | 
						|
	break;
 | 
						|
  }
 | 
						|
  return OK;
 | 
						|
}
 | 
						|
 | 
						|
/*===========================================================================*
 | 
						|
 *				do_sigsuspend                                *
 | 
						|
 *===========================================================================*/
 | 
						|
int do_sigsuspend(void)
 | 
						|
{
 | 
						|
  assert(!(mp->mp_flags & (PROC_STOPPED | VFS_CALL | UNPAUSED)));
 | 
						|
 | 
						|
  mp->mp_sigmask2 = mp->mp_sigmask;	/* save the old mask */
 | 
						|
  mp->mp_sigmask = m_in.m_lc_pm_sigset.set;
 | 
						|
  sigdelset(&mp->mp_sigmask, SIGKILL);
 | 
						|
  sigdelset(&mp->mp_sigmask, SIGSTOP);
 | 
						|
  mp->mp_flags |= SIGSUSPENDED;
 | 
						|
  check_pending(mp);
 | 
						|
  return(SUSPEND);
 | 
						|
}
 | 
						|
 | 
						|
/*===========================================================================*
 | 
						|
 *				do_sigreturn				     *
 | 
						|
 *===========================================================================*/
 | 
						|
int do_sigreturn(void)
 | 
						|
{
 | 
						|
/* A user signal handler is done.  Restore context and check for
 | 
						|
 * pending unblocked signals.
 | 
						|
 */
 | 
						|
  int r;
 | 
						|
 | 
						|
  assert(!(mp->mp_flags & (PROC_STOPPED | VFS_CALL | UNPAUSED)));
 | 
						|
 | 
						|
  mp->mp_sigmask = m_in.m_lc_pm_sigset.set;
 | 
						|
  sigdelset(&mp->mp_sigmask, SIGKILL);
 | 
						|
  sigdelset(&mp->mp_sigmask, SIGSTOP);
 | 
						|
 | 
						|
  r = sys_sigreturn(who_e, (struct sigmsg *)m_in.m_lc_pm_sigset.ctx);
 | 
						|
  check_pending(mp);
 | 
						|
  return(r);
 | 
						|
}
 | 
						|
 | 
						|
/*===========================================================================*
 | 
						|
 *				do_kill					     *
 | 
						|
 *===========================================================================*/
 | 
						|
int do_kill(void)
 | 
						|
{
 | 
						|
/* Perform the kill(pid, signo) system call. */
 | 
						|
 | 
						|
  return check_sig(m_in.m_lc_pm_sig.pid, m_in.m_lc_pm_sig.nr, FALSE /* ksig */);
 | 
						|
}
 | 
						|
 | 
						|
/*===========================================================================*
 | 
						|
 *			      do_srv_kill				     *
 | 
						|
 *===========================================================================*/
 | 
						|
int do_srv_kill(void)
 | 
						|
{
 | 
						|
/* Perform the srv_kill(pid, signo) system call. */
 | 
						|
 | 
						|
  /* Only RS is allowed to use srv_kill. */
 | 
						|
  if (mp->mp_endpoint != RS_PROC_NR)
 | 
						|
	return EPERM;
 | 
						|
 | 
						|
  /* Pretend the signal comes from the kernel when RS wants to deliver a signal
 | 
						|
   * to a system process. RS sends a SIGKILL when it wants to perform cleanup.
 | 
						|
   * In that case, ksig == TRUE forces PM to exit the process immediately.
 | 
						|
   */
 | 
						|
  return check_sig(m_in.m_rs_pm_srv_kill.pid, m_in.m_rs_pm_srv_kill.nr,
 | 
						|
	  TRUE /* ksig */);
 | 
						|
}
 | 
						|
 | 
						|
/*===========================================================================*
 | 
						|
 *				stop_proc				     *
 | 
						|
 *===========================================================================*/
 | 
						|
static int stop_proc(struct mproc *rmp, int may_delay)
 | 
						|
{
 | 
						|
/* Try to stop the given process in the kernel. If successful, mark the process
 | 
						|
 * as stopped and return TRUE.  If the process is still busy sending a message,
 | 
						|
 * the behavior depends on the 'may_delay' parameter. If set, the process will
 | 
						|
 * be marked as having a delay call pending, and the function returns FALSE. If
 | 
						|
 * not set, the caller already knows that the process has no delay call, and PM
 | 
						|
 * will panic.
 | 
						|
 */
 | 
						|
  int r;
 | 
						|
 | 
						|
  assert(!(rmp->mp_flags & (PROC_STOPPED | DELAY_CALL | UNPAUSED)));
 | 
						|
 | 
						|
  r = sys_delay_stop(rmp->mp_endpoint);
 | 
						|
 | 
						|
  /* If the process is still busy sending a message, the kernel will give us
 | 
						|
   * EBUSY now and send a SIGSNDELAY to the process as soon as sending is done.
 | 
						|
   */
 | 
						|
  switch (r) {
 | 
						|
  case OK:
 | 
						|
	rmp->mp_flags |= PROC_STOPPED;
 | 
						|
 | 
						|
	return TRUE;
 | 
						|
 | 
						|
  case EBUSY:
 | 
						|
	if (!may_delay)
 | 
						|
		panic("stop_proc: unexpected delay call");
 | 
						|
 | 
						|
	rmp->mp_flags |= DELAY_CALL;
 | 
						|
 | 
						|
	return FALSE;
 | 
						|
 | 
						|
  default:
 | 
						|
	panic("sys_delay_stop failed: %d", r);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/*===========================================================================*
 | 
						|
 *				try_resume_proc				     *
 | 
						|
 *===========================================================================*/
 | 
						|
static void try_resume_proc(struct mproc *rmp)
 | 
						|
{
 | 
						|
/* Resume the given process if possible. */
 | 
						|
  int r;
 | 
						|
 | 
						|
  assert(rmp->mp_flags & PROC_STOPPED);
 | 
						|
 | 
						|
  /* If the process is blocked on a VFS call, do not resume it now. Most likely    * it will be unpausing, in which case the process must remain stopped.
 | 
						|
   * Otherwise, it will still be resumed once the VFS call returns. If the
 | 
						|
   * process has died, do not resume it either.
 | 
						|
   */
 | 
						|
  if (rmp->mp_flags & (VFS_CALL | EXITING))
 | 
						|
	return;
 | 
						|
 | 
						|
  if ((r = sys_resume(rmp->mp_endpoint)) != OK)
 | 
						|
	panic("sys_resume failed: %d", r);
 | 
						|
 | 
						|
  /* Also unset the unpaused flag. We can safely assume that a stopped process
 | 
						|
   * need only be unpaused once, but once it is resumed, all bets are off.
 | 
						|
   */
 | 
						|
  rmp->mp_flags &= ~(PROC_STOPPED | UNPAUSED);
 | 
						|
}
 | 
						|
 | 
						|
/*===========================================================================*
 | 
						|
 *				process_ksig				     *
 | 
						|
 *===========================================================================*/
 | 
						|
int process_ksig(endpoint_t proc_nr_e, int signo)
 | 
						|
{
 | 
						|
  register struct mproc *rmp;
 | 
						|
  int proc_nr;
 | 
						|
  pid_t proc_id, id;
 | 
						|
 | 
						|
  if(pm_isokendpt(proc_nr_e, &proc_nr) != OK) {
 | 
						|
	printf("PM: process_ksig: %d?? not ok\n", proc_nr_e);
 | 
						|
	return EDEADEPT; /* process is gone. */
 | 
						|
  }
 | 
						|
  rmp = &mproc[proc_nr];
 | 
						|
  if ((rmp->mp_flags & (IN_USE | EXITING)) != IN_USE) {
 | 
						|
#if 0
 | 
						|
	printf("PM: process_ksig: %d?? exiting / not in use\n", proc_nr_e);
 | 
						|
#endif
 | 
						|
	return EDEADEPT; /* process is gone. */
 | 
						|
  }
 | 
						|
  proc_id = rmp->mp_pid;
 | 
						|
  mp = &mproc[0];			/* pretend signals are from PM */
 | 
						|
  mp->mp_procgrp = rmp->mp_procgrp;	/* get process group right */
 | 
						|
 | 
						|
  /* For SIGVTALRM and SIGPROF, see if we need to restart a
 | 
						|
   * virtual timer. For SIGINT, SIGINFO, SIGWINCH and SIGQUIT, use proc_id 0
 | 
						|
   * to indicate a broadcast to the recipient's process group.  For
 | 
						|
   * SIGKILL, use proc_id -1 to indicate a systemwide broadcast.
 | 
						|
   */
 | 
						|
  switch (signo) {
 | 
						|
      case SIGINT:
 | 
						|
      case SIGQUIT:
 | 
						|
      case SIGWINCH:
 | 
						|
      case SIGINFO:
 | 
						|
  	id = 0; break;	/* broadcast to process group */
 | 
						|
      case SIGVTALRM:
 | 
						|
      case SIGPROF:
 | 
						|
      	check_vtimer(proc_nr, signo);
 | 
						|
      	/* fall-through */
 | 
						|
      default:
 | 
						|
  	id = proc_id;
 | 
						|
  	break;
 | 
						|
  }
 | 
						|
  check_sig(id, signo, TRUE /* ksig */);
 | 
						|
 | 
						|
  /* If SIGSNDELAY is set, an earlier sys_stop() failed because the process was
 | 
						|
   * still sending, and the kernel hereby tells us that the process is now done
 | 
						|
   * with that. We can now try to resume what we planned to do in the first
 | 
						|
   * place: set up a signal handler. However, the process's message may have
 | 
						|
   * been a call to PM, in which case the process may have changed any of its
 | 
						|
   * signal settings. The process may also have forked, exited etcetera.
 | 
						|
   */
 | 
						|
  if (signo == SIGSNDELAY && (rmp->mp_flags & DELAY_CALL)) {
 | 
						|
	/* When getting SIGSNDELAY, the process is stopped at least until the
 | 
						|
	 * receipt of the SIGSNDELAY signal is acknowledged to the kernel. The
 | 
						|
	 * process is not stopped on PROC_STOP in the kernel. However, now that
 | 
						|
	 * there is no longer a delay call, stop_proc() is guaranteed to
 | 
						|
	 * succeed immediately.
 | 
						|
	 */
 | 
						|
	rmp->mp_flags &= ~DELAY_CALL;
 | 
						|
 | 
						|
	assert(!(rmp->mp_flags & PROC_STOPPED));
 | 
						|
 | 
						|
	/* If the delay call was to PM, it may have resulted in a VFS call. In
 | 
						|
	 * that case, we must wait with further signal processing until VFS has
 | 
						|
	 * replied. Stop the process.
 | 
						|
	 */
 | 
						|
	if (rmp->mp_flags & VFS_CALL) {
 | 
						|
		stop_proc(rmp, FALSE /*may_delay*/);
 | 
						|
 | 
						|
		return OK;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Process as many normal signals as possible. */
 | 
						|
	check_pending(rmp);
 | 
						|
 | 
						|
	assert(!(rmp->mp_flags & DELAY_CALL));
 | 
						|
  }
 | 
						|
  
 | 
						|
  /* See if the process is still alive */
 | 
						|
  if ((mproc[proc_nr].mp_flags & (IN_USE | EXITING)) == IN_USE)  {
 | 
						|
      return OK; /* signal has been delivered */
 | 
						|
  }
 | 
						|
  else {
 | 
						|
      return EDEADEPT; /* process is gone */
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/*===========================================================================*
 | 
						|
 *				sig_proc				     *
 | 
						|
 *===========================================================================*/
 | 
						|
void sig_proc(rmp, signo, trace, ksig)
 | 
						|
register struct mproc *rmp;	/* pointer to the process to be signaled */
 | 
						|
int signo;			/* signal to send to process (1 to _NSIG-1) */
 | 
						|
int trace;			/* pass signal to tracer first? */
 | 
						|
int ksig;			/* non-zero means signal comes from kernel  */
 | 
						|
{
 | 
						|
/* Send a signal to a process.  Check to see if the signal is to be caught,
 | 
						|
 * ignored, tranformed into a message (for system processes) or blocked.  
 | 
						|
 *  - If the signal is to be transformed into a message, request the KERNEL to
 | 
						|
 * send the target process a system notification with the pending signal as an 
 | 
						|
 * argument. 
 | 
						|
 *  - If the signal is to be caught, request the KERNEL to push a sigcontext 
 | 
						|
 * structure and a sigframe structure onto the catcher's stack.  Also, KERNEL 
 | 
						|
 * will reset the program counter and stack pointer, so that when the process 
 | 
						|
 * next runs, it will be executing the signal handler. When the signal handler 
 | 
						|
 * returns,  sigreturn(2) will be called.  Then KERNEL will restore the signal 
 | 
						|
 * context from the sigcontext structure.
 | 
						|
 * If there is insufficient stack space, kill the process.
 | 
						|
 */
 | 
						|
  int slot, badignore;
 | 
						|
 | 
						|
  slot = (int) (rmp - mproc);
 | 
						|
  if ((rmp->mp_flags & (IN_USE | EXITING)) != IN_USE) {
 | 
						|
	panic("PM: signal %d sent to exiting process %d\n", signo, slot);
 | 
						|
  }
 | 
						|
 | 
						|
  if (trace == TRUE && rmp->mp_tracer != NO_TRACER && signo != SIGKILL) {
 | 
						|
	/* Signal should be passed to the debugger first.
 | 
						|
	 * This happens before any checks on block/ignore masks; otherwise,
 | 
						|
	 * the process itself could block/ignore debugger signals.
 | 
						|
	 */
 | 
						|
 | 
						|
	sigaddset(&rmp->mp_sigtrace, signo);
 | 
						|
 | 
						|
	if (!(rmp->mp_flags & TRACE_STOPPED))
 | 
						|
		trace_stop(rmp, signo);	/* a signal causes it to stop */
 | 
						|
 | 
						|
	return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (rmp->mp_flags & VFS_CALL) {
 | 
						|
	sigaddset(&rmp->mp_sigpending, signo);
 | 
						|
	if(ksig)
 | 
						|
		sigaddset(&rmp->mp_ksigpending, signo);
 | 
						|
 | 
						|
	/* Process the signal once VFS replies. Stop the process in the
 | 
						|
	 * meantime, so that it cannot make another call after the VFS reply
 | 
						|
	 * comes in but before we look at its signals again. Since we always
 | 
						|
	 * stop the process to deliver signals during a VFS call, the
 | 
						|
	 * PROC_STOPPED flag doubles as an indicator in restart_sigs() that
 | 
						|
	 * signals must be rechecked after a VFS reply comes in.
 | 
						|
	 */
 | 
						|
	if (!(rmp->mp_flags & (PROC_STOPPED | DELAY_CALL))) {
 | 
						|
		/* If a VFS call is ongoing and the process is not yet stopped,
 | 
						|
		 * the process must have made a call to PM. Therefore, there
 | 
						|
		 * can be no delay calls in this case.
 | 
						|
		 */
 | 
						|
		stop_proc(rmp, FALSE /*delay_call*/);
 | 
						|
	}
 | 
						|
	return;
 | 
						|
  }
 | 
						|
 | 
						|
  /* Handle system signals for system processes first. */
 | 
						|
  if(rmp->mp_flags & PRIV_PROC) {
 | 
						|
   	/* Always skip signals for PM (only necessary when broadcasting). */
 | 
						|
   	if(rmp->mp_endpoint == PM_PROC_NR) {
 | 
						|
 		return;
 | 
						|
   	}
 | 
						|
 | 
						|
   	/* System signals have always to go through the kernel first to let it
 | 
						|
   	 * pick the right signal manager. If PM is the assigned signal manager,
 | 
						|
   	 * the signal will come back and will actually be processed.
 | 
						|
   	 */
 | 
						|
   	if(!ksig) {
 | 
						|
 		sys_kill(rmp->mp_endpoint, signo);
 | 
						|
 		return;
 | 
						|
   	}
 | 
						|
 | 
						|
  	/* Print stacktrace if necessary. */
 | 
						|
  	if(SIGS_IS_STACKTRACE(signo)) {
 | 
						|
		sys_diagctl_stacktrace(rmp->mp_endpoint);
 | 
						|
  	}
 | 
						|
 | 
						|
  	if(!SIGS_IS_TERMINATION(signo)) {
 | 
						|
		/* Translate every non-termination sys signal into a message. */
 | 
						|
		message m;
 | 
						|
		m.m_type = SIGS_SIGNAL_RECEIVED;
 | 
						|
		m.SIGS_SIG_NUM = signo;
 | 
						|
		asynsend3(rmp->mp_endpoint, &m, AMF_NOREPLY);
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		/* Exit the process in case of termination system signal. */
 | 
						|
		sig_proc_exit(rmp, signo);
 | 
						|
	}
 | 
						|
	return;
 | 
						|
  }
 | 
						|
 | 
						|
  /* Handle user processes now. See if the signal cannot be safely ignored. */
 | 
						|
  badignore = ksig && sigismember(&noign_sset, signo) && (
 | 
						|
	  sigismember(&rmp->mp_ignore, signo) ||
 | 
						|
	  sigismember(&rmp->mp_sigmask, signo));
 | 
						|
 | 
						|
  if (!badignore && sigismember(&rmp->mp_ignore, signo)) { 
 | 
						|
	/* Signal should be ignored. */
 | 
						|
	return;
 | 
						|
  }
 | 
						|
  if (!badignore && sigismember(&rmp->mp_sigmask, signo)) {
 | 
						|
	/* Signal should be blocked. */
 | 
						|
	sigaddset(&rmp->mp_sigpending, signo);
 | 
						|
	if(ksig)
 | 
						|
		sigaddset(&rmp->mp_ksigpending, signo);
 | 
						|
	return;
 | 
						|
  }
 | 
						|
 | 
						|
  if ((rmp->mp_flags & TRACE_STOPPED) && signo != SIGKILL) {
 | 
						|
	/* If the process is stopped for a debugger, do not deliver any signals
 | 
						|
	 * (except SIGKILL) in order not to confuse the debugger. The signals
 | 
						|
	 * will be delivered using the check_pending() calls in do_trace().
 | 
						|
	 */
 | 
						|
	sigaddset(&rmp->mp_sigpending, signo);
 | 
						|
	if(ksig)
 | 
						|
		sigaddset(&rmp->mp_ksigpending, signo);
 | 
						|
	return;
 | 
						|
  }
 | 
						|
  if (!badignore && sigismember(&rmp->mp_catch, signo)) {
 | 
						|
	/* Signal is caught. First interrupt the process's current call, if
 | 
						|
	 * applicable. This may involve a roundtrip to VFS, in which case we'll
 | 
						|
	 * have to check back later.
 | 
						|
	 */
 | 
						|
	if (!unpause(rmp)) {
 | 
						|
		/* not yet unpaused; continue later */
 | 
						|
		sigaddset(&rmp->mp_sigpending, signo);
 | 
						|
		if(ksig)
 | 
						|
			sigaddset(&rmp->mp_ksigpending, signo);
 | 
						|
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Then send the actual signal to the process, by setting up a signal
 | 
						|
	 * handler.
 | 
						|
	 */
 | 
						|
	if (sig_send(rmp, signo))
 | 
						|
		return;
 | 
						|
 | 
						|
	/* We were unable to spawn a signal handler. Kill the process. */
 | 
						|
	printf("PM: %d can't catch signal %d - killing\n",
 | 
						|
		rmp->mp_pid, signo);
 | 
						|
  }
 | 
						|
  else if (!badignore && sigismember(&ign_sset, signo)) {
 | 
						|
	/* Signal defaults to being ignored. */
 | 
						|
	return;
 | 
						|
  }
 | 
						|
 | 
						|
  /* Terminate process */
 | 
						|
  sig_proc_exit(rmp, signo);
 | 
						|
}
 | 
						|
 | 
						|
/*===========================================================================*
 | 
						|
 *				sig_proc_exit				     *
 | 
						|
 *===========================================================================*/
 | 
						|
static void sig_proc_exit(rmp, signo)
 | 
						|
struct mproc *rmp;		/* process that must exit */
 | 
						|
int signo;			/* signal that caused termination */
 | 
						|
{
 | 
						|
  rmp->mp_sigstatus = (char) signo;
 | 
						|
  if (sigismember(&core_sset, signo)) {
 | 
						|
	if(!(rmp->mp_flags & PRIV_PROC)) {
 | 
						|
		printf("PM: coredump signal %d for %d / %s\n", signo,
 | 
						|
			rmp->mp_pid, rmp->mp_name);
 | 
						|
		sys_diagctl_stacktrace(rmp->mp_endpoint);
 | 
						|
	}
 | 
						|
	exit_proc(rmp, 0, TRUE /*dump_core*/);
 | 
						|
  }
 | 
						|
  else {
 | 
						|
  	exit_proc(rmp, 0, FALSE /*dump_core*/);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/*===========================================================================*
 | 
						|
 *				check_sig				     *
 | 
						|
 *===========================================================================*/
 | 
						|
int check_sig(proc_id, signo, ksig)
 | 
						|
pid_t proc_id;			/* pid of proc to sig, or 0 or -1, or -pgrp */
 | 
						|
int signo;			/* signal to send to process (0 to _NSIG-1) */
 | 
						|
int ksig;			/* non-zero means signal comes from kernel  */
 | 
						|
{
 | 
						|
/* Check to see if it is possible to send a signal.  The signal may have to be
 | 
						|
 * sent to a group of processes.  This routine is invoked by the KILL system
 | 
						|
 * call, and also when the kernel catches a DEL or other signal.
 | 
						|
 */
 | 
						|
 | 
						|
  register struct mproc *rmp;
 | 
						|
  int count;			/* count # of signals sent */
 | 
						|
  int error_code;
 | 
						|
 | 
						|
  if (signo < 0 || signo >= _NSIG) return(EINVAL);
 | 
						|
 | 
						|
  /* Return EINVAL for attempts to send SIGKILL to INIT alone. */
 | 
						|
  if (proc_id == INIT_PID && signo == SIGKILL) return(EINVAL);
 | 
						|
 | 
						|
  /* Signal RS first when broadcasting SIGTERM. */
 | 
						|
  if (proc_id == -1 && signo == SIGTERM)
 | 
						|
      sys_kill(RS_PROC_NR, signo);
 | 
						|
 | 
						|
  /* Search the proc table for processes to signal. Start from the end of the
 | 
						|
   * table to analyze core system processes at the end when broadcasting.
 | 
						|
   * (See forkexit.c about pid magic.)
 | 
						|
   */
 | 
						|
  count = 0;
 | 
						|
  error_code = ESRCH;
 | 
						|
  for (rmp = &mproc[NR_PROCS-1]; rmp >= &mproc[0]; rmp--) {
 | 
						|
	if (!(rmp->mp_flags & IN_USE)) continue;
 | 
						|
 | 
						|
	/* Check for selection. */
 | 
						|
	if (proc_id > 0 && proc_id != rmp->mp_pid) continue;
 | 
						|
	if (proc_id == 0 && mp->mp_procgrp != rmp->mp_procgrp) continue;
 | 
						|
	if (proc_id == -1 && rmp->mp_pid <= INIT_PID) continue;
 | 
						|
	if (proc_id < -1 && rmp->mp_procgrp != -proc_id) continue;
 | 
						|
 | 
						|
	/* Do not kill servers and drivers when broadcasting SIGKILL. */
 | 
						|
	if (proc_id == -1 && signo == SIGKILL &&
 | 
						|
		(rmp->mp_flags & PRIV_PROC)) continue;
 | 
						|
 | 
						|
	/* Skip VM entirely as it might lead to a deadlock with its signal
 | 
						|
	 * manager if the manager page faults at the same time.
 | 
						|
	 */
 | 
						|
	if (rmp->mp_endpoint == VM_PROC_NR) continue;
 | 
						|
 | 
						|
	/* Disallow lethal signals sent by user processes to sys processes. */
 | 
						|
	if (!ksig && SIGS_IS_LETHAL(signo) && (rmp->mp_flags & PRIV_PROC)) {
 | 
						|
	    error_code = EPERM;
 | 
						|
	    continue;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Check for permission. */
 | 
						|
	if (mp->mp_effuid != SUPER_USER
 | 
						|
	    && mp->mp_realuid != rmp->mp_realuid
 | 
						|
	    && mp->mp_effuid != rmp->mp_realuid
 | 
						|
	    && mp->mp_realuid != rmp->mp_effuid
 | 
						|
	    && mp->mp_effuid != rmp->mp_effuid) {
 | 
						|
		error_code = EPERM;
 | 
						|
		continue;
 | 
						|
	}
 | 
						|
 | 
						|
	count++;
 | 
						|
	if (signo == 0 || (rmp->mp_flags & EXITING)) continue;
 | 
						|
 | 
						|
	/* 'sig_proc' will handle the disposition of the signal.  The
 | 
						|
	 * signal may be caught, blocked, ignored, or cause process
 | 
						|
	 * termination, possibly with core dump.
 | 
						|
	 */
 | 
						|
	sig_proc(rmp, signo, TRUE /*trace*/, ksig);
 | 
						|
 | 
						|
	if (proc_id > 0) break;	/* only one process being signaled */
 | 
						|
  }
 | 
						|
 | 
						|
  /* If the calling process has killed itself, don't reply. */
 | 
						|
  if ((mp->mp_flags & (IN_USE | EXITING)) != IN_USE) return(SUSPEND);
 | 
						|
  return(count > 0 ? OK : error_code);
 | 
						|
}
 | 
						|
 | 
						|
/*===========================================================================*
 | 
						|
 *				check_pending				     *
 | 
						|
 *===========================================================================*/
 | 
						|
void check_pending(rmp)
 | 
						|
register struct mproc *rmp;
 | 
						|
{
 | 
						|
  /* Check to see if any pending signals have been unblocked. Deliver as many
 | 
						|
   * of them as we can, until we have to wait for a reply from VFS first.
 | 
						|
   *
 | 
						|
   * There are several places in this file where the signal mask is
 | 
						|
   * changed.  At each such place, check_pending() should be called to
 | 
						|
   * check for newly unblocked signals.
 | 
						|
   */
 | 
						|
  int i;
 | 
						|
  int ksig;
 | 
						|
 | 
						|
  for (i = 1; i < _NSIG; i++) {
 | 
						|
	if (sigismember(&rmp->mp_sigpending, i) &&
 | 
						|
		!sigismember(&rmp->mp_sigmask, i)) {
 | 
						|
		ksig = sigismember(&rmp->mp_ksigpending, i);
 | 
						|
		sigdelset(&rmp->mp_sigpending, i);
 | 
						|
		sigdelset(&rmp->mp_ksigpending, i);
 | 
						|
		sig_proc(rmp, i, FALSE /*trace*/, ksig);
 | 
						|
 | 
						|
		if (rmp->mp_flags & VFS_CALL) {
 | 
						|
			/* Signals must be rechecked upon return from the new
 | 
						|
			 * VFS call, unless the process was killed. In both
 | 
						|
			 * cases, the process is stopped.
 | 
						|
			 */
 | 
						|
			assert(rmp->mp_flags & PROC_STOPPED);
 | 
						|
			break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/*===========================================================================*
 | 
						|
 *				restart_sigs				     *
 | 
						|
 *===========================================================================*/
 | 
						|
void restart_sigs(rmp)
 | 
						|
struct mproc *rmp;
 | 
						|
{
 | 
						|
/* VFS has replied to a request from us; do signal-related work.
 | 
						|
 */
 | 
						|
 | 
						|
  if (rmp->mp_flags & (VFS_CALL | EXITING)) return;
 | 
						|
 | 
						|
  if (rmp->mp_flags & TRACE_EXIT) {
 | 
						|
	/* Tracer requested exit with specific exit value */
 | 
						|
	exit_proc(rmp, rmp->mp_exitstatus, FALSE /*dump_core*/);
 | 
						|
  }
 | 
						|
  else if (rmp->mp_flags & PROC_STOPPED) {
 | 
						|
	/* If a signal arrives while we are performing a VFS call, the process
 | 
						|
	 * will always be stopped immediately. Thus, if the process is stopped
 | 
						|
	 * once the reply from VFS arrives, we might have to check signals.
 | 
						|
	 */
 | 
						|
	assert(!(rmp->mp_flags & DELAY_CALL));
 | 
						|
 | 
						|
	/* We saved signal(s) for after finishing a VFS call. Deal with this.
 | 
						|
	 * PROC_STOPPED remains set to indicate the process is still stopped.
 | 
						|
	 */
 | 
						|
	check_pending(rmp);
 | 
						|
 | 
						|
	/* Resume the process now, unless there is a reason not to. */
 | 
						|
	try_resume_proc(rmp);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/*===========================================================================*
 | 
						|
 *				unpause					     *
 | 
						|
 *===========================================================================*/
 | 
						|
static int unpause(rmp)
 | 
						|
struct mproc *rmp;		/* which process */
 | 
						|
{
 | 
						|
/* A signal is to be sent to a process.  If that process is hanging on a
 | 
						|
 * system call, the system call must be terminated with EINTR.  First check if
 | 
						|
 * the process is hanging on an PM call.  If not, tell VFS, so it can check for
 | 
						|
 * interruptible calls such as READs and WRITEs from pipes, ttys and the like.
 | 
						|
 */
 | 
						|
  message m;
 | 
						|
 | 
						|
  assert(!(rmp->mp_flags & VFS_CALL));
 | 
						|
 | 
						|
  /* If the UNPAUSED flag is set, VFS replied to an earlier unpause request. */
 | 
						|
  if (rmp->mp_flags & UNPAUSED) {
 | 
						|
	assert((rmp->mp_flags & (DELAY_CALL | PROC_STOPPED)) == PROC_STOPPED);
 | 
						|
 | 
						|
	return TRUE;
 | 
						|
  }
 | 
						|
 | 
						|
  /* If the process is already stopping, don't do anything now. */
 | 
						|
  if (rmp->mp_flags & DELAY_CALL)
 | 
						|
	return FALSE;
 | 
						|
 | 
						|
  /* Check to see if process is hanging on a WAIT or SIGSUSPEND call. */
 | 
						|
  if (rmp->mp_flags & (WAITING | SIGSUSPENDED)) {
 | 
						|
	/* Stop the process from running. Do not interrupt the actual call yet.
 | 
						|
	 * sig_send() will interrupt the call and resume the process afterward.
 | 
						|
	 * No delay calls: we know for a fact that the process called us.
 | 
						|
	 */
 | 
						|
	stop_proc(rmp, FALSE /*may_delay*/);
 | 
						|
 | 
						|
	return TRUE;
 | 
						|
  }
 | 
						|
 | 
						|
  /* Not paused in PM. Let VFS try to unpause the process. The process needs to
 | 
						|
   * be stopped for this. If it is not already stopped, try to stop it now. If
 | 
						|
   * that does not succeed immediately, postpone signal delivery.
 | 
						|
   */
 | 
						|
  if (!(rmp->mp_flags & PROC_STOPPED) && !stop_proc(rmp, TRUE /*may_delay*/))
 | 
						|
	return FALSE;
 | 
						|
 | 
						|
  memset(&m, 0, sizeof(m));
 | 
						|
  m.m_type = VFS_PM_UNPAUSE;
 | 
						|
  m.VFS_PM_ENDPT = rmp->mp_endpoint;
 | 
						|
 | 
						|
  tell_vfs(rmp, &m);
 | 
						|
 | 
						|
  /* Also tell VM. */
 | 
						|
  vm_notify_sig_wrapper(rmp->mp_endpoint);
 | 
						|
 | 
						|
  return FALSE;
 | 
						|
}
 | 
						|
 | 
						|
/*===========================================================================*
 | 
						|
 *				sig_send				     *
 | 
						|
 *===========================================================================*/
 | 
						|
static int sig_send(rmp, signo)
 | 
						|
struct mproc *rmp;		/* what process to spawn a signal handler in */
 | 
						|
int signo;			/* signal to send to process (1 to _NSIG-1) */
 | 
						|
{
 | 
						|
/* The process is supposed to catch this signal. Spawn a signal handler.
 | 
						|
 * Return TRUE if this succeeded, FALSE otherwise.
 | 
						|
 */
 | 
						|
  struct sigmsg sigmsg;
 | 
						|
  int i, r, sigflags, slot;
 | 
						|
 | 
						|
  assert(rmp->mp_flags & PROC_STOPPED);
 | 
						|
 | 
						|
  sigflags = rmp->mp_sigact[signo].sa_flags;
 | 
						|
  slot = (int) (rmp - mproc);
 | 
						|
 | 
						|
  if (rmp->mp_flags & SIGSUSPENDED)
 | 
						|
	sigmsg.sm_mask = rmp->mp_sigmask2;
 | 
						|
  else
 | 
						|
	sigmsg.sm_mask = rmp->mp_sigmask;
 | 
						|
  sigmsg.sm_signo = signo;
 | 
						|
  sigmsg.sm_sighandler =
 | 
						|
	(vir_bytes) rmp->mp_sigact[signo].sa_handler;
 | 
						|
  sigmsg.sm_sigreturn = rmp->mp_sigreturn;
 | 
						|
  for (i = 1; i < _NSIG; i++) {
 | 
						|
	if (sigismember(&rmp->mp_sigact[signo].sa_mask, i))
 | 
						|
		sigaddset(&rmp->mp_sigmask, i);
 | 
						|
  }
 | 
						|
 | 
						|
  if (sigflags & SA_NODEFER)
 | 
						|
	sigdelset(&rmp->mp_sigmask, signo);
 | 
						|
  else
 | 
						|
	sigaddset(&rmp->mp_sigmask, signo);
 | 
						|
 | 
						|
  if (sigflags & SA_RESETHAND) {
 | 
						|
	sigdelset(&rmp->mp_catch, signo);
 | 
						|
	rmp->mp_sigact[signo].sa_handler = SIG_DFL;
 | 
						|
  }
 | 
						|
  sigdelset(&rmp->mp_sigpending, signo);
 | 
						|
  sigdelset(&rmp->mp_ksigpending, signo);
 | 
						|
 | 
						|
  /* Ask the kernel to deliver the signal */
 | 
						|
  r = sys_sigsend(rmp->mp_endpoint, &sigmsg);
 | 
						|
  /* sys_sigsend can fail legitimately with EFAULT or ENOMEM if the process
 | 
						|
   * memory can't accommodate the signal handler.  The target process will be
 | 
						|
   * killed in that case, so do not bother interrupting or resuming it.
 | 
						|
   */
 | 
						|
  if(r == EFAULT || r == ENOMEM) {
 | 
						|
	return(FALSE);
 | 
						|
  }
 | 
						|
  /* Other errors are unexpected pm/kernel discrepancies. */
 | 
						|
  if (r != OK) {
 | 
						|
	panic("sys_sigsend failed: %d", r);
 | 
						|
  }
 | 
						|
 | 
						|
  /* Was the process suspended in PM? Then interrupt the blocking call. */
 | 
						|
  if (rmp->mp_flags & (WAITING | SIGSUSPENDED)) {
 | 
						|
	rmp->mp_flags &= ~(WAITING | SIGSUSPENDED);
 | 
						|
 | 
						|
	reply(slot, EINTR);
 | 
						|
 | 
						|
	/* The process must just have been stopped by unpause(), which means
 | 
						|
	 * that the UNPAUSE flag is not set.
 | 
						|
	 */
 | 
						|
	assert(!(rmp->mp_flags & UNPAUSED));
 | 
						|
 | 
						|
	try_resume_proc(rmp);
 | 
						|
 | 
						|
	assert(!(rmp->mp_flags & PROC_STOPPED));
 | 
						|
  } else {
 | 
						|
	/* If the process was not suspended in PM, VFS must first have
 | 
						|
	 * confirmed that it has tried to unsuspend any blocking call. Thus, we
 | 
						|
	 * got here from restart_sigs() as part of handling PM_UNPAUSE_REPLY,
 | 
						|
	 * and restart_sigs() will resume the process later.
 | 
						|
	 */
 | 
						|
	assert(rmp->mp_flags & UNPAUSED);
 | 
						|
  }
 | 
						|
 | 
						|
  return(TRUE);
 | 
						|
}
 | 
						|
 | 
						|
/*===========================================================================*
 | 
						|
 *				vm_notify_sig_wrapper			     *
 | 
						|
 *===========================================================================*/
 | 
						|
void vm_notify_sig_wrapper(endpoint_t ep)
 | 
						|
{
 | 
						|
/* get IPC's endpoint,
 | 
						|
 * the reason that we directly get the endpoint
 | 
						|
 * instead of from DS server is that otherwise
 | 
						|
 * it will cause deadlock between PM, VM and DS.
 | 
						|
 */
 | 
						|
  struct mproc *rmp;
 | 
						|
  endpoint_t ipc_ep = 0;
 | 
						|
 | 
						|
  for (rmp = &mproc[0]; rmp < &mproc[NR_PROCS]; rmp++) {
 | 
						|
	if (!(rmp->mp_flags & IN_USE))
 | 
						|
		continue;
 | 
						|
	if (!strcmp(rmp->mp_name, "ipc")) {
 | 
						|
		ipc_ep = rmp->mp_endpoint;
 | 
						|
		vm_notify_sig(ep, ipc_ep);
 | 
						|
 | 
						|
		return;
 | 
						|
	}
 | 
						|
  }
 | 
						|
}
 |