3765 lines
		
	
	
		
			135 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			3765 lines
		
	
	
		
			135 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===--- Decl.cpp - Declaration AST Node Implementation -------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the Decl subclasses.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "clang/AST/Decl.h"
 | |
| #include "clang/AST/ASTContext.h"
 | |
| #include "clang/AST/ASTMutationListener.h"
 | |
| #include "clang/AST/Attr.h"
 | |
| #include "clang/AST/DeclCXX.h"
 | |
| #include "clang/AST/DeclObjC.h"
 | |
| #include "clang/AST/DeclTemplate.h"
 | |
| #include "clang/AST/Expr.h"
 | |
| #include "clang/AST/ExprCXX.h"
 | |
| #include "clang/AST/PrettyPrinter.h"
 | |
| #include "clang/AST/Stmt.h"
 | |
| #include "clang/AST/TypeLoc.h"
 | |
| #include "clang/Basic/Builtins.h"
 | |
| #include "clang/Basic/IdentifierTable.h"
 | |
| #include "clang/Basic/Module.h"
 | |
| #include "clang/Basic/Specifiers.h"
 | |
| #include "clang/Basic/TargetInfo.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/type_traits.h"
 | |
| #include <algorithm>
 | |
| 
 | |
| using namespace clang;
 | |
| 
 | |
| Decl *clang::getPrimaryMergedDecl(Decl *D) {
 | |
|   return D->getASTContext().getPrimaryMergedDecl(D);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // NamedDecl Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // Visibility rules aren't rigorously externally specified, but here
 | |
| // are the basic principles behind what we implement:
 | |
| //
 | |
| // 1. An explicit visibility attribute is generally a direct expression
 | |
| // of the user's intent and should be honored.  Only the innermost
 | |
| // visibility attribute applies.  If no visibility attribute applies,
 | |
| // global visibility settings are considered.
 | |
| //
 | |
| // 2. There is one caveat to the above: on or in a template pattern,
 | |
| // an explicit visibility attribute is just a default rule, and
 | |
| // visibility can be decreased by the visibility of template
 | |
| // arguments.  But this, too, has an exception: an attribute on an
 | |
| // explicit specialization or instantiation causes all the visibility
 | |
| // restrictions of the template arguments to be ignored.
 | |
| //
 | |
| // 3. A variable that does not otherwise have explicit visibility can
 | |
| // be restricted by the visibility of its type.
 | |
| //
 | |
| // 4. A visibility restriction is explicit if it comes from an
 | |
| // attribute (or something like it), not a global visibility setting.
 | |
| // When emitting a reference to an external symbol, visibility
 | |
| // restrictions are ignored unless they are explicit.
 | |
| //
 | |
| // 5. When computing the visibility of a non-type, including a
 | |
| // non-type member of a class, only non-type visibility restrictions
 | |
| // are considered: the 'visibility' attribute, global value-visibility
 | |
| // settings, and a few special cases like __private_extern.
 | |
| //
 | |
| // 6. When computing the visibility of a type, including a type member
 | |
| // of a class, only type visibility restrictions are considered:
 | |
| // the 'type_visibility' attribute and global type-visibility settings.
 | |
| // However, a 'visibility' attribute counts as a 'type_visibility'
 | |
| // attribute on any declaration that only has the former.
 | |
| //
 | |
| // The visibility of a "secondary" entity, like a template argument,
 | |
| // is computed using the kind of that entity, not the kind of the
 | |
| // primary entity for which we are computing visibility.  For example,
 | |
| // the visibility of a specialization of either of these templates:
 | |
| //   template <class T, bool (&compare)(T, X)> bool has_match(list<T>, X);
 | |
| //   template <class T, bool (&compare)(T, X)> class matcher;
 | |
| // is restricted according to the type visibility of the argument 'T',
 | |
| // the type visibility of 'bool(&)(T,X)', and the value visibility of
 | |
| // the argument function 'compare'.  That 'has_match' is a value
 | |
| // and 'matcher' is a type only matters when looking for attributes
 | |
| // and settings from the immediate context.
 | |
| 
 | |
| const unsigned IgnoreExplicitVisibilityBit = 2;
 | |
| const unsigned IgnoreAllVisibilityBit = 4;
 | |
| 
 | |
| /// Kinds of LV computation.  The linkage side of the computation is
 | |
| /// always the same, but different things can change how visibility is
 | |
| /// computed.
 | |
| enum LVComputationKind {
 | |
|   /// Do an LV computation for, ultimately, a type.
 | |
|   /// Visibility may be restricted by type visibility settings and
 | |
|   /// the visibility of template arguments.
 | |
|   LVForType = NamedDecl::VisibilityForType,
 | |
| 
 | |
|   /// Do an LV computation for, ultimately, a non-type declaration.
 | |
|   /// Visibility may be restricted by value visibility settings and
 | |
|   /// the visibility of template arguments.
 | |
|   LVForValue = NamedDecl::VisibilityForValue,
 | |
| 
 | |
|   /// Do an LV computation for, ultimately, a type that already has
 | |
|   /// some sort of explicit visibility.  Visibility may only be
 | |
|   /// restricted by the visibility of template arguments.
 | |
|   LVForExplicitType = (LVForType | IgnoreExplicitVisibilityBit),
 | |
| 
 | |
|   /// Do an LV computation for, ultimately, a non-type declaration
 | |
|   /// that already has some sort of explicit visibility.  Visibility
 | |
|   /// may only be restricted by the visibility of template arguments.
 | |
|   LVForExplicitValue = (LVForValue | IgnoreExplicitVisibilityBit),
 | |
| 
 | |
|   /// Do an LV computation when we only care about the linkage.
 | |
|   LVForLinkageOnly =
 | |
|       LVForValue | IgnoreExplicitVisibilityBit | IgnoreAllVisibilityBit
 | |
| };
 | |
| 
 | |
| /// Does this computation kind permit us to consider additional
 | |
| /// visibility settings from attributes and the like?
 | |
| static bool hasExplicitVisibilityAlready(LVComputationKind computation) {
 | |
|   return ((unsigned(computation) & IgnoreExplicitVisibilityBit) != 0);
 | |
| }
 | |
| 
 | |
| /// Given an LVComputationKind, return one of the same type/value sort
 | |
| /// that records that it already has explicit visibility.
 | |
| static LVComputationKind
 | |
| withExplicitVisibilityAlready(LVComputationKind oldKind) {
 | |
|   LVComputationKind newKind =
 | |
|     static_cast<LVComputationKind>(unsigned(oldKind) |
 | |
|                                    IgnoreExplicitVisibilityBit);
 | |
|   assert(oldKind != LVForType          || newKind == LVForExplicitType);
 | |
|   assert(oldKind != LVForValue         || newKind == LVForExplicitValue);
 | |
|   assert(oldKind != LVForExplicitType  || newKind == LVForExplicitType);
 | |
|   assert(oldKind != LVForExplicitValue || newKind == LVForExplicitValue);
 | |
|   return newKind;
 | |
| }
 | |
| 
 | |
| static Optional<Visibility> getExplicitVisibility(const NamedDecl *D,
 | |
|                                                   LVComputationKind kind) {
 | |
|   assert(!hasExplicitVisibilityAlready(kind) &&
 | |
|          "asking for explicit visibility when we shouldn't be");
 | |
|   return D->getExplicitVisibility((NamedDecl::ExplicitVisibilityKind) kind);
 | |
| }
 | |
| 
 | |
| /// Is the given declaration a "type" or a "value" for the purposes of
 | |
| /// visibility computation?
 | |
| static bool usesTypeVisibility(const NamedDecl *D) {
 | |
|   return isa<TypeDecl>(D) ||
 | |
|          isa<ClassTemplateDecl>(D) ||
 | |
|          isa<ObjCInterfaceDecl>(D);
 | |
| }
 | |
| 
 | |
| /// Does the given declaration have member specialization information,
 | |
| /// and if so, is it an explicit specialization?
 | |
| template <class T> static typename
 | |
| llvm::enable_if_c<!llvm::is_base_of<RedeclarableTemplateDecl, T>::value,
 | |
|                   bool>::type
 | |
| isExplicitMemberSpecialization(const T *D) {
 | |
|   if (const MemberSpecializationInfo *member =
 | |
|         D->getMemberSpecializationInfo()) {
 | |
|     return member->isExplicitSpecialization();
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// For templates, this question is easier: a member template can't be
 | |
| /// explicitly instantiated, so there's a single bit indicating whether
 | |
| /// or not this is an explicit member specialization.
 | |
| static bool isExplicitMemberSpecialization(const RedeclarableTemplateDecl *D) {
 | |
|   return D->isMemberSpecialization();
 | |
| }
 | |
| 
 | |
| /// Given a visibility attribute, return the explicit visibility
 | |
| /// associated with it.
 | |
| template <class T>
 | |
| static Visibility getVisibilityFromAttr(const T *attr) {
 | |
|   switch (attr->getVisibility()) {
 | |
|   case T::Default:
 | |
|     return DefaultVisibility;
 | |
|   case T::Hidden:
 | |
|     return HiddenVisibility;
 | |
|   case T::Protected:
 | |
|     return ProtectedVisibility;
 | |
|   }
 | |
|   llvm_unreachable("bad visibility kind");
 | |
| }
 | |
| 
 | |
| /// Return the explicit visibility of the given declaration.
 | |
| static Optional<Visibility> getVisibilityOf(const NamedDecl *D,
 | |
|                                     NamedDecl::ExplicitVisibilityKind kind) {
 | |
|   // If we're ultimately computing the visibility of a type, look for
 | |
|   // a 'type_visibility' attribute before looking for 'visibility'.
 | |
|   if (kind == NamedDecl::VisibilityForType) {
 | |
|     if (const TypeVisibilityAttr *A = D->getAttr<TypeVisibilityAttr>()) {
 | |
|       return getVisibilityFromAttr(A);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If this declaration has an explicit visibility attribute, use it.
 | |
|   if (const VisibilityAttr *A = D->getAttr<VisibilityAttr>()) {
 | |
|     return getVisibilityFromAttr(A);
 | |
|   }
 | |
| 
 | |
|   // If we're on Mac OS X, an 'availability' for Mac OS X attribute
 | |
|   // implies visibility(default).
 | |
|   if (D->getASTContext().getTargetInfo().getTriple().isOSDarwin()) {
 | |
|     for (specific_attr_iterator<AvailabilityAttr> 
 | |
|               A = D->specific_attr_begin<AvailabilityAttr>(),
 | |
|            AEnd = D->specific_attr_end<AvailabilityAttr>();
 | |
|          A != AEnd; ++A)
 | |
|       if ((*A)->getPlatform()->getName().equals("macosx"))
 | |
|         return DefaultVisibility;
 | |
|   }
 | |
| 
 | |
|   return None;
 | |
| }
 | |
| 
 | |
| static LinkageInfo
 | |
| getLVForType(const Type &T, LVComputationKind computation) {
 | |
|   if (computation == LVForLinkageOnly)
 | |
|     return LinkageInfo(T.getLinkage(), DefaultVisibility, true);
 | |
|   return T.getLinkageAndVisibility();
 | |
| }
 | |
| 
 | |
| /// \brief Get the most restrictive linkage for the types in the given
 | |
| /// template parameter list.  For visibility purposes, template
 | |
| /// parameters are part of the signature of a template.
 | |
| static LinkageInfo
 | |
| getLVForTemplateParameterList(const TemplateParameterList *params,
 | |
|                               LVComputationKind computation) {
 | |
|   LinkageInfo LV;
 | |
|   for (TemplateParameterList::const_iterator P = params->begin(),
 | |
|                                           PEnd = params->end();
 | |
|        P != PEnd; ++P) {
 | |
| 
 | |
|     // Template type parameters are the most common and never
 | |
|     // contribute to visibility, pack or not.
 | |
|     if (isa<TemplateTypeParmDecl>(*P))
 | |
|       continue;
 | |
| 
 | |
|     // Non-type template parameters can be restricted by the value type, e.g.
 | |
|     //   template <enum X> class A { ... };
 | |
|     // We have to be careful here, though, because we can be dealing with
 | |
|     // dependent types.
 | |
|     if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
 | |
|       // Handle the non-pack case first.
 | |
|       if (!NTTP->isExpandedParameterPack()) {
 | |
|         if (!NTTP->getType()->isDependentType()) {
 | |
|           LV.merge(getLVForType(*NTTP->getType(), computation));
 | |
|         }
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // Look at all the types in an expanded pack.
 | |
|       for (unsigned i = 0, n = NTTP->getNumExpansionTypes(); i != n; ++i) {
 | |
|         QualType type = NTTP->getExpansionType(i);
 | |
|         if (!type->isDependentType())
 | |
|           LV.merge(type->getLinkageAndVisibility());
 | |
|       }
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Template template parameters can be restricted by their
 | |
|     // template parameters, recursively.
 | |
|     TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*P);
 | |
| 
 | |
|     // Handle the non-pack case first.
 | |
|     if (!TTP->isExpandedParameterPack()) {
 | |
|       LV.merge(getLVForTemplateParameterList(TTP->getTemplateParameters(),
 | |
|                                              computation));
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Look at all expansions in an expanded pack.
 | |
|     for (unsigned i = 0, n = TTP->getNumExpansionTemplateParameters();
 | |
|            i != n; ++i) {
 | |
|       LV.merge(getLVForTemplateParameterList(
 | |
|           TTP->getExpansionTemplateParameters(i), computation));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return LV;
 | |
| }
 | |
| 
 | |
| /// getLVForDecl - Get the linkage and visibility for the given declaration.
 | |
| static LinkageInfo getLVForDecl(const NamedDecl *D,
 | |
|                                 LVComputationKind computation);
 | |
| 
 | |
| static const Decl *getOutermostFuncOrBlockContext(const Decl *D) {
 | |
|   const Decl *Ret = NULL;
 | |
|   const DeclContext *DC = D->getDeclContext();
 | |
|   while (DC->getDeclKind() != Decl::TranslationUnit) {
 | |
|     if (isa<FunctionDecl>(DC) || isa<BlockDecl>(DC))
 | |
|       Ret = cast<Decl>(DC);
 | |
|     DC = DC->getParent();
 | |
|   }
 | |
|   return Ret;
 | |
| }
 | |
| 
 | |
| /// \brief Get the most restrictive linkage for the types and
 | |
| /// declarations in the given template argument list.
 | |
| ///
 | |
| /// Note that we don't take an LVComputationKind because we always
 | |
| /// want to honor the visibility of template arguments in the same way.
 | |
| static LinkageInfo
 | |
| getLVForTemplateArgumentList(ArrayRef<TemplateArgument> args,
 | |
|                              LVComputationKind computation) {
 | |
|   LinkageInfo LV;
 | |
| 
 | |
|   for (unsigned i = 0, e = args.size(); i != e; ++i) {
 | |
|     const TemplateArgument &arg = args[i];
 | |
|     switch (arg.getKind()) {
 | |
|     case TemplateArgument::Null:
 | |
|     case TemplateArgument::Integral:
 | |
|     case TemplateArgument::Expression:
 | |
|       continue;
 | |
| 
 | |
|     case TemplateArgument::Type:
 | |
|       LV.merge(getLVForType(*arg.getAsType(), computation));
 | |
|       continue;
 | |
| 
 | |
|     case TemplateArgument::Declaration:
 | |
|       if (NamedDecl *ND = dyn_cast<NamedDecl>(arg.getAsDecl())) {
 | |
|         assert(!usesTypeVisibility(ND));
 | |
|         LV.merge(getLVForDecl(ND, computation));
 | |
|       }
 | |
|       continue;
 | |
| 
 | |
|     case TemplateArgument::NullPtr:
 | |
|       LV.merge(arg.getNullPtrType()->getLinkageAndVisibility());
 | |
|       continue;
 | |
| 
 | |
|     case TemplateArgument::Template:
 | |
|     case TemplateArgument::TemplateExpansion:
 | |
|       if (TemplateDecl *Template
 | |
|                 = arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl())
 | |
|         LV.merge(getLVForDecl(Template, computation));
 | |
|       continue;
 | |
| 
 | |
|     case TemplateArgument::Pack:
 | |
|       LV.merge(getLVForTemplateArgumentList(arg.getPackAsArray(), computation));
 | |
|       continue;
 | |
|     }
 | |
|     llvm_unreachable("bad template argument kind");
 | |
|   }
 | |
| 
 | |
|   return LV;
 | |
| }
 | |
| 
 | |
| static LinkageInfo
 | |
| getLVForTemplateArgumentList(const TemplateArgumentList &TArgs,
 | |
|                              LVComputationKind computation) {
 | |
|   return getLVForTemplateArgumentList(TArgs.asArray(), computation);
 | |
| }
 | |
| 
 | |
| static bool shouldConsiderTemplateVisibility(const FunctionDecl *fn,
 | |
|                         const FunctionTemplateSpecializationInfo *specInfo) {
 | |
|   // Include visibility from the template parameters and arguments
 | |
|   // only if this is not an explicit instantiation or specialization
 | |
|   // with direct explicit visibility.  (Implicit instantiations won't
 | |
|   // have a direct attribute.)
 | |
|   if (!specInfo->isExplicitInstantiationOrSpecialization())
 | |
|     return true;
 | |
| 
 | |
|   return !fn->hasAttr<VisibilityAttr>();
 | |
| }
 | |
| 
 | |
| /// Merge in template-related linkage and visibility for the given
 | |
| /// function template specialization.
 | |
| ///
 | |
| /// We don't need a computation kind here because we can assume
 | |
| /// LVForValue.
 | |
| ///
 | |
| /// \param[out] LV the computation to use for the parent
 | |
| static void
 | |
| mergeTemplateLV(LinkageInfo &LV, const FunctionDecl *fn,
 | |
|                 const FunctionTemplateSpecializationInfo *specInfo,
 | |
|                 LVComputationKind computation) {
 | |
|   bool considerVisibility =
 | |
|     shouldConsiderTemplateVisibility(fn, specInfo);
 | |
| 
 | |
|   // Merge information from the template parameters.
 | |
|   FunctionTemplateDecl *temp = specInfo->getTemplate();
 | |
|   LinkageInfo tempLV =
 | |
|     getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
 | |
|   LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
 | |
| 
 | |
|   // Merge information from the template arguments.
 | |
|   const TemplateArgumentList &templateArgs = *specInfo->TemplateArguments;
 | |
|   LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
 | |
|   LV.mergeMaybeWithVisibility(argsLV, considerVisibility);
 | |
| }
 | |
| 
 | |
| /// Does the given declaration have a direct visibility attribute
 | |
| /// that would match the given rules?
 | |
| static bool hasDirectVisibilityAttribute(const NamedDecl *D,
 | |
|                                          LVComputationKind computation) {
 | |
|   switch (computation) {
 | |
|   case LVForType:
 | |
|   case LVForExplicitType:
 | |
|     if (D->hasAttr<TypeVisibilityAttr>())
 | |
|       return true;
 | |
|     // fallthrough
 | |
|   case LVForValue:
 | |
|   case LVForExplicitValue:
 | |
|     if (D->hasAttr<VisibilityAttr>())
 | |
|       return true;
 | |
|     return false;
 | |
|   case LVForLinkageOnly:
 | |
|     return false;
 | |
|   }
 | |
|   llvm_unreachable("bad visibility computation kind");
 | |
| }
 | |
| 
 | |
| /// Should we consider visibility associated with the template
 | |
| /// arguments and parameters of the given class template specialization?
 | |
| static bool shouldConsiderTemplateVisibility(
 | |
|                                  const ClassTemplateSpecializationDecl *spec,
 | |
|                                  LVComputationKind computation) {
 | |
|   // Include visibility from the template parameters and arguments
 | |
|   // only if this is not an explicit instantiation or specialization
 | |
|   // with direct explicit visibility (and note that implicit
 | |
|   // instantiations won't have a direct attribute).
 | |
|   //
 | |
|   // Furthermore, we want to ignore template parameters and arguments
 | |
|   // for an explicit specialization when computing the visibility of a
 | |
|   // member thereof with explicit visibility.
 | |
|   //
 | |
|   // This is a bit complex; let's unpack it.
 | |
|   //
 | |
|   // An explicit class specialization is an independent, top-level
 | |
|   // declaration.  As such, if it or any of its members has an
 | |
|   // explicit visibility attribute, that must directly express the
 | |
|   // user's intent, and we should honor it.  The same logic applies to
 | |
|   // an explicit instantiation of a member of such a thing.
 | |
| 
 | |
|   // Fast path: if this is not an explicit instantiation or
 | |
|   // specialization, we always want to consider template-related
 | |
|   // visibility restrictions.
 | |
|   if (!spec->isExplicitInstantiationOrSpecialization())
 | |
|     return true;
 | |
| 
 | |
|   // This is the 'member thereof' check.
 | |
|   if (spec->isExplicitSpecialization() &&
 | |
|       hasExplicitVisibilityAlready(computation))
 | |
|     return false;
 | |
| 
 | |
|   return !hasDirectVisibilityAttribute(spec, computation);
 | |
| }
 | |
| 
 | |
| /// Merge in template-related linkage and visibility for the given
 | |
| /// class template specialization.
 | |
| static void mergeTemplateLV(LinkageInfo &LV,
 | |
|                             const ClassTemplateSpecializationDecl *spec,
 | |
|                             LVComputationKind computation) {
 | |
|   bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
 | |
| 
 | |
|   // Merge information from the template parameters, but ignore
 | |
|   // visibility if we're only considering template arguments.
 | |
| 
 | |
|   ClassTemplateDecl *temp = spec->getSpecializedTemplate();
 | |
|   LinkageInfo tempLV =
 | |
|     getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
 | |
|   LV.mergeMaybeWithVisibility(tempLV,
 | |
|            considerVisibility && !hasExplicitVisibilityAlready(computation));
 | |
| 
 | |
|   // Merge information from the template arguments.  We ignore
 | |
|   // template-argument visibility if we've got an explicit
 | |
|   // instantiation with a visibility attribute.
 | |
|   const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
 | |
|   LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
 | |
|   if (considerVisibility)
 | |
|     LV.mergeVisibility(argsLV);
 | |
|   LV.mergeExternalVisibility(argsLV);
 | |
| }
 | |
| 
 | |
| static bool useInlineVisibilityHidden(const NamedDecl *D) {
 | |
|   // FIXME: we should warn if -fvisibility-inlines-hidden is used with c.
 | |
|   const LangOptions &Opts = D->getASTContext().getLangOpts();
 | |
|   if (!Opts.CPlusPlus || !Opts.InlineVisibilityHidden)
 | |
|     return false;
 | |
| 
 | |
|   const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
 | |
|   if (!FD)
 | |
|     return false;
 | |
| 
 | |
|   TemplateSpecializationKind TSK = TSK_Undeclared;
 | |
|   if (FunctionTemplateSpecializationInfo *spec
 | |
|       = FD->getTemplateSpecializationInfo()) {
 | |
|     TSK = spec->getTemplateSpecializationKind();
 | |
|   } else if (MemberSpecializationInfo *MSI =
 | |
|              FD->getMemberSpecializationInfo()) {
 | |
|     TSK = MSI->getTemplateSpecializationKind();
 | |
|   }
 | |
| 
 | |
|   const FunctionDecl *Def = 0;
 | |
|   // InlineVisibilityHidden only applies to definitions, and
 | |
|   // isInlined() only gives meaningful answers on definitions
 | |
|   // anyway.
 | |
|   return TSK != TSK_ExplicitInstantiationDeclaration &&
 | |
|     TSK != TSK_ExplicitInstantiationDefinition &&
 | |
|     FD->hasBody(Def) && Def->isInlined() && !Def->hasAttr<GNUInlineAttr>();
 | |
| }
 | |
| 
 | |
| template <typename T> static bool isFirstInExternCContext(T *D) {
 | |
|   const T *First = D->getFirstDecl();
 | |
|   return First->isInExternCContext();
 | |
| }
 | |
| 
 | |
| static bool isSingleLineExternC(const Decl &D) {
 | |
|   if (const LinkageSpecDecl *SD = dyn_cast<LinkageSpecDecl>(D.getDeclContext()))
 | |
|     if (SD->getLanguage() == LinkageSpecDecl::lang_c && !SD->hasBraces())
 | |
|       return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static LinkageInfo getLVForNamespaceScopeDecl(const NamedDecl *D,
 | |
|                                               LVComputationKind computation) {
 | |
|   assert(D->getDeclContext()->getRedeclContext()->isFileContext() &&
 | |
|          "Not a name having namespace scope");
 | |
|   ASTContext &Context = D->getASTContext();
 | |
| 
 | |
|   // C++ [basic.link]p3:
 | |
|   //   A name having namespace scope (3.3.6) has internal linkage if it
 | |
|   //   is the name of
 | |
|   //     - an object, reference, function or function template that is
 | |
|   //       explicitly declared static; or,
 | |
|   // (This bullet corresponds to C99 6.2.2p3.)
 | |
|   if (const VarDecl *Var = dyn_cast<VarDecl>(D)) {
 | |
|     // Explicitly declared static.
 | |
|     if (Var->getStorageClass() == SC_Static)
 | |
|       return LinkageInfo::internal();
 | |
| 
 | |
|     // - a non-volatile object or reference that is explicitly declared const
 | |
|     //   or constexpr and neither explicitly declared extern nor previously
 | |
|     //   declared to have external linkage; or (there is no equivalent in C99)
 | |
|     if (Context.getLangOpts().CPlusPlus &&
 | |
|         Var->getType().isConstQualified() && 
 | |
|         !Var->getType().isVolatileQualified()) {
 | |
|       const VarDecl *PrevVar = Var->getPreviousDecl();
 | |
|       if (PrevVar)
 | |
|         return getLVForDecl(PrevVar, computation);
 | |
| 
 | |
|       if (Var->getStorageClass() != SC_Extern &&
 | |
|           Var->getStorageClass() != SC_PrivateExtern &&
 | |
|           !isSingleLineExternC(*Var))
 | |
|         return LinkageInfo::internal();
 | |
|     }
 | |
| 
 | |
|     for (const VarDecl *PrevVar = Var->getPreviousDecl(); PrevVar;
 | |
|          PrevVar = PrevVar->getPreviousDecl()) {
 | |
|       if (PrevVar->getStorageClass() == SC_PrivateExtern &&
 | |
|           Var->getStorageClass() == SC_None)
 | |
|         return PrevVar->getLinkageAndVisibility();
 | |
|       // Explicitly declared static.
 | |
|       if (PrevVar->getStorageClass() == SC_Static)
 | |
|         return LinkageInfo::internal();
 | |
|     }
 | |
|   } else if (isa<FunctionDecl>(D) || isa<FunctionTemplateDecl>(D)) {
 | |
|     // C++ [temp]p4:
 | |
|     //   A non-member function template can have internal linkage; any
 | |
|     //   other template name shall have external linkage.
 | |
|     const FunctionDecl *Function = 0;
 | |
|     if (const FunctionTemplateDecl *FunTmpl
 | |
|                                         = dyn_cast<FunctionTemplateDecl>(D))
 | |
|       Function = FunTmpl->getTemplatedDecl();
 | |
|     else
 | |
|       Function = cast<FunctionDecl>(D);
 | |
| 
 | |
|     // Explicitly declared static.
 | |
|     if (Function->getCanonicalDecl()->getStorageClass() == SC_Static)
 | |
|       return LinkageInfo(InternalLinkage, DefaultVisibility, false);
 | |
|   }
 | |
|   //   - a data member of an anonymous union.
 | |
|   assert(!isa<IndirectFieldDecl>(D) && "Didn't expect an IndirectFieldDecl!");
 | |
|   assert(!isa<FieldDecl>(D) && "Didn't expect a FieldDecl!");
 | |
| 
 | |
|   if (D->isInAnonymousNamespace()) {
 | |
|     const VarDecl *Var = dyn_cast<VarDecl>(D);
 | |
|     const FunctionDecl *Func = dyn_cast<FunctionDecl>(D);
 | |
|     if ((!Var || !isFirstInExternCContext(Var)) &&
 | |
|         (!Func || !isFirstInExternCContext(Func)))
 | |
|       return LinkageInfo::uniqueExternal();
 | |
|   }
 | |
| 
 | |
|   // Set up the defaults.
 | |
| 
 | |
|   // C99 6.2.2p5:
 | |
|   //   If the declaration of an identifier for an object has file
 | |
|   //   scope and no storage-class specifier, its linkage is
 | |
|   //   external.
 | |
|   LinkageInfo LV;
 | |
| 
 | |
|   if (!hasExplicitVisibilityAlready(computation)) {
 | |
|     if (Optional<Visibility> Vis = getExplicitVisibility(D, computation)) {
 | |
|       LV.mergeVisibility(*Vis, true);
 | |
|     } else {
 | |
|       // If we're declared in a namespace with a visibility attribute,
 | |
|       // use that namespace's visibility, and it still counts as explicit.
 | |
|       for (const DeclContext *DC = D->getDeclContext();
 | |
|            !isa<TranslationUnitDecl>(DC);
 | |
|            DC = DC->getParent()) {
 | |
|         const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(DC);
 | |
|         if (!ND) continue;
 | |
|         if (Optional<Visibility> Vis = getExplicitVisibility(ND, computation)) {
 | |
|           LV.mergeVisibility(*Vis, true);
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Add in global settings if the above didn't give us direct visibility.
 | |
|     if (!LV.isVisibilityExplicit()) {
 | |
|       // Use global type/value visibility as appropriate.
 | |
|       Visibility globalVisibility;
 | |
|       if (computation == LVForValue) {
 | |
|         globalVisibility = Context.getLangOpts().getValueVisibilityMode();
 | |
|       } else {
 | |
|         assert(computation == LVForType);
 | |
|         globalVisibility = Context.getLangOpts().getTypeVisibilityMode();
 | |
|       }
 | |
|       LV.mergeVisibility(globalVisibility, /*explicit*/ false);
 | |
| 
 | |
|       // If we're paying attention to global visibility, apply
 | |
|       // -finline-visibility-hidden if this is an inline method.
 | |
|       if (useInlineVisibilityHidden(D))
 | |
|         LV.mergeVisibility(HiddenVisibility, true);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // C++ [basic.link]p4:
 | |
| 
 | |
|   //   A name having namespace scope has external linkage if it is the
 | |
|   //   name of
 | |
|   //
 | |
|   //     - an object or reference, unless it has internal linkage; or
 | |
|   if (const VarDecl *Var = dyn_cast<VarDecl>(D)) {
 | |
|     // GCC applies the following optimization to variables and static
 | |
|     // data members, but not to functions:
 | |
|     //
 | |
|     // Modify the variable's LV by the LV of its type unless this is
 | |
|     // C or extern "C".  This follows from [basic.link]p9:
 | |
|     //   A type without linkage shall not be used as the type of a
 | |
|     //   variable or function with external linkage unless
 | |
|     //    - the entity has C language linkage, or
 | |
|     //    - the entity is declared within an unnamed namespace, or
 | |
|     //    - the entity is not used or is defined in the same
 | |
|     //      translation unit.
 | |
|     // and [basic.link]p10:
 | |
|     //   ...the types specified by all declarations referring to a
 | |
|     //   given variable or function shall be identical...
 | |
|     // C does not have an equivalent rule.
 | |
|     //
 | |
|     // Ignore this if we've got an explicit attribute;  the user
 | |
|     // probably knows what they're doing.
 | |
|     //
 | |
|     // Note that we don't want to make the variable non-external
 | |
|     // because of this, but unique-external linkage suits us.
 | |
|     if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Var)) {
 | |
|       LinkageInfo TypeLV = getLVForType(*Var->getType(), computation);
 | |
|       if (TypeLV.getLinkage() != ExternalLinkage)
 | |
|         return LinkageInfo::uniqueExternal();
 | |
|       if (!LV.isVisibilityExplicit())
 | |
|         LV.mergeVisibility(TypeLV);
 | |
|     }
 | |
| 
 | |
|     if (Var->getStorageClass() == SC_PrivateExtern)
 | |
|       LV.mergeVisibility(HiddenVisibility, true);
 | |
| 
 | |
|     // Note that Sema::MergeVarDecl already takes care of implementing
 | |
|     // C99 6.2.2p4 and propagating the visibility attribute, so we don't have
 | |
|     // to do it here.
 | |
| 
 | |
|   //     - a function, unless it has internal linkage; or
 | |
|   } else if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
 | |
|     // In theory, we can modify the function's LV by the LV of its
 | |
|     // type unless it has C linkage (see comment above about variables
 | |
|     // for justification).  In practice, GCC doesn't do this, so it's
 | |
|     // just too painful to make work.
 | |
| 
 | |
|     if (Function->getStorageClass() == SC_PrivateExtern)
 | |
|       LV.mergeVisibility(HiddenVisibility, true);
 | |
| 
 | |
|     // Note that Sema::MergeCompatibleFunctionDecls already takes care of
 | |
|     // merging storage classes and visibility attributes, so we don't have to
 | |
|     // look at previous decls in here.
 | |
| 
 | |
|     // In C++, then if the type of the function uses a type with
 | |
|     // unique-external linkage, it's not legally usable from outside
 | |
|     // this translation unit.  However, we should use the C linkage
 | |
|     // rules instead for extern "C" declarations.
 | |
|     if (Context.getLangOpts().CPlusPlus &&
 | |
|         !Function->isInExternCContext()) {
 | |
|       // Only look at the type-as-written. If this function has an auto-deduced
 | |
|       // return type, we can't compute the linkage of that type because it could
 | |
|       // require looking at the linkage of this function, and we don't need this
 | |
|       // for correctness because the type is not part of the function's
 | |
|       // signature.
 | |
|       // FIXME: This is a hack. We should be able to solve this circularity and 
 | |
|       // the one in getLVForClassMember for Functions some other way.
 | |
|       QualType TypeAsWritten = Function->getType();
 | |
|       if (TypeSourceInfo *TSI = Function->getTypeSourceInfo())
 | |
|         TypeAsWritten = TSI->getType();
 | |
|       if (TypeAsWritten->getLinkage() == UniqueExternalLinkage)
 | |
|         return LinkageInfo::uniqueExternal();
 | |
|     }
 | |
| 
 | |
|     // Consider LV from the template and the template arguments.
 | |
|     // We're at file scope, so we do not need to worry about nested
 | |
|     // specializations.
 | |
|     if (FunctionTemplateSpecializationInfo *specInfo
 | |
|                                = Function->getTemplateSpecializationInfo()) {
 | |
|       mergeTemplateLV(LV, Function, specInfo, computation);
 | |
|     }
 | |
| 
 | |
|   //     - a named class (Clause 9), or an unnamed class defined in a
 | |
|   //       typedef declaration in which the class has the typedef name
 | |
|   //       for linkage purposes (7.1.3); or
 | |
|   //     - a named enumeration (7.2), or an unnamed enumeration
 | |
|   //       defined in a typedef declaration in which the enumeration
 | |
|   //       has the typedef name for linkage purposes (7.1.3); or
 | |
|   } else if (const TagDecl *Tag = dyn_cast<TagDecl>(D)) {
 | |
|     // Unnamed tags have no linkage.
 | |
|     if (!Tag->hasNameForLinkage())
 | |
|       return LinkageInfo::none();
 | |
| 
 | |
|     // If this is a class template specialization, consider the
 | |
|     // linkage of the template and template arguments.  We're at file
 | |
|     // scope, so we do not need to worry about nested specializations.
 | |
|     if (const ClassTemplateSpecializationDecl *spec
 | |
|           = dyn_cast<ClassTemplateSpecializationDecl>(Tag)) {
 | |
|       mergeTemplateLV(LV, spec, computation);
 | |
|     }
 | |
| 
 | |
|   //     - an enumerator belonging to an enumeration with external linkage;
 | |
|   } else if (isa<EnumConstantDecl>(D)) {
 | |
|     LinkageInfo EnumLV = getLVForDecl(cast<NamedDecl>(D->getDeclContext()),
 | |
|                                       computation);
 | |
|     if (!isExternalFormalLinkage(EnumLV.getLinkage()))
 | |
|       return LinkageInfo::none();
 | |
|     LV.merge(EnumLV);
 | |
| 
 | |
|   //     - a template, unless it is a function template that has
 | |
|   //       internal linkage (Clause 14);
 | |
|   } else if (const TemplateDecl *temp = dyn_cast<TemplateDecl>(D)) {
 | |
|     bool considerVisibility = !hasExplicitVisibilityAlready(computation);
 | |
|     LinkageInfo tempLV =
 | |
|       getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
 | |
|     LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
 | |
| 
 | |
|   //     - a namespace (7.3), unless it is declared within an unnamed
 | |
|   //       namespace.
 | |
|   } else if (isa<NamespaceDecl>(D) && !D->isInAnonymousNamespace()) {
 | |
|     return LV;
 | |
| 
 | |
|   // By extension, we assign external linkage to Objective-C
 | |
|   // interfaces.
 | |
|   } else if (isa<ObjCInterfaceDecl>(D)) {
 | |
|     // fallout
 | |
| 
 | |
|   // Everything not covered here has no linkage.
 | |
|   } else {
 | |
|     return LinkageInfo::none();
 | |
|   }
 | |
| 
 | |
|   // If we ended up with non-external linkage, visibility should
 | |
|   // always be default.
 | |
|   if (LV.getLinkage() != ExternalLinkage)
 | |
|     return LinkageInfo(LV.getLinkage(), DefaultVisibility, false);
 | |
| 
 | |
|   return LV;
 | |
| }
 | |
| 
 | |
| static LinkageInfo getLVForClassMember(const NamedDecl *D,
 | |
|                                        LVComputationKind computation) {
 | |
|   // Only certain class members have linkage.  Note that fields don't
 | |
|   // really have linkage, but it's convenient to say they do for the
 | |
|   // purposes of calculating linkage of pointer-to-data-member
 | |
|   // template arguments.
 | |
|   if (!(isa<CXXMethodDecl>(D) ||
 | |
|         isa<VarDecl>(D) ||
 | |
|         isa<FieldDecl>(D) ||
 | |
|         isa<IndirectFieldDecl>(D) ||
 | |
|         isa<TagDecl>(D)))
 | |
|     return LinkageInfo::none();
 | |
| 
 | |
|   LinkageInfo LV;
 | |
| 
 | |
|   // If we have an explicit visibility attribute, merge that in.
 | |
|   if (!hasExplicitVisibilityAlready(computation)) {
 | |
|     if (Optional<Visibility> Vis = getExplicitVisibility(D, computation))
 | |
|       LV.mergeVisibility(*Vis, true);
 | |
|     // If we're paying attention to global visibility, apply
 | |
|     // -finline-visibility-hidden if this is an inline method.
 | |
|     //
 | |
|     // Note that we do this before merging information about
 | |
|     // the class visibility.
 | |
|     if (!LV.isVisibilityExplicit() && useInlineVisibilityHidden(D))
 | |
|       LV.mergeVisibility(HiddenVisibility, true);
 | |
|   }
 | |
| 
 | |
|   // If this class member has an explicit visibility attribute, the only
 | |
|   // thing that can change its visibility is the template arguments, so
 | |
|   // only look for them when processing the class.
 | |
|   LVComputationKind classComputation = computation;
 | |
|   if (LV.isVisibilityExplicit())
 | |
|     classComputation = withExplicitVisibilityAlready(computation);
 | |
| 
 | |
|   LinkageInfo classLV =
 | |
|     getLVForDecl(cast<RecordDecl>(D->getDeclContext()), classComputation);
 | |
|   // If the class already has unique-external linkage, we can't improve.
 | |
|   if (classLV.getLinkage() == UniqueExternalLinkage)
 | |
|     return LinkageInfo::uniqueExternal();
 | |
| 
 | |
|   if (!isExternallyVisible(classLV.getLinkage()))
 | |
|     return LinkageInfo::none();
 | |
| 
 | |
| 
 | |
|   // Otherwise, don't merge in classLV yet, because in certain cases
 | |
|   // we need to completely ignore the visibility from it.
 | |
| 
 | |
|   // Specifically, if this decl exists and has an explicit attribute.
 | |
|   const NamedDecl *explicitSpecSuppressor = 0;
 | |
| 
 | |
|   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
 | |
|     // If the type of the function uses a type with unique-external
 | |
|     // linkage, it's not legally usable from outside this translation unit.
 | |
|     // But only look at the type-as-written. If this function has an auto-deduced
 | |
|     // return type, we can't compute the linkage of that type because it could
 | |
|     // require looking at the linkage of this function, and we don't need this
 | |
|     // for correctness because the type is not part of the function's
 | |
|     // signature.
 | |
|     // FIXME: This is a hack. We should be able to solve this circularity and the
 | |
|     // one in getLVForNamespaceScopeDecl for Functions some other way.
 | |
|     {
 | |
|       QualType TypeAsWritten = MD->getType();
 | |
|       if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
 | |
|         TypeAsWritten = TSI->getType();
 | |
|       if (TypeAsWritten->getLinkage() == UniqueExternalLinkage)
 | |
|         return LinkageInfo::uniqueExternal();
 | |
|     }
 | |
|     // If this is a method template specialization, use the linkage for
 | |
|     // the template parameters and arguments.
 | |
|     if (FunctionTemplateSpecializationInfo *spec
 | |
|            = MD->getTemplateSpecializationInfo()) {
 | |
|       mergeTemplateLV(LV, MD, spec, computation);
 | |
|       if (spec->isExplicitSpecialization()) {
 | |
|         explicitSpecSuppressor = MD;
 | |
|       } else if (isExplicitMemberSpecialization(spec->getTemplate())) {
 | |
|         explicitSpecSuppressor = spec->getTemplate()->getTemplatedDecl();
 | |
|       }
 | |
|     } else if (isExplicitMemberSpecialization(MD)) {
 | |
|       explicitSpecSuppressor = MD;
 | |
|     }
 | |
| 
 | |
|   } else if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
 | |
|     if (const ClassTemplateSpecializationDecl *spec
 | |
|         = dyn_cast<ClassTemplateSpecializationDecl>(RD)) {
 | |
|       mergeTemplateLV(LV, spec, computation);
 | |
|       if (spec->isExplicitSpecialization()) {
 | |
|         explicitSpecSuppressor = spec;
 | |
|       } else {
 | |
|         const ClassTemplateDecl *temp = spec->getSpecializedTemplate();
 | |
|         if (isExplicitMemberSpecialization(temp)) {
 | |
|           explicitSpecSuppressor = temp->getTemplatedDecl();
 | |
|         }
 | |
|       }
 | |
|     } else if (isExplicitMemberSpecialization(RD)) {
 | |
|       explicitSpecSuppressor = RD;
 | |
|     }
 | |
| 
 | |
|   // Static data members.
 | |
|   } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
 | |
|     // Modify the variable's linkage by its type, but ignore the
 | |
|     // type's visibility unless it's a definition.
 | |
|     LinkageInfo typeLV = getLVForType(*VD->getType(), computation);
 | |
|     if (!LV.isVisibilityExplicit() && !classLV.isVisibilityExplicit())
 | |
|       LV.mergeVisibility(typeLV);
 | |
|     LV.mergeExternalVisibility(typeLV);
 | |
| 
 | |
|     if (isExplicitMemberSpecialization(VD)) {
 | |
|       explicitSpecSuppressor = VD;
 | |
|     }
 | |
| 
 | |
|   // Template members.
 | |
|   } else if (const TemplateDecl *temp = dyn_cast<TemplateDecl>(D)) {
 | |
|     bool considerVisibility =
 | |
|       (!LV.isVisibilityExplicit() &&
 | |
|        !classLV.isVisibilityExplicit() &&
 | |
|        !hasExplicitVisibilityAlready(computation));
 | |
|     LinkageInfo tempLV =
 | |
|       getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
 | |
|     LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
 | |
| 
 | |
|     if (const RedeclarableTemplateDecl *redeclTemp =
 | |
|           dyn_cast<RedeclarableTemplateDecl>(temp)) {
 | |
|       if (isExplicitMemberSpecialization(redeclTemp)) {
 | |
|         explicitSpecSuppressor = temp->getTemplatedDecl();
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // We should never be looking for an attribute directly on a template.
 | |
|   assert(!explicitSpecSuppressor || !isa<TemplateDecl>(explicitSpecSuppressor));
 | |
| 
 | |
|   // If this member is an explicit member specialization, and it has
 | |
|   // an explicit attribute, ignore visibility from the parent.
 | |
|   bool considerClassVisibility = true;
 | |
|   if (explicitSpecSuppressor &&
 | |
|       // optimization: hasDVA() is true only with explicit visibility.
 | |
|       LV.isVisibilityExplicit() &&
 | |
|       classLV.getVisibility() != DefaultVisibility &&
 | |
|       hasDirectVisibilityAttribute(explicitSpecSuppressor, computation)) {
 | |
|     considerClassVisibility = false;
 | |
|   }
 | |
| 
 | |
|   // Finally, merge in information from the class.
 | |
|   LV.mergeMaybeWithVisibility(classLV, considerClassVisibility);
 | |
|   return LV;
 | |
| }
 | |
| 
 | |
| void NamedDecl::anchor() { }
 | |
| 
 | |
| static LinkageInfo computeLVForDecl(const NamedDecl *D,
 | |
|                                     LVComputationKind computation);
 | |
| 
 | |
| bool NamedDecl::isLinkageValid() const {
 | |
|   if (!hasCachedLinkage())
 | |
|     return true;
 | |
| 
 | |
|   return computeLVForDecl(this, LVForLinkageOnly).getLinkage() ==
 | |
|          getCachedLinkage();
 | |
| }
 | |
| 
 | |
| Linkage NamedDecl::getLinkageInternal() const {
 | |
|   // We don't care about visibility here, so ask for the cheapest
 | |
|   // possible visibility analysis.
 | |
|   return getLVForDecl(this, LVForLinkageOnly).getLinkage();
 | |
| }
 | |
| 
 | |
| LinkageInfo NamedDecl::getLinkageAndVisibility() const {
 | |
|   LVComputationKind computation =
 | |
|     (usesTypeVisibility(this) ? LVForType : LVForValue);
 | |
|   return getLVForDecl(this, computation);
 | |
| }
 | |
| 
 | |
| Optional<Visibility>
 | |
| NamedDecl::getExplicitVisibility(ExplicitVisibilityKind kind) const {
 | |
|   // Check the declaration itself first.
 | |
|   if (Optional<Visibility> V = getVisibilityOf(this, kind))
 | |
|     return V;
 | |
| 
 | |
|   // If this is a member class of a specialization of a class template
 | |
|   // and the corresponding decl has explicit visibility, use that.
 | |
|   if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(this)) {
 | |
|     CXXRecordDecl *InstantiatedFrom = RD->getInstantiatedFromMemberClass();
 | |
|     if (InstantiatedFrom)
 | |
|       return getVisibilityOf(InstantiatedFrom, kind);
 | |
|   }
 | |
| 
 | |
|   // If there wasn't explicit visibility there, and this is a
 | |
|   // specialization of a class template, check for visibility
 | |
|   // on the pattern.
 | |
|   if (const ClassTemplateSpecializationDecl *spec
 | |
|         = dyn_cast<ClassTemplateSpecializationDecl>(this))
 | |
|     return getVisibilityOf(spec->getSpecializedTemplate()->getTemplatedDecl(),
 | |
|                            kind);
 | |
| 
 | |
|   // Use the most recent declaration.
 | |
|   const NamedDecl *MostRecent = getMostRecentDecl();
 | |
|   if (MostRecent != this)
 | |
|     return MostRecent->getExplicitVisibility(kind);
 | |
| 
 | |
|   if (const VarDecl *Var = dyn_cast<VarDecl>(this)) {
 | |
|     if (Var->isStaticDataMember()) {
 | |
|       VarDecl *InstantiatedFrom = Var->getInstantiatedFromStaticDataMember();
 | |
|       if (InstantiatedFrom)
 | |
|         return getVisibilityOf(InstantiatedFrom, kind);
 | |
|     }
 | |
| 
 | |
|     return None;
 | |
|   }
 | |
|   // Also handle function template specializations.
 | |
|   if (const FunctionDecl *fn = dyn_cast<FunctionDecl>(this)) {
 | |
|     // If the function is a specialization of a template with an
 | |
|     // explicit visibility attribute, use that.
 | |
|     if (FunctionTemplateSpecializationInfo *templateInfo
 | |
|           = fn->getTemplateSpecializationInfo())
 | |
|       return getVisibilityOf(templateInfo->getTemplate()->getTemplatedDecl(),
 | |
|                              kind);
 | |
| 
 | |
|     // If the function is a member of a specialization of a class template
 | |
|     // and the corresponding decl has explicit visibility, use that.
 | |
|     FunctionDecl *InstantiatedFrom = fn->getInstantiatedFromMemberFunction();
 | |
|     if (InstantiatedFrom)
 | |
|       return getVisibilityOf(InstantiatedFrom, kind);
 | |
| 
 | |
|     return None;
 | |
|   }
 | |
| 
 | |
|   // The visibility of a template is stored in the templated decl.
 | |
|   if (const TemplateDecl *TD = dyn_cast<TemplateDecl>(this))
 | |
|     return getVisibilityOf(TD->getTemplatedDecl(), kind);
 | |
| 
 | |
|   return None;
 | |
| }
 | |
| 
 | |
| static LinkageInfo getLVForClosure(const DeclContext *DC, Decl *ContextDecl,
 | |
|                                    LVComputationKind computation) {
 | |
|   // This lambda has its linkage/visibility determined by its owner.
 | |
|   if (ContextDecl) {
 | |
|     if (isa<ParmVarDecl>(ContextDecl))
 | |
|       DC = ContextDecl->getDeclContext()->getRedeclContext();
 | |
|     else
 | |
|       return getLVForDecl(cast<NamedDecl>(ContextDecl), computation);
 | |
|   }
 | |
| 
 | |
|   if (const NamedDecl *ND = dyn_cast<NamedDecl>(DC))
 | |
|     return getLVForDecl(ND, computation);
 | |
| 
 | |
|   return LinkageInfo::external();
 | |
| }
 | |
| 
 | |
| static LinkageInfo getLVForLocalDecl(const NamedDecl *D,
 | |
|                                      LVComputationKind computation) {
 | |
|   if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
 | |
|     if (Function->isInAnonymousNamespace() &&
 | |
|         !Function->isInExternCContext())
 | |
|       return LinkageInfo::uniqueExternal();
 | |
| 
 | |
|     // This is a "void f();" which got merged with a file static.
 | |
|     if (Function->getCanonicalDecl()->getStorageClass() == SC_Static)
 | |
|       return LinkageInfo::internal();
 | |
| 
 | |
|     LinkageInfo LV;
 | |
|     if (!hasExplicitVisibilityAlready(computation)) {
 | |
|       if (Optional<Visibility> Vis =
 | |
|               getExplicitVisibility(Function, computation))
 | |
|         LV.mergeVisibility(*Vis, true);
 | |
|     }
 | |
| 
 | |
|     // Note that Sema::MergeCompatibleFunctionDecls already takes care of
 | |
|     // merging storage classes and visibility attributes, so we don't have to
 | |
|     // look at previous decls in here.
 | |
| 
 | |
|     return LV;
 | |
|   }
 | |
| 
 | |
|   if (const VarDecl *Var = dyn_cast<VarDecl>(D)) {
 | |
|     if (Var->hasExternalStorage()) {
 | |
|       if (Var->isInAnonymousNamespace() && !Var->isInExternCContext())
 | |
|         return LinkageInfo::uniqueExternal();
 | |
| 
 | |
|       LinkageInfo LV;
 | |
|       if (Var->getStorageClass() == SC_PrivateExtern)
 | |
|         LV.mergeVisibility(HiddenVisibility, true);
 | |
|       else if (!hasExplicitVisibilityAlready(computation)) {
 | |
|         if (Optional<Visibility> Vis = getExplicitVisibility(Var, computation))
 | |
|           LV.mergeVisibility(*Vis, true);
 | |
|       }
 | |
| 
 | |
|       if (const VarDecl *Prev = Var->getPreviousDecl()) {
 | |
|         LinkageInfo PrevLV = getLVForDecl(Prev, computation);
 | |
|         if (PrevLV.getLinkage())
 | |
|           LV.setLinkage(PrevLV.getLinkage());
 | |
|         LV.mergeVisibility(PrevLV);
 | |
|       }
 | |
| 
 | |
|       return LV;
 | |
|     }
 | |
| 
 | |
|     if (!Var->isStaticLocal())
 | |
|       return LinkageInfo::none();
 | |
|   }
 | |
| 
 | |
|   ASTContext &Context = D->getASTContext();
 | |
|   if (!Context.getLangOpts().CPlusPlus)
 | |
|     return LinkageInfo::none();
 | |
| 
 | |
|   const Decl *OuterD = getOutermostFuncOrBlockContext(D);
 | |
|   if (!OuterD)
 | |
|     return LinkageInfo::none();
 | |
| 
 | |
|   LinkageInfo LV;
 | |
|   if (const BlockDecl *BD = dyn_cast<BlockDecl>(OuterD)) {
 | |
|     if (!BD->getBlockManglingNumber())
 | |
|       return LinkageInfo::none();
 | |
| 
 | |
|     LV = getLVForClosure(BD->getDeclContext()->getRedeclContext(),
 | |
|                          BD->getBlockManglingContextDecl(), computation);
 | |
|   } else {
 | |
|     const FunctionDecl *FD = cast<FunctionDecl>(OuterD);
 | |
|     if (!FD->isInlined() &&
 | |
|         FD->getTemplateSpecializationKind() == TSK_Undeclared)
 | |
|       return LinkageInfo::none();
 | |
| 
 | |
|     LV = getLVForDecl(FD, computation);
 | |
|   }
 | |
|   if (!isExternallyVisible(LV.getLinkage()))
 | |
|     return LinkageInfo::none();
 | |
|   return LinkageInfo(VisibleNoLinkage, LV.getVisibility(),
 | |
|                      LV.isVisibilityExplicit());
 | |
| }
 | |
| 
 | |
| static inline const CXXRecordDecl*
 | |
| getOutermostEnclosingLambda(const CXXRecordDecl *Record) {
 | |
|   const CXXRecordDecl *Ret = Record;
 | |
|   while (Record && Record->isLambda()) {
 | |
|     Ret = Record;
 | |
|     if (!Record->getParent()) break;
 | |
|     // Get the Containing Class of this Lambda Class
 | |
|     Record = dyn_cast_or_null<CXXRecordDecl>(
 | |
|       Record->getParent()->getParent());
 | |
|   }
 | |
|   return Ret;
 | |
| }
 | |
| 
 | |
| static LinkageInfo computeLVForDecl(const NamedDecl *D,
 | |
|                                     LVComputationKind computation) {
 | |
|   // Objective-C: treat all Objective-C declarations as having external
 | |
|   // linkage.
 | |
|   switch (D->getKind()) {
 | |
|     default:
 | |
|       break;
 | |
|     case Decl::ParmVar:
 | |
|       return LinkageInfo::none();
 | |
|     case Decl::TemplateTemplateParm: // count these as external
 | |
|     case Decl::NonTypeTemplateParm:
 | |
|     case Decl::ObjCAtDefsField:
 | |
|     case Decl::ObjCCategory:
 | |
|     case Decl::ObjCCategoryImpl:
 | |
|     case Decl::ObjCCompatibleAlias:
 | |
|     case Decl::ObjCImplementation:
 | |
|     case Decl::ObjCMethod:
 | |
|     case Decl::ObjCProperty:
 | |
|     case Decl::ObjCPropertyImpl:
 | |
|     case Decl::ObjCProtocol:
 | |
|       return LinkageInfo::external();
 | |
|       
 | |
|     case Decl::CXXRecord: {
 | |
|       const CXXRecordDecl *Record = cast<CXXRecordDecl>(D);
 | |
|       if (Record->isLambda()) {
 | |
|         if (!Record->getLambdaManglingNumber()) {
 | |
|           // This lambda has no mangling number, so it's internal.
 | |
|           return LinkageInfo::internal();
 | |
|         }
 | |
| 
 | |
|         // This lambda has its linkage/visibility determined:
 | |
|         //  - either by the outermost lambda if that lambda has no mangling 
 | |
|         //    number. 
 | |
|         //  - or by the parent of the outer most lambda
 | |
|         // This prevents infinite recursion in settings such as nested lambdas 
 | |
|         // used in NSDMI's, for e.g. 
 | |
|         //  struct L {
 | |
|         //    int t{};
 | |
|         //    int t2 = ([](int a) { return [](int b) { return b; };})(t)(t);    
 | |
|         //  };
 | |
|         const CXXRecordDecl *OuterMostLambda = 
 | |
|             getOutermostEnclosingLambda(Record);
 | |
|         if (!OuterMostLambda->getLambdaManglingNumber())
 | |
|           return LinkageInfo::internal();
 | |
|         
 | |
|         return getLVForClosure(
 | |
|                   OuterMostLambda->getDeclContext()->getRedeclContext(),
 | |
|                   OuterMostLambda->getLambdaContextDecl(), computation);
 | |
|       }
 | |
|       
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Handle linkage for namespace-scope names.
 | |
|   if (D->getDeclContext()->getRedeclContext()->isFileContext())
 | |
|     return getLVForNamespaceScopeDecl(D, computation);
 | |
|   
 | |
|   // C++ [basic.link]p5:
 | |
|   //   In addition, a member function, static data member, a named
 | |
|   //   class or enumeration of class scope, or an unnamed class or
 | |
|   //   enumeration defined in a class-scope typedef declaration such
 | |
|   //   that the class or enumeration has the typedef name for linkage
 | |
|   //   purposes (7.1.3), has external linkage if the name of the class
 | |
|   //   has external linkage.
 | |
|   if (D->getDeclContext()->isRecord())
 | |
|     return getLVForClassMember(D, computation);
 | |
| 
 | |
|   // C++ [basic.link]p6:
 | |
|   //   The name of a function declared in block scope and the name of
 | |
|   //   an object declared by a block scope extern declaration have
 | |
|   //   linkage. If there is a visible declaration of an entity with
 | |
|   //   linkage having the same name and type, ignoring entities
 | |
|   //   declared outside the innermost enclosing namespace scope, the
 | |
|   //   block scope declaration declares that same entity and receives
 | |
|   //   the linkage of the previous declaration. If there is more than
 | |
|   //   one such matching entity, the program is ill-formed. Otherwise,
 | |
|   //   if no matching entity is found, the block scope entity receives
 | |
|   //   external linkage.
 | |
|   if (D->getDeclContext()->isFunctionOrMethod())
 | |
|     return getLVForLocalDecl(D, computation);
 | |
| 
 | |
|   // C++ [basic.link]p6:
 | |
|   //   Names not covered by these rules have no linkage.
 | |
|   return LinkageInfo::none();
 | |
| }
 | |
| 
 | |
| namespace clang {
 | |
| class LinkageComputer {
 | |
| public:
 | |
|   static LinkageInfo getLVForDecl(const NamedDecl *D,
 | |
|                                   LVComputationKind computation) {
 | |
|     if (computation == LVForLinkageOnly && D->hasCachedLinkage())
 | |
|       return LinkageInfo(D->getCachedLinkage(), DefaultVisibility, false);
 | |
| 
 | |
|     LinkageInfo LV = computeLVForDecl(D, computation);
 | |
|     if (D->hasCachedLinkage())
 | |
|       assert(D->getCachedLinkage() == LV.getLinkage());
 | |
| 
 | |
|     D->setCachedLinkage(LV.getLinkage());
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|     // In C (because of gnu inline) and in c++ with microsoft extensions an
 | |
|     // static can follow an extern, so we can have two decls with different
 | |
|     // linkages.
 | |
|     const LangOptions &Opts = D->getASTContext().getLangOpts();
 | |
|     if (!Opts.CPlusPlus || Opts.MicrosoftExt)
 | |
|       return LV;
 | |
| 
 | |
|     // We have just computed the linkage for this decl. By induction we know
 | |
|     // that all other computed linkages match, check that the one we just
 | |
|     // computed
 | |
|     // also does.
 | |
|     NamedDecl *Old = NULL;
 | |
|     for (NamedDecl::redecl_iterator I = D->redecls_begin(),
 | |
|                                     E = D->redecls_end();
 | |
|          I != E; ++I) {
 | |
|       NamedDecl *T = cast<NamedDecl>(*I);
 | |
|       if (T == D)
 | |
|         continue;
 | |
|       if (T->hasCachedLinkage()) {
 | |
|         Old = T;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     assert(!Old || Old->getCachedLinkage() == D->getCachedLinkage());
 | |
| #endif
 | |
| 
 | |
|     return LV;
 | |
|   }
 | |
| };
 | |
| }
 | |
| 
 | |
| static LinkageInfo getLVForDecl(const NamedDecl *D,
 | |
|                                 LVComputationKind computation) {
 | |
|   return clang::LinkageComputer::getLVForDecl(D, computation);
 | |
| }
 | |
| 
 | |
| std::string NamedDecl::getQualifiedNameAsString() const {
 | |
|   return getQualifiedNameAsString(getASTContext().getPrintingPolicy());
 | |
| }
 | |
| 
 | |
| std::string NamedDecl::getQualifiedNameAsString(const PrintingPolicy &P) const {
 | |
|   std::string QualName;
 | |
|   llvm::raw_string_ostream OS(QualName);
 | |
|   printQualifiedName(OS, P);
 | |
|   return OS.str();
 | |
| }
 | |
| 
 | |
| void NamedDecl::printQualifiedName(raw_ostream &OS) const {
 | |
|   printQualifiedName(OS, getASTContext().getPrintingPolicy());
 | |
| }
 | |
| 
 | |
| void NamedDecl::printQualifiedName(raw_ostream &OS,
 | |
|                                    const PrintingPolicy &P) const {
 | |
|   const DeclContext *Ctx = getDeclContext();
 | |
| 
 | |
|   if (Ctx->isFunctionOrMethod()) {
 | |
|     printName(OS);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   typedef SmallVector<const DeclContext *, 8> ContextsTy;
 | |
|   ContextsTy Contexts;
 | |
| 
 | |
|   // Collect contexts.
 | |
|   while (Ctx && isa<NamedDecl>(Ctx)) {
 | |
|     Contexts.push_back(Ctx);
 | |
|     Ctx = Ctx->getParent();
 | |
|   }
 | |
| 
 | |
|   for (ContextsTy::reverse_iterator I = Contexts.rbegin(), E = Contexts.rend();
 | |
|        I != E; ++I) {
 | |
|     if (const ClassTemplateSpecializationDecl *Spec
 | |
|           = dyn_cast<ClassTemplateSpecializationDecl>(*I)) {
 | |
|       OS << Spec->getName();
 | |
|       const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
 | |
|       TemplateSpecializationType::PrintTemplateArgumentList(OS,
 | |
|                                                             TemplateArgs.data(),
 | |
|                                                             TemplateArgs.size(),
 | |
|                                                             P);
 | |
|     } else if (const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(*I)) {
 | |
|       if (ND->isAnonymousNamespace())
 | |
|         OS << "<anonymous namespace>";
 | |
|       else
 | |
|         OS << *ND;
 | |
|     } else if (const RecordDecl *RD = dyn_cast<RecordDecl>(*I)) {
 | |
|       if (!RD->getIdentifier())
 | |
|         OS << "<anonymous " << RD->getKindName() << '>';
 | |
|       else
 | |
|         OS << *RD;
 | |
|     } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) {
 | |
|       const FunctionProtoType *FT = 0;
 | |
|       if (FD->hasWrittenPrototype())
 | |
|         FT = dyn_cast<FunctionProtoType>(FD->getType()->castAs<FunctionType>());
 | |
| 
 | |
|       OS << *FD << '(';
 | |
|       if (FT) {
 | |
|         unsigned NumParams = FD->getNumParams();
 | |
|         for (unsigned i = 0; i < NumParams; ++i) {
 | |
|           if (i)
 | |
|             OS << ", ";
 | |
|           OS << FD->getParamDecl(i)->getType().stream(P);
 | |
|         }
 | |
| 
 | |
|         if (FT->isVariadic()) {
 | |
|           if (NumParams > 0)
 | |
|             OS << ", ";
 | |
|           OS << "...";
 | |
|         }
 | |
|       }
 | |
|       OS << ')';
 | |
|     } else {
 | |
|       OS << *cast<NamedDecl>(*I);
 | |
|     }
 | |
|     OS << "::";
 | |
|   }
 | |
| 
 | |
|   if (getDeclName())
 | |
|     OS << *this;
 | |
|   else
 | |
|     OS << "<anonymous>";
 | |
| }
 | |
| 
 | |
| void NamedDecl::getNameForDiagnostic(raw_ostream &OS,
 | |
|                                      const PrintingPolicy &Policy,
 | |
|                                      bool Qualified) const {
 | |
|   if (Qualified)
 | |
|     printQualifiedName(OS, Policy);
 | |
|   else
 | |
|     printName(OS);
 | |
| }
 | |
| 
 | |
| bool NamedDecl::declarationReplaces(NamedDecl *OldD) const {
 | |
|   assert(getDeclName() == OldD->getDeclName() && "Declaration name mismatch");
 | |
| 
 | |
|   // UsingDirectiveDecl's are not really NamedDecl's, and all have same name.
 | |
|   // We want to keep it, unless it nominates same namespace.
 | |
|   if (getKind() == Decl::UsingDirective) {
 | |
|     return cast<UsingDirectiveDecl>(this)->getNominatedNamespace()
 | |
|              ->getOriginalNamespace() ==
 | |
|            cast<UsingDirectiveDecl>(OldD)->getNominatedNamespace()
 | |
|              ->getOriginalNamespace();
 | |
|   }
 | |
| 
 | |
|   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(this))
 | |
|     // For function declarations, we keep track of redeclarations.
 | |
|     return FD->getPreviousDecl() == OldD;
 | |
| 
 | |
|   // For function templates, the underlying function declarations are linked.
 | |
|   if (const FunctionTemplateDecl *FunctionTemplate
 | |
|         = dyn_cast<FunctionTemplateDecl>(this))
 | |
|     if (const FunctionTemplateDecl *OldFunctionTemplate
 | |
|           = dyn_cast<FunctionTemplateDecl>(OldD))
 | |
|       return FunctionTemplate->getTemplatedDecl()
 | |
|                ->declarationReplaces(OldFunctionTemplate->getTemplatedDecl());
 | |
| 
 | |
|   // For method declarations, we keep track of redeclarations.
 | |
|   if (isa<ObjCMethodDecl>(this))
 | |
|     return false;
 | |
| 
 | |
|   if (isa<ObjCInterfaceDecl>(this) && isa<ObjCCompatibleAliasDecl>(OldD))
 | |
|     return true;
 | |
| 
 | |
|   if (isa<UsingShadowDecl>(this) && isa<UsingShadowDecl>(OldD))
 | |
|     return cast<UsingShadowDecl>(this)->getTargetDecl() ==
 | |
|            cast<UsingShadowDecl>(OldD)->getTargetDecl();
 | |
| 
 | |
|   if (isa<UsingDecl>(this) && isa<UsingDecl>(OldD)) {
 | |
|     ASTContext &Context = getASTContext();
 | |
|     return Context.getCanonicalNestedNameSpecifier(
 | |
|                                      cast<UsingDecl>(this)->getQualifier()) ==
 | |
|            Context.getCanonicalNestedNameSpecifier(
 | |
|                                         cast<UsingDecl>(OldD)->getQualifier());
 | |
|   }
 | |
| 
 | |
|   if (isa<UnresolvedUsingValueDecl>(this) &&
 | |
|       isa<UnresolvedUsingValueDecl>(OldD)) {
 | |
|     ASTContext &Context = getASTContext();
 | |
|     return Context.getCanonicalNestedNameSpecifier(
 | |
|                       cast<UnresolvedUsingValueDecl>(this)->getQualifier()) ==
 | |
|            Context.getCanonicalNestedNameSpecifier(
 | |
|                         cast<UnresolvedUsingValueDecl>(OldD)->getQualifier());
 | |
|   }
 | |
| 
 | |
|   // A typedef of an Objective-C class type can replace an Objective-C class
 | |
|   // declaration or definition, and vice versa.
 | |
|   if ((isa<TypedefNameDecl>(this) && isa<ObjCInterfaceDecl>(OldD)) ||
 | |
|       (isa<ObjCInterfaceDecl>(this) && isa<TypedefNameDecl>(OldD)))
 | |
|     return true;
 | |
|   
 | |
|   // For non-function declarations, if the declarations are of the
 | |
|   // same kind then this must be a redeclaration, or semantic analysis
 | |
|   // would not have given us the new declaration.
 | |
|   return this->getKind() == OldD->getKind();
 | |
| }
 | |
| 
 | |
| bool NamedDecl::hasLinkage() const {
 | |
|   return getFormalLinkage() != NoLinkage;
 | |
| }
 | |
| 
 | |
| NamedDecl *NamedDecl::getUnderlyingDeclImpl() {
 | |
|   NamedDecl *ND = this;
 | |
|   while (UsingShadowDecl *UD = dyn_cast<UsingShadowDecl>(ND))
 | |
|     ND = UD->getTargetDecl();
 | |
| 
 | |
|   if (ObjCCompatibleAliasDecl *AD = dyn_cast<ObjCCompatibleAliasDecl>(ND))
 | |
|     return AD->getClassInterface();
 | |
| 
 | |
|   return ND;
 | |
| }
 | |
| 
 | |
| bool NamedDecl::isCXXInstanceMember() const {
 | |
|   if (!isCXXClassMember())
 | |
|     return false;
 | |
|   
 | |
|   const NamedDecl *D = this;
 | |
|   if (isa<UsingShadowDecl>(D))
 | |
|     D = cast<UsingShadowDecl>(D)->getTargetDecl();
 | |
| 
 | |
|   if (isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D) || isa<MSPropertyDecl>(D))
 | |
|     return true;
 | |
|   if (isa<CXXMethodDecl>(D))
 | |
|     return cast<CXXMethodDecl>(D)->isInstance();
 | |
|   if (isa<FunctionTemplateDecl>(D))
 | |
|     return cast<CXXMethodDecl>(cast<FunctionTemplateDecl>(D)
 | |
|                                  ->getTemplatedDecl())->isInstance();
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // DeclaratorDecl Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| template <typename DeclT>
 | |
| static SourceLocation getTemplateOrInnerLocStart(const DeclT *decl) {
 | |
|   if (decl->getNumTemplateParameterLists() > 0)
 | |
|     return decl->getTemplateParameterList(0)->getTemplateLoc();
 | |
|   else
 | |
|     return decl->getInnerLocStart();
 | |
| }
 | |
| 
 | |
| SourceLocation DeclaratorDecl::getTypeSpecStartLoc() const {
 | |
|   TypeSourceInfo *TSI = getTypeSourceInfo();
 | |
|   if (TSI) return TSI->getTypeLoc().getBeginLoc();
 | |
|   return SourceLocation();
 | |
| }
 | |
| 
 | |
| void DeclaratorDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) {
 | |
|   if (QualifierLoc) {
 | |
|     // Make sure the extended decl info is allocated.
 | |
|     if (!hasExtInfo()) {
 | |
|       // Save (non-extended) type source info pointer.
 | |
|       TypeSourceInfo *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
 | |
|       // Allocate external info struct.
 | |
|       DeclInfo = new (getASTContext()) ExtInfo;
 | |
|       // Restore savedTInfo into (extended) decl info.
 | |
|       getExtInfo()->TInfo = savedTInfo;
 | |
|     }
 | |
|     // Set qualifier info.
 | |
|     getExtInfo()->QualifierLoc = QualifierLoc;
 | |
|   } else {
 | |
|     // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
 | |
|     if (hasExtInfo()) {
 | |
|       if (getExtInfo()->NumTemplParamLists == 0) {
 | |
|         // Save type source info pointer.
 | |
|         TypeSourceInfo *savedTInfo = getExtInfo()->TInfo;
 | |
|         // Deallocate the extended decl info.
 | |
|         getASTContext().Deallocate(getExtInfo());
 | |
|         // Restore savedTInfo into (non-extended) decl info.
 | |
|         DeclInfo = savedTInfo;
 | |
|       }
 | |
|       else
 | |
|         getExtInfo()->QualifierLoc = QualifierLoc;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void
 | |
| DeclaratorDecl::setTemplateParameterListsInfo(ASTContext &Context,
 | |
|                                               unsigned NumTPLists,
 | |
|                                               TemplateParameterList **TPLists) {
 | |
|   assert(NumTPLists > 0);
 | |
|   // Make sure the extended decl info is allocated.
 | |
|   if (!hasExtInfo()) {
 | |
|     // Save (non-extended) type source info pointer.
 | |
|     TypeSourceInfo *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
 | |
|     // Allocate external info struct.
 | |
|     DeclInfo = new (getASTContext()) ExtInfo;
 | |
|     // Restore savedTInfo into (extended) decl info.
 | |
|     getExtInfo()->TInfo = savedTInfo;
 | |
|   }
 | |
|   // Set the template parameter lists info.
 | |
|   getExtInfo()->setTemplateParameterListsInfo(Context, NumTPLists, TPLists);
 | |
| }
 | |
| 
 | |
| SourceLocation DeclaratorDecl::getOuterLocStart() const {
 | |
|   return getTemplateOrInnerLocStart(this);
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| // Helper function: returns true if QT is or contains a type
 | |
| // having a postfix component.
 | |
| bool typeIsPostfix(clang::QualType QT) {
 | |
|   while (true) {
 | |
|     const Type* T = QT.getTypePtr();
 | |
|     switch (T->getTypeClass()) {
 | |
|     default:
 | |
|       return false;
 | |
|     case Type::Pointer:
 | |
|       QT = cast<PointerType>(T)->getPointeeType();
 | |
|       break;
 | |
|     case Type::BlockPointer:
 | |
|       QT = cast<BlockPointerType>(T)->getPointeeType();
 | |
|       break;
 | |
|     case Type::MemberPointer:
 | |
|       QT = cast<MemberPointerType>(T)->getPointeeType();
 | |
|       break;
 | |
|     case Type::LValueReference:
 | |
|     case Type::RValueReference:
 | |
|       QT = cast<ReferenceType>(T)->getPointeeType();
 | |
|       break;
 | |
|     case Type::PackExpansion:
 | |
|       QT = cast<PackExpansionType>(T)->getPattern();
 | |
|       break;
 | |
|     case Type::Paren:
 | |
|     case Type::ConstantArray:
 | |
|     case Type::DependentSizedArray:
 | |
|     case Type::IncompleteArray:
 | |
|     case Type::VariableArray:
 | |
|     case Type::FunctionProto:
 | |
|     case Type::FunctionNoProto:
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| } // namespace
 | |
| 
 | |
| SourceRange DeclaratorDecl::getSourceRange() const {
 | |
|   SourceLocation RangeEnd = getLocation();
 | |
|   if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
 | |
|     if (typeIsPostfix(TInfo->getType()))
 | |
|       RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
 | |
|   }
 | |
|   return SourceRange(getOuterLocStart(), RangeEnd);
 | |
| }
 | |
| 
 | |
| void
 | |
| QualifierInfo::setTemplateParameterListsInfo(ASTContext &Context,
 | |
|                                              unsigned NumTPLists,
 | |
|                                              TemplateParameterList **TPLists) {
 | |
|   assert((NumTPLists == 0 || TPLists != 0) &&
 | |
|          "Empty array of template parameters with positive size!");
 | |
| 
 | |
|   // Free previous template parameters (if any).
 | |
|   if (NumTemplParamLists > 0) {
 | |
|     Context.Deallocate(TemplParamLists);
 | |
|     TemplParamLists = 0;
 | |
|     NumTemplParamLists = 0;
 | |
|   }
 | |
|   // Set info on matched template parameter lists (if any).
 | |
|   if (NumTPLists > 0) {
 | |
|     TemplParamLists = new (Context) TemplateParameterList*[NumTPLists];
 | |
|     NumTemplParamLists = NumTPLists;
 | |
|     for (unsigned i = NumTPLists; i-- > 0; )
 | |
|       TemplParamLists[i] = TPLists[i];
 | |
|   }
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // VarDecl Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| const char *VarDecl::getStorageClassSpecifierString(StorageClass SC) {
 | |
|   switch (SC) {
 | |
|   case SC_None:                 break;
 | |
|   case SC_Auto:                 return "auto";
 | |
|   case SC_Extern:               return "extern";
 | |
|   case SC_OpenCLWorkGroupLocal: return "<<work-group-local>>";
 | |
|   case SC_PrivateExtern:        return "__private_extern__";
 | |
|   case SC_Register:             return "register";
 | |
|   case SC_Static:               return "static";
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("Invalid storage class");
 | |
| }
 | |
| 
 | |
| VarDecl::VarDecl(Kind DK, DeclContext *DC, SourceLocation StartLoc,
 | |
|                  SourceLocation IdLoc, IdentifierInfo *Id, QualType T,
 | |
|                  TypeSourceInfo *TInfo, StorageClass SC)
 | |
|     : DeclaratorDecl(DK, DC, IdLoc, Id, T, TInfo, StartLoc), Init() {
 | |
|   assert(sizeof(VarDeclBitfields) <= sizeof(unsigned));
 | |
|   assert(sizeof(ParmVarDeclBitfields) <= sizeof(unsigned));
 | |
|   AllBits = 0;
 | |
|   VarDeclBits.SClass = SC;
 | |
|   // Everything else is implicitly initialized to false.
 | |
| }
 | |
| 
 | |
| VarDecl *VarDecl::Create(ASTContext &C, DeclContext *DC,
 | |
|                          SourceLocation StartL, SourceLocation IdL,
 | |
|                          IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
 | |
|                          StorageClass S) {
 | |
|   return new (C) VarDecl(Var, DC, StartL, IdL, Id, T, TInfo, S);
 | |
| }
 | |
| 
 | |
| VarDecl *VarDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
 | |
|   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(VarDecl));
 | |
|   return new (Mem) VarDecl(Var, 0, SourceLocation(), SourceLocation(), 0, 
 | |
|                            QualType(), 0, SC_None);
 | |
| }
 | |
| 
 | |
| void VarDecl::setStorageClass(StorageClass SC) {
 | |
|   assert(isLegalForVariable(SC));
 | |
|   VarDeclBits.SClass = SC;
 | |
| }
 | |
| 
 | |
| SourceRange VarDecl::getSourceRange() const {
 | |
|   if (const Expr *Init = getInit()) {
 | |
|     SourceLocation InitEnd = Init->getLocEnd();
 | |
|     // If Init is implicit, ignore its source range and fallback on 
 | |
|     // DeclaratorDecl::getSourceRange() to handle postfix elements.
 | |
|     if (InitEnd.isValid() && InitEnd != getLocation())
 | |
|       return SourceRange(getOuterLocStart(), InitEnd);
 | |
|   }
 | |
|   return DeclaratorDecl::getSourceRange();
 | |
| }
 | |
| 
 | |
| template<typename T>
 | |
| static LanguageLinkage getLanguageLinkageTemplate(const T &D) {
 | |
|   // C++ [dcl.link]p1: All function types, function names with external linkage,
 | |
|   // and variable names with external linkage have a language linkage.
 | |
|   if (!D.hasExternalFormalLinkage())
 | |
|     return NoLanguageLinkage;
 | |
| 
 | |
|   // Language linkage is a C++ concept, but saying that everything else in C has
 | |
|   // C language linkage fits the implementation nicely.
 | |
|   ASTContext &Context = D.getASTContext();
 | |
|   if (!Context.getLangOpts().CPlusPlus)
 | |
|     return CLanguageLinkage;
 | |
| 
 | |
|   // C++ [dcl.link]p4: A C language linkage is ignored in determining the
 | |
|   // language linkage of the names of class members and the function type of
 | |
|   // class member functions.
 | |
|   const DeclContext *DC = D.getDeclContext();
 | |
|   if (DC->isRecord())
 | |
|     return CXXLanguageLinkage;
 | |
| 
 | |
|   // If the first decl is in an extern "C" context, any other redeclaration
 | |
|   // will have C language linkage. If the first one is not in an extern "C"
 | |
|   // context, we would have reported an error for any other decl being in one.
 | |
|   if (isFirstInExternCContext(&D))
 | |
|     return CLanguageLinkage;
 | |
|   return CXXLanguageLinkage;
 | |
| }
 | |
| 
 | |
| template<typename T>
 | |
| static bool isExternCTemplate(const T &D) {
 | |
|   // Since the context is ignored for class members, they can only have C++
 | |
|   // language linkage or no language linkage.
 | |
|   const DeclContext *DC = D.getDeclContext();
 | |
|   if (DC->isRecord()) {
 | |
|     assert(D.getASTContext().getLangOpts().CPlusPlus);
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   return D.getLanguageLinkage() == CLanguageLinkage;
 | |
| }
 | |
| 
 | |
| LanguageLinkage VarDecl::getLanguageLinkage() const {
 | |
|   return getLanguageLinkageTemplate(*this);
 | |
| }
 | |
| 
 | |
| bool VarDecl::isExternC() const {
 | |
|   return isExternCTemplate(*this);
 | |
| }
 | |
| 
 | |
| bool VarDecl::isInExternCContext() const {
 | |
|   return getLexicalDeclContext()->isExternCContext();
 | |
| }
 | |
| 
 | |
| bool VarDecl::isInExternCXXContext() const {
 | |
|   return getLexicalDeclContext()->isExternCXXContext();
 | |
| }
 | |
| 
 | |
| VarDecl *VarDecl::getCanonicalDecl() { return getFirstDecl(); }
 | |
| 
 | |
| VarDecl::DefinitionKind VarDecl::isThisDeclarationADefinition(
 | |
|   ASTContext &C) const
 | |
| {
 | |
|   // C++ [basic.def]p2:
 | |
|   //   A declaration is a definition unless [...] it contains the 'extern'
 | |
|   //   specifier or a linkage-specification and neither an initializer [...],
 | |
|   //   it declares a static data member in a class declaration [...].
 | |
|   // C++1y [temp.expl.spec]p15:
 | |
|   //   An explicit specialization of a static data member or an explicit
 | |
|   //   specialization of a static data member template is a definition if the
 | |
|   //   declaration includes an initializer; otherwise, it is a declaration.
 | |
|   //
 | |
|   // FIXME: How do you declare (but not define) a partial specialization of
 | |
|   // a static data member template outside the containing class?
 | |
|   if (isStaticDataMember()) {
 | |
|     if (isOutOfLine() &&
 | |
|         (hasInit() ||
 | |
|          // If the first declaration is out-of-line, this may be an
 | |
|          // instantiation of an out-of-line partial specialization of a variable
 | |
|          // template for which we have not yet instantiated the initializer.
 | |
|          (getFirstDecl()->isOutOfLine()
 | |
|               ? getTemplateSpecializationKind() == TSK_Undeclared
 | |
|               : getTemplateSpecializationKind() !=
 | |
|                     TSK_ExplicitSpecialization) ||
 | |
|          isa<VarTemplatePartialSpecializationDecl>(this)))
 | |
|       return Definition;
 | |
|     else
 | |
|       return DeclarationOnly;
 | |
|   }
 | |
|   // C99 6.7p5:
 | |
|   //   A definition of an identifier is a declaration for that identifier that
 | |
|   //   [...] causes storage to be reserved for that object.
 | |
|   // Note: that applies for all non-file-scope objects.
 | |
|   // C99 6.9.2p1:
 | |
|   //   If the declaration of an identifier for an object has file scope and an
 | |
|   //   initializer, the declaration is an external definition for the identifier
 | |
|   if (hasInit())
 | |
|     return Definition;
 | |
| 
 | |
|   if (hasAttr<AliasAttr>())
 | |
|     return Definition;
 | |
| 
 | |
|   // A variable template specialization (other than a static data member
 | |
|   // template or an explicit specialization) is a declaration until we
 | |
|   // instantiate its initializer.
 | |
|   if (isa<VarTemplateSpecializationDecl>(this) &&
 | |
|       getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
 | |
|     return DeclarationOnly;
 | |
| 
 | |
|   if (hasExternalStorage())
 | |
|     return DeclarationOnly;
 | |
| 
 | |
|   // [dcl.link] p7:
 | |
|   //   A declaration directly contained in a linkage-specification is treated
 | |
|   //   as if it contains the extern specifier for the purpose of determining
 | |
|   //   the linkage of the declared name and whether it is a definition.
 | |
|   if (isSingleLineExternC(*this))
 | |
|     return DeclarationOnly;
 | |
| 
 | |
|   // C99 6.9.2p2:
 | |
|   //   A declaration of an object that has file scope without an initializer,
 | |
|   //   and without a storage class specifier or the scs 'static', constitutes
 | |
|   //   a tentative definition.
 | |
|   // No such thing in C++.
 | |
|   if (!C.getLangOpts().CPlusPlus && isFileVarDecl())
 | |
|     return TentativeDefinition;
 | |
| 
 | |
|   // What's left is (in C, block-scope) declarations without initializers or
 | |
|   // external storage. These are definitions.
 | |
|   return Definition;
 | |
| }
 | |
| 
 | |
| VarDecl *VarDecl::getActingDefinition() {
 | |
|   DefinitionKind Kind = isThisDeclarationADefinition();
 | |
|   if (Kind != TentativeDefinition)
 | |
|     return 0;
 | |
| 
 | |
|   VarDecl *LastTentative = 0;
 | |
|   VarDecl *First = getFirstDecl();
 | |
|   for (redecl_iterator I = First->redecls_begin(), E = First->redecls_end();
 | |
|        I != E; ++I) {
 | |
|     Kind = (*I)->isThisDeclarationADefinition();
 | |
|     if (Kind == Definition)
 | |
|       return 0;
 | |
|     else if (Kind == TentativeDefinition)
 | |
|       LastTentative = *I;
 | |
|   }
 | |
|   return LastTentative;
 | |
| }
 | |
| 
 | |
| VarDecl *VarDecl::getDefinition(ASTContext &C) {
 | |
|   VarDecl *First = getFirstDecl();
 | |
|   for (redecl_iterator I = First->redecls_begin(), E = First->redecls_end();
 | |
|        I != E; ++I) {
 | |
|     if ((*I)->isThisDeclarationADefinition(C) == Definition)
 | |
|       return *I;
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| VarDecl::DefinitionKind VarDecl::hasDefinition(ASTContext &C) const {
 | |
|   DefinitionKind Kind = DeclarationOnly;
 | |
|   
 | |
|   const VarDecl *First = getFirstDecl();
 | |
|   for (redecl_iterator I = First->redecls_begin(), E = First->redecls_end();
 | |
|        I != E; ++I) {
 | |
|     Kind = std::max(Kind, (*I)->isThisDeclarationADefinition(C));
 | |
|     if (Kind == Definition)
 | |
|       break;
 | |
|   }
 | |
| 
 | |
|   return Kind;
 | |
| }
 | |
| 
 | |
| const Expr *VarDecl::getAnyInitializer(const VarDecl *&D) const {
 | |
|   redecl_iterator I = redecls_begin(), E = redecls_end();
 | |
|   while (I != E && !I->getInit())
 | |
|     ++I;
 | |
| 
 | |
|   if (I != E) {
 | |
|     D = *I;
 | |
|     return I->getInit();
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| bool VarDecl::isOutOfLine() const {
 | |
|   if (Decl::isOutOfLine())
 | |
|     return true;
 | |
| 
 | |
|   if (!isStaticDataMember())
 | |
|     return false;
 | |
| 
 | |
|   // If this static data member was instantiated from a static data member of
 | |
|   // a class template, check whether that static data member was defined 
 | |
|   // out-of-line.
 | |
|   if (VarDecl *VD = getInstantiatedFromStaticDataMember())
 | |
|     return VD->isOutOfLine();
 | |
|   
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| VarDecl *VarDecl::getOutOfLineDefinition() {
 | |
|   if (!isStaticDataMember())
 | |
|     return 0;
 | |
|   
 | |
|   for (VarDecl::redecl_iterator RD = redecls_begin(), RDEnd = redecls_end();
 | |
|        RD != RDEnd; ++RD) {
 | |
|     if (RD->getLexicalDeclContext()->isFileContext())
 | |
|       return *RD;
 | |
|   }
 | |
|   
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| void VarDecl::setInit(Expr *I) {
 | |
|   if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>()) {
 | |
|     Eval->~EvaluatedStmt();
 | |
|     getASTContext().Deallocate(Eval);
 | |
|   }
 | |
| 
 | |
|   Init = I;
 | |
| }
 | |
| 
 | |
| bool VarDecl::isUsableInConstantExpressions(ASTContext &C) const {
 | |
|   const LangOptions &Lang = C.getLangOpts();
 | |
| 
 | |
|   if (!Lang.CPlusPlus)
 | |
|     return false;
 | |
| 
 | |
|   // In C++11, any variable of reference type can be used in a constant
 | |
|   // expression if it is initialized by a constant expression.
 | |
|   if (Lang.CPlusPlus11 && getType()->isReferenceType())
 | |
|     return true;
 | |
| 
 | |
|   // Only const objects can be used in constant expressions in C++. C++98 does
 | |
|   // not require the variable to be non-volatile, but we consider this to be a
 | |
|   // defect.
 | |
|   if (!getType().isConstQualified() || getType().isVolatileQualified())
 | |
|     return false;
 | |
| 
 | |
|   // In C++, const, non-volatile variables of integral or enumeration types
 | |
|   // can be used in constant expressions.
 | |
|   if (getType()->isIntegralOrEnumerationType())
 | |
|     return true;
 | |
| 
 | |
|   // Additionally, in C++11, non-volatile constexpr variables can be used in
 | |
|   // constant expressions.
 | |
|   return Lang.CPlusPlus11 && isConstexpr();
 | |
| }
 | |
| 
 | |
| /// Convert the initializer for this declaration to the elaborated EvaluatedStmt
 | |
| /// form, which contains extra information on the evaluated value of the
 | |
| /// initializer.
 | |
| EvaluatedStmt *VarDecl::ensureEvaluatedStmt() const {
 | |
|   EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>();
 | |
|   if (!Eval) {
 | |
|     Stmt *S = Init.get<Stmt *>();
 | |
|     // Note: EvaluatedStmt contains an APValue, which usually holds
 | |
|     // resources not allocated from the ASTContext.  We need to do some
 | |
|     // work to avoid leaking those, but we do so in VarDecl::evaluateValue
 | |
|     // where we can detect whether there's anything to clean up or not.
 | |
|     Eval = new (getASTContext()) EvaluatedStmt;
 | |
|     Eval->Value = S;
 | |
|     Init = Eval;
 | |
|   }
 | |
|   return Eval;
 | |
| }
 | |
| 
 | |
| APValue *VarDecl::evaluateValue() const {
 | |
|   SmallVector<PartialDiagnosticAt, 8> Notes;
 | |
|   return evaluateValue(Notes);
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| // Destroy an APValue that was allocated in an ASTContext.
 | |
| void DestroyAPValue(void* UntypedValue) {
 | |
|   static_cast<APValue*>(UntypedValue)->~APValue();
 | |
| }
 | |
| } // namespace
 | |
| 
 | |
| APValue *VarDecl::evaluateValue(
 | |
|     SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
 | |
|   EvaluatedStmt *Eval = ensureEvaluatedStmt();
 | |
| 
 | |
|   // We only produce notes indicating why an initializer is non-constant the
 | |
|   // first time it is evaluated. FIXME: The notes won't always be emitted the
 | |
|   // first time we try evaluation, so might not be produced at all.
 | |
|   if (Eval->WasEvaluated)
 | |
|     return Eval->Evaluated.isUninit() ? 0 : &Eval->Evaluated;
 | |
| 
 | |
|   const Expr *Init = cast<Expr>(Eval->Value);
 | |
|   assert(!Init->isValueDependent());
 | |
| 
 | |
|   if (Eval->IsEvaluating) {
 | |
|     // FIXME: Produce a diagnostic for self-initialization.
 | |
|     Eval->CheckedICE = true;
 | |
|     Eval->IsICE = false;
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   Eval->IsEvaluating = true;
 | |
| 
 | |
|   bool Result = Init->EvaluateAsInitializer(Eval->Evaluated, getASTContext(),
 | |
|                                             this, Notes);
 | |
| 
 | |
|   // Ensure the computed APValue is cleaned up later if evaluation succeeded,
 | |
|   // or that it's empty (so that there's nothing to clean up) if evaluation
 | |
|   // failed.
 | |
|   if (!Result)
 | |
|     Eval->Evaluated = APValue();
 | |
|   else if (Eval->Evaluated.needsCleanup())
 | |
|     getASTContext().AddDeallocation(DestroyAPValue, &Eval->Evaluated);
 | |
| 
 | |
|   Eval->IsEvaluating = false;
 | |
|   Eval->WasEvaluated = true;
 | |
| 
 | |
|   // In C++11, we have determined whether the initializer was a constant
 | |
|   // expression as a side-effect.
 | |
|   if (getASTContext().getLangOpts().CPlusPlus11 && !Eval->CheckedICE) {
 | |
|     Eval->CheckedICE = true;
 | |
|     Eval->IsICE = Result && Notes.empty();
 | |
|   }
 | |
| 
 | |
|   return Result ? &Eval->Evaluated : 0;
 | |
| }
 | |
| 
 | |
| bool VarDecl::checkInitIsICE() const {
 | |
|   // Initializers of weak variables are never ICEs.
 | |
|   if (isWeak())
 | |
|     return false;
 | |
| 
 | |
|   EvaluatedStmt *Eval = ensureEvaluatedStmt();
 | |
|   if (Eval->CheckedICE)
 | |
|     // We have already checked whether this subexpression is an
 | |
|     // integral constant expression.
 | |
|     return Eval->IsICE;
 | |
| 
 | |
|   const Expr *Init = cast<Expr>(Eval->Value);
 | |
|   assert(!Init->isValueDependent());
 | |
| 
 | |
|   // In C++11, evaluate the initializer to check whether it's a constant
 | |
|   // expression.
 | |
|   if (getASTContext().getLangOpts().CPlusPlus11) {
 | |
|     SmallVector<PartialDiagnosticAt, 8> Notes;
 | |
|     evaluateValue(Notes);
 | |
|     return Eval->IsICE;
 | |
|   }
 | |
| 
 | |
|   // It's an ICE whether or not the definition we found is
 | |
|   // out-of-line.  See DR 721 and the discussion in Clang PR
 | |
|   // 6206 for details.
 | |
| 
 | |
|   if (Eval->CheckingICE)
 | |
|     return false;
 | |
|   Eval->CheckingICE = true;
 | |
| 
 | |
|   Eval->IsICE = Init->isIntegerConstantExpr(getASTContext());
 | |
|   Eval->CheckingICE = false;
 | |
|   Eval->CheckedICE = true;
 | |
|   return Eval->IsICE;
 | |
| }
 | |
| 
 | |
| VarDecl *VarDecl::getInstantiatedFromStaticDataMember() const {
 | |
|   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
 | |
|     return cast<VarDecl>(MSI->getInstantiatedFrom());
 | |
|   
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| TemplateSpecializationKind VarDecl::getTemplateSpecializationKind() const {
 | |
|   if (const VarTemplateSpecializationDecl *Spec =
 | |
|           dyn_cast<VarTemplateSpecializationDecl>(this))
 | |
|     return Spec->getSpecializationKind();
 | |
| 
 | |
|   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
 | |
|     return MSI->getTemplateSpecializationKind();
 | |
| 
 | |
|   return TSK_Undeclared;
 | |
| }
 | |
| 
 | |
| SourceLocation VarDecl::getPointOfInstantiation() const {
 | |
|   if (const VarTemplateSpecializationDecl *Spec =
 | |
|           dyn_cast<VarTemplateSpecializationDecl>(this))
 | |
|     return Spec->getPointOfInstantiation();
 | |
| 
 | |
|   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
 | |
|     return MSI->getPointOfInstantiation();
 | |
| 
 | |
|   return SourceLocation();
 | |
| }
 | |
| 
 | |
| VarTemplateDecl *VarDecl::getDescribedVarTemplate() const {
 | |
|   return getASTContext().getTemplateOrSpecializationInfo(this)
 | |
|       .dyn_cast<VarTemplateDecl *>();
 | |
| }
 | |
| 
 | |
| void VarDecl::setDescribedVarTemplate(VarTemplateDecl *Template) {
 | |
|   getASTContext().setTemplateOrSpecializationInfo(this, Template);
 | |
| }
 | |
| 
 | |
| MemberSpecializationInfo *VarDecl::getMemberSpecializationInfo() const {
 | |
|   if (isStaticDataMember())
 | |
|     // FIXME: Remove ?
 | |
|     // return getASTContext().getInstantiatedFromStaticDataMember(this);
 | |
|     return getASTContext().getTemplateOrSpecializationInfo(this)
 | |
|         .dyn_cast<MemberSpecializationInfo *>();
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| void VarDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
 | |
|                                          SourceLocation PointOfInstantiation) {
 | |
|   assert((isa<VarTemplateSpecializationDecl>(this) ||
 | |
|           getMemberSpecializationInfo()) &&
 | |
|          "not a variable or static data member template specialization");
 | |
| 
 | |
|   if (VarTemplateSpecializationDecl *Spec =
 | |
|           dyn_cast<VarTemplateSpecializationDecl>(this)) {
 | |
|     Spec->setSpecializationKind(TSK);
 | |
|     if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() &&
 | |
|         Spec->getPointOfInstantiation().isInvalid())
 | |
|       Spec->setPointOfInstantiation(PointOfInstantiation);
 | |
|   }
 | |
| 
 | |
|   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) {
 | |
|     MSI->setTemplateSpecializationKind(TSK);
 | |
|     if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() &&
 | |
|         MSI->getPointOfInstantiation().isInvalid())
 | |
|       MSI->setPointOfInstantiation(PointOfInstantiation);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void
 | |
| VarDecl::setInstantiationOfStaticDataMember(VarDecl *VD,
 | |
|                                             TemplateSpecializationKind TSK) {
 | |
|   assert(getASTContext().getTemplateOrSpecializationInfo(this).isNull() &&
 | |
|          "Previous template or instantiation?");
 | |
|   getASTContext().setInstantiatedFromStaticDataMember(this, VD, TSK);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // ParmVarDecl Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| ParmVarDecl *ParmVarDecl::Create(ASTContext &C, DeclContext *DC,
 | |
|                                  SourceLocation StartLoc,
 | |
|                                  SourceLocation IdLoc, IdentifierInfo *Id,
 | |
|                                  QualType T, TypeSourceInfo *TInfo,
 | |
|                                  StorageClass S, Expr *DefArg) {
 | |
|   return new (C) ParmVarDecl(ParmVar, DC, StartLoc, IdLoc, Id, T, TInfo,
 | |
|                              S, DefArg);
 | |
| }
 | |
| 
 | |
| QualType ParmVarDecl::getOriginalType() const {
 | |
|   TypeSourceInfo *TSI = getTypeSourceInfo();
 | |
|   QualType T = TSI ? TSI->getType() : getType();
 | |
|   if (const DecayedType *DT = dyn_cast<DecayedType>(T))
 | |
|     return DT->getOriginalType();
 | |
|   return T;
 | |
| }
 | |
| 
 | |
| ParmVarDecl *ParmVarDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
 | |
|   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(ParmVarDecl));
 | |
|   return new (Mem) ParmVarDecl(ParmVar, 0, SourceLocation(), SourceLocation(),
 | |
|                                0, QualType(), 0, SC_None, 0);
 | |
| }
 | |
| 
 | |
| SourceRange ParmVarDecl::getSourceRange() const {
 | |
|   if (!hasInheritedDefaultArg()) {
 | |
|     SourceRange ArgRange = getDefaultArgRange();
 | |
|     if (ArgRange.isValid())
 | |
|       return SourceRange(getOuterLocStart(), ArgRange.getEnd());
 | |
|   }
 | |
| 
 | |
|   // DeclaratorDecl considers the range of postfix types as overlapping with the
 | |
|   // declaration name, but this is not the case with parameters in ObjC methods.
 | |
|   if (isa<ObjCMethodDecl>(getDeclContext()))
 | |
|     return SourceRange(DeclaratorDecl::getLocStart(), getLocation());
 | |
| 
 | |
|   return DeclaratorDecl::getSourceRange();
 | |
| }
 | |
| 
 | |
| Expr *ParmVarDecl::getDefaultArg() {
 | |
|   assert(!hasUnparsedDefaultArg() && "Default argument is not yet parsed!");
 | |
|   assert(!hasUninstantiatedDefaultArg() &&
 | |
|          "Default argument is not yet instantiated!");
 | |
|   
 | |
|   Expr *Arg = getInit();
 | |
|   if (ExprWithCleanups *E = dyn_cast_or_null<ExprWithCleanups>(Arg))
 | |
|     return E->getSubExpr();
 | |
| 
 | |
|   return Arg;
 | |
| }
 | |
| 
 | |
| SourceRange ParmVarDecl::getDefaultArgRange() const {
 | |
|   if (const Expr *E = getInit())
 | |
|     return E->getSourceRange();
 | |
| 
 | |
|   if (hasUninstantiatedDefaultArg())
 | |
|     return getUninstantiatedDefaultArg()->getSourceRange();
 | |
| 
 | |
|   return SourceRange();
 | |
| }
 | |
| 
 | |
| bool ParmVarDecl::isParameterPack() const {
 | |
|   return isa<PackExpansionType>(getType());
 | |
| }
 | |
| 
 | |
| void ParmVarDecl::setParameterIndexLarge(unsigned parameterIndex) {
 | |
|   getASTContext().setParameterIndex(this, parameterIndex);
 | |
|   ParmVarDeclBits.ParameterIndex = ParameterIndexSentinel;
 | |
| }
 | |
| 
 | |
| unsigned ParmVarDecl::getParameterIndexLarge() const {
 | |
|   return getASTContext().getParameterIndex(this);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // FunctionDecl Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| void FunctionDecl::getNameForDiagnostic(
 | |
|     raw_ostream &OS, const PrintingPolicy &Policy, bool Qualified) const {
 | |
|   NamedDecl::getNameForDiagnostic(OS, Policy, Qualified);
 | |
|   const TemplateArgumentList *TemplateArgs = getTemplateSpecializationArgs();
 | |
|   if (TemplateArgs)
 | |
|     TemplateSpecializationType::PrintTemplateArgumentList(
 | |
|         OS, TemplateArgs->data(), TemplateArgs->size(), Policy);
 | |
| }
 | |
| 
 | |
| bool FunctionDecl::isVariadic() const {
 | |
|   if (const FunctionProtoType *FT = getType()->getAs<FunctionProtoType>())
 | |
|     return FT->isVariadic();
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool FunctionDecl::hasBody(const FunctionDecl *&Definition) const {
 | |
|   for (redecl_iterator I = redecls_begin(), E = redecls_end(); I != E; ++I) {
 | |
|     if (I->Body || I->IsLateTemplateParsed) {
 | |
|       Definition = *I;
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool FunctionDecl::hasTrivialBody() const
 | |
| {
 | |
|   Stmt *S = getBody();
 | |
|   if (!S) {
 | |
|     // Since we don't have a body for this function, we don't know if it's
 | |
|     // trivial or not.
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (isa<CompoundStmt>(S) && cast<CompoundStmt>(S)->body_empty())
 | |
|     return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool FunctionDecl::isDefined(const FunctionDecl *&Definition) const {
 | |
|   for (redecl_iterator I = redecls_begin(), E = redecls_end(); I != E; ++I) {
 | |
|     if (I->IsDeleted || I->IsDefaulted || I->Body || I->IsLateTemplateParsed ||
 | |
|         I->hasAttr<AliasAttr>()) {
 | |
|       Definition = I->IsDeleted ? I->getCanonicalDecl() : *I;
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| Stmt *FunctionDecl::getBody(const FunctionDecl *&Definition) const {
 | |
|   if (!hasBody(Definition))
 | |
|     return 0;
 | |
| 
 | |
|   if (Definition->Body)
 | |
|     return Definition->Body.get(getASTContext().getExternalSource());
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| void FunctionDecl::setBody(Stmt *B) {
 | |
|   Body = B;
 | |
|   if (B)
 | |
|     EndRangeLoc = B->getLocEnd();
 | |
| }
 | |
| 
 | |
| void FunctionDecl::setPure(bool P) {
 | |
|   IsPure = P;
 | |
|   if (P)
 | |
|     if (CXXRecordDecl *Parent = dyn_cast<CXXRecordDecl>(getDeclContext()))
 | |
|       Parent->markedVirtualFunctionPure();
 | |
| }
 | |
| 
 | |
| template<std::size_t Len>
 | |
| static bool isNamed(const NamedDecl *ND, const char (&Str)[Len]) {
 | |
|   IdentifierInfo *II = ND->getIdentifier();
 | |
|   return II && II->isStr(Str);
 | |
| }
 | |
| 
 | |
| bool FunctionDecl::isMain() const {
 | |
|   const TranslationUnitDecl *tunit =
 | |
|     dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext());
 | |
|   return tunit &&
 | |
|          !tunit->getASTContext().getLangOpts().Freestanding &&
 | |
|          isNamed(this, "main");
 | |
| }
 | |
| 
 | |
| bool FunctionDecl::isMSVCRTEntryPoint() const {
 | |
|   const TranslationUnitDecl *TUnit =
 | |
|       dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext());
 | |
|   if (!TUnit)
 | |
|     return false;
 | |
| 
 | |
|   // Even though we aren't really targeting MSVCRT if we are freestanding,
 | |
|   // semantic analysis for these functions remains the same.
 | |
| 
 | |
|   // MSVCRT entry points only exist on MSVCRT targets.
 | |
|   if (!TUnit->getASTContext().getTargetInfo().getTriple().isOSMSVCRT())
 | |
|     return false;
 | |
| 
 | |
|   // Nameless functions like constructors cannot be entry points.
 | |
|   if (!getIdentifier())
 | |
|     return false;
 | |
| 
 | |
|   return llvm::StringSwitch<bool>(getName())
 | |
|       .Cases("main",     // an ANSI console app
 | |
|              "wmain",    // a Unicode console App
 | |
|              "WinMain",  // an ANSI GUI app
 | |
|              "wWinMain", // a Unicode GUI app
 | |
|              "DllMain",  // a DLL
 | |
|              true)
 | |
|       .Default(false);
 | |
| }
 | |
| 
 | |
| bool FunctionDecl::isReservedGlobalPlacementOperator() const {
 | |
|   assert(getDeclName().getNameKind() == DeclarationName::CXXOperatorName);
 | |
|   assert(getDeclName().getCXXOverloadedOperator() == OO_New ||
 | |
|          getDeclName().getCXXOverloadedOperator() == OO_Delete ||
 | |
|          getDeclName().getCXXOverloadedOperator() == OO_Array_New ||
 | |
|          getDeclName().getCXXOverloadedOperator() == OO_Array_Delete);
 | |
| 
 | |
|   if (isa<CXXRecordDecl>(getDeclContext())) return false;
 | |
|   assert(getDeclContext()->getRedeclContext()->isTranslationUnit());
 | |
| 
 | |
|   const FunctionProtoType *proto = getType()->castAs<FunctionProtoType>();
 | |
|   if (proto->getNumArgs() != 2 || proto->isVariadic()) return false;
 | |
| 
 | |
|   ASTContext &Context =
 | |
|     cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext())
 | |
|       ->getASTContext();
 | |
| 
 | |
|   // The result type and first argument type are constant across all
 | |
|   // these operators.  The second argument must be exactly void*.
 | |
|   return (proto->getArgType(1).getCanonicalType() == Context.VoidPtrTy);
 | |
| }
 | |
| 
 | |
| static bool isNamespaceStd(const DeclContext *DC) {
 | |
|   const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(DC->getRedeclContext());
 | |
|   return ND && isNamed(ND, "std") &&
 | |
|          ND->getParent()->getRedeclContext()->isTranslationUnit();
 | |
| }
 | |
| 
 | |
| bool FunctionDecl::isReplaceableGlobalAllocationFunction() const {
 | |
|   if (getDeclName().getNameKind() != DeclarationName::CXXOperatorName)
 | |
|     return false;
 | |
|   if (getDeclName().getCXXOverloadedOperator() != OO_New &&
 | |
|       getDeclName().getCXXOverloadedOperator() != OO_Delete &&
 | |
|       getDeclName().getCXXOverloadedOperator() != OO_Array_New &&
 | |
|       getDeclName().getCXXOverloadedOperator() != OO_Array_Delete)
 | |
|     return false;
 | |
| 
 | |
|   if (isa<CXXRecordDecl>(getDeclContext()))
 | |
|     return false;
 | |
|   assert(getDeclContext()->getRedeclContext()->isTranslationUnit());
 | |
| 
 | |
|   const FunctionProtoType *FPT = getType()->castAs<FunctionProtoType>();
 | |
|   if (FPT->getNumArgs() > 2 || FPT->isVariadic())
 | |
|     return false;
 | |
| 
 | |
|   // If this is a single-parameter function, it must be a replaceable global
 | |
|   // allocation or deallocation function.
 | |
|   if (FPT->getNumArgs() == 1)
 | |
|     return true;
 | |
| 
 | |
|   // Otherwise, we're looking for a second parameter whose type is
 | |
|   // 'const std::nothrow_t &', or, in C++1y, 'std::size_t'.
 | |
|   QualType Ty = FPT->getArgType(1);
 | |
|   ASTContext &Ctx = getASTContext();
 | |
|   if (Ctx.getLangOpts().SizedDeallocation &&
 | |
|       Ctx.hasSameType(Ty, Ctx.getSizeType()))
 | |
|     return true;
 | |
|   if (!Ty->isReferenceType())
 | |
|     return false;
 | |
|   Ty = Ty->getPointeeType();
 | |
|   if (Ty.getCVRQualifiers() != Qualifiers::Const)
 | |
|     return false;
 | |
|   // FIXME: Recognise nothrow_t in an inline namespace inside std?
 | |
|   const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
 | |
|   return RD && isNamed(RD, "nothrow_t") && isNamespaceStd(RD->getDeclContext());
 | |
| }
 | |
| 
 | |
| FunctionDecl *
 | |
| FunctionDecl::getCorrespondingUnsizedGlobalDeallocationFunction() const {
 | |
|   ASTContext &Ctx = getASTContext();
 | |
|   if (!Ctx.getLangOpts().SizedDeallocation)
 | |
|     return 0;
 | |
| 
 | |
|   if (getDeclName().getNameKind() != DeclarationName::CXXOperatorName)
 | |
|     return 0;
 | |
|   if (getDeclName().getCXXOverloadedOperator() != OO_Delete &&
 | |
|       getDeclName().getCXXOverloadedOperator() != OO_Array_Delete)
 | |
|     return 0;
 | |
|   if (isa<CXXRecordDecl>(getDeclContext()))
 | |
|     return 0;
 | |
|   assert(getDeclContext()->getRedeclContext()->isTranslationUnit());
 | |
| 
 | |
|   if (getNumParams() != 2 || isVariadic() ||
 | |
|       !Ctx.hasSameType(getType()->castAs<FunctionProtoType>()->getArgType(1),
 | |
|                        Ctx.getSizeType()))
 | |
|     return 0;
 | |
| 
 | |
|   // This is a sized deallocation function. Find the corresponding unsized
 | |
|   // deallocation function.
 | |
|   lookup_const_result R = getDeclContext()->lookup(getDeclName());
 | |
|   for (lookup_const_result::iterator RI = R.begin(), RE = R.end(); RI != RE;
 | |
|        ++RI)
 | |
|     if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*RI))
 | |
|       if (FD->getNumParams() == 1 && !FD->isVariadic())
 | |
|         return FD;
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| LanguageLinkage FunctionDecl::getLanguageLinkage() const {
 | |
|   return getLanguageLinkageTemplate(*this);
 | |
| }
 | |
| 
 | |
| bool FunctionDecl::isExternC() const {
 | |
|   return isExternCTemplate(*this);
 | |
| }
 | |
| 
 | |
| bool FunctionDecl::isInExternCContext() const {
 | |
|   return getLexicalDeclContext()->isExternCContext();
 | |
| }
 | |
| 
 | |
| bool FunctionDecl::isInExternCXXContext() const {
 | |
|   return getLexicalDeclContext()->isExternCXXContext();
 | |
| }
 | |
| 
 | |
| bool FunctionDecl::isGlobal() const {
 | |
|   if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(this))
 | |
|     return Method->isStatic();
 | |
| 
 | |
|   if (getCanonicalDecl()->getStorageClass() == SC_Static)
 | |
|     return false;
 | |
| 
 | |
|   for (const DeclContext *DC = getDeclContext();
 | |
|        DC->isNamespace();
 | |
|        DC = DC->getParent()) {
 | |
|     if (const NamespaceDecl *Namespace = cast<NamespaceDecl>(DC)) {
 | |
|       if (!Namespace->getDeclName())
 | |
|         return false;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool FunctionDecl::isNoReturn() const {
 | |
|   return hasAttr<NoReturnAttr>() || hasAttr<CXX11NoReturnAttr>() ||
 | |
|          hasAttr<C11NoReturnAttr>() ||
 | |
|          getType()->getAs<FunctionType>()->getNoReturnAttr();
 | |
| }
 | |
| 
 | |
| void
 | |
| FunctionDecl::setPreviousDeclaration(FunctionDecl *PrevDecl) {
 | |
|   redeclarable_base::setPreviousDecl(PrevDecl);
 | |
| 
 | |
|   if (FunctionTemplateDecl *FunTmpl = getDescribedFunctionTemplate()) {
 | |
|     FunctionTemplateDecl *PrevFunTmpl
 | |
|       = PrevDecl? PrevDecl->getDescribedFunctionTemplate() : 0;
 | |
|     assert((!PrevDecl || PrevFunTmpl) && "Function/function template mismatch");
 | |
|     FunTmpl->setPreviousDecl(PrevFunTmpl);
 | |
|   }
 | |
|   
 | |
|   if (PrevDecl && PrevDecl->IsInline)
 | |
|     IsInline = true;
 | |
| }
 | |
| 
 | |
| const FunctionDecl *FunctionDecl::getCanonicalDecl() const {
 | |
|   return getFirstDecl();
 | |
| }
 | |
| 
 | |
| FunctionDecl *FunctionDecl::getCanonicalDecl() { return getFirstDecl(); }
 | |
| 
 | |
| /// \brief Returns a value indicating whether this function
 | |
| /// corresponds to a builtin function.
 | |
| ///
 | |
| /// The function corresponds to a built-in function if it is
 | |
| /// declared at translation scope or within an extern "C" block and
 | |
| /// its name matches with the name of a builtin. The returned value
 | |
| /// will be 0 for functions that do not correspond to a builtin, a
 | |
| /// value of type \c Builtin::ID if in the target-independent range
 | |
| /// \c [1,Builtin::First), or a target-specific builtin value.
 | |
| unsigned FunctionDecl::getBuiltinID() const {
 | |
|   if (!getIdentifier())
 | |
|     return 0;
 | |
| 
 | |
|   unsigned BuiltinID = getIdentifier()->getBuiltinID();
 | |
|   if (!BuiltinID)
 | |
|     return 0;
 | |
| 
 | |
|   ASTContext &Context = getASTContext();
 | |
|   if (Context.getLangOpts().CPlusPlus) {
 | |
|     const LinkageSpecDecl *LinkageDecl = dyn_cast<LinkageSpecDecl>(
 | |
|         getFirstDecl()->getDeclContext());
 | |
|     // In C++, the first declaration of a builtin is always inside an implicit
 | |
|     // extern "C".
 | |
|     // FIXME: A recognised library function may not be directly in an extern "C"
 | |
|     // declaration, for instance "extern "C" { namespace std { decl } }".
 | |
|     if (!LinkageDecl || LinkageDecl->getLanguage() != LinkageSpecDecl::lang_c)
 | |
|       return 0;
 | |
|   }
 | |
| 
 | |
|   // If the function is marked "overloadable", it has a different mangled name
 | |
|   // and is not the C library function.
 | |
|   if (getAttr<OverloadableAttr>())
 | |
|     return 0;
 | |
| 
 | |
|   if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
 | |
|     return BuiltinID;
 | |
| 
 | |
|   // This function has the name of a known C library
 | |
|   // function. Determine whether it actually refers to the C library
 | |
|   // function or whether it just has the same name.
 | |
| 
 | |
|   // If this is a static function, it's not a builtin.
 | |
|   if (getStorageClass() == SC_Static)
 | |
|     return 0;
 | |
| 
 | |
|   return BuiltinID;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// getNumParams - Return the number of parameters this function must have
 | |
| /// based on its FunctionType.  This is the length of the ParamInfo array
 | |
| /// after it has been created.
 | |
| unsigned FunctionDecl::getNumParams() const {
 | |
|   const FunctionType *FT = getType()->castAs<FunctionType>();
 | |
|   if (isa<FunctionNoProtoType>(FT))
 | |
|     return 0;
 | |
|   return cast<FunctionProtoType>(FT)->getNumArgs();
 | |
| 
 | |
| }
 | |
| 
 | |
| void FunctionDecl::setParams(ASTContext &C,
 | |
|                              ArrayRef<ParmVarDecl *> NewParamInfo) {
 | |
|   assert(ParamInfo == 0 && "Already has param info!");
 | |
|   assert(NewParamInfo.size() == getNumParams() && "Parameter count mismatch!");
 | |
| 
 | |
|   // Zero params -> null pointer.
 | |
|   if (!NewParamInfo.empty()) {
 | |
|     ParamInfo = new (C) ParmVarDecl*[NewParamInfo.size()];
 | |
|     std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void FunctionDecl::setDeclsInPrototypeScope(ArrayRef<NamedDecl *> NewDecls) {
 | |
|   assert(DeclsInPrototypeScope.empty() && "Already has prototype decls!");
 | |
| 
 | |
|   if (!NewDecls.empty()) {
 | |
|     NamedDecl **A = new (getASTContext()) NamedDecl*[NewDecls.size()];
 | |
|     std::copy(NewDecls.begin(), NewDecls.end(), A);
 | |
|     DeclsInPrototypeScope = ArrayRef<NamedDecl *>(A, NewDecls.size());
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// getMinRequiredArguments - Returns the minimum number of arguments
 | |
| /// needed to call this function. This may be fewer than the number of
 | |
| /// function parameters, if some of the parameters have default
 | |
| /// arguments (in C++) or the last parameter is a parameter pack.
 | |
| unsigned FunctionDecl::getMinRequiredArguments() const {
 | |
|   if (!getASTContext().getLangOpts().CPlusPlus)
 | |
|     return getNumParams();
 | |
|   
 | |
|   unsigned NumRequiredArgs = getNumParams();  
 | |
|   
 | |
|   // If the last parameter is a parameter pack, we don't need an argument for 
 | |
|   // it.
 | |
|   if (NumRequiredArgs > 0 &&
 | |
|       getParamDecl(NumRequiredArgs - 1)->isParameterPack())
 | |
|     --NumRequiredArgs;
 | |
|       
 | |
|   // If this parameter has a default argument, we don't need an argument for
 | |
|   // it.
 | |
|   while (NumRequiredArgs > 0 &&
 | |
|          getParamDecl(NumRequiredArgs-1)->hasDefaultArg())
 | |
|     --NumRequiredArgs;
 | |
| 
 | |
|   // We might have parameter packs before the end. These can't be deduced,
 | |
|   // but they can still handle multiple arguments.
 | |
|   unsigned ArgIdx = NumRequiredArgs;
 | |
|   while (ArgIdx > 0) {
 | |
|     if (getParamDecl(ArgIdx - 1)->isParameterPack())
 | |
|       NumRequiredArgs = ArgIdx;
 | |
|     
 | |
|     --ArgIdx;
 | |
|   }
 | |
|   
 | |
|   return NumRequiredArgs;
 | |
| }
 | |
| 
 | |
| static bool RedeclForcesDefC99(const FunctionDecl *Redecl) {
 | |
|   // Only consider file-scope declarations in this test.
 | |
|   if (!Redecl->getLexicalDeclContext()->isTranslationUnit())
 | |
|     return false;
 | |
| 
 | |
|   // Only consider explicit declarations; the presence of a builtin for a
 | |
|   // libcall shouldn't affect whether a definition is externally visible.
 | |
|   if (Redecl->isImplicit())
 | |
|     return false;
 | |
| 
 | |
|   if (!Redecl->isInlineSpecified() || Redecl->getStorageClass() == SC_Extern) 
 | |
|     return true; // Not an inline definition
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// \brief For a function declaration in C or C++, determine whether this
 | |
| /// declaration causes the definition to be externally visible.
 | |
| ///
 | |
| /// Specifically, this determines if adding the current declaration to the set
 | |
| /// of redeclarations of the given functions causes
 | |
| /// isInlineDefinitionExternallyVisible to change from false to true.
 | |
| bool FunctionDecl::doesDeclarationForceExternallyVisibleDefinition() const {
 | |
|   assert(!doesThisDeclarationHaveABody() &&
 | |
|          "Must have a declaration without a body.");
 | |
| 
 | |
|   ASTContext &Context = getASTContext();
 | |
| 
 | |
|   if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
 | |
|     // With GNU inlining, a declaration with 'inline' but not 'extern', forces
 | |
|     // an externally visible definition.
 | |
|     //
 | |
|     // FIXME: What happens if gnu_inline gets added on after the first
 | |
|     // declaration?
 | |
|     if (!isInlineSpecified() || getStorageClass() == SC_Extern)
 | |
|       return false;
 | |
| 
 | |
|     const FunctionDecl *Prev = this;
 | |
|     bool FoundBody = false;
 | |
|     while ((Prev = Prev->getPreviousDecl())) {
 | |
|       FoundBody |= Prev->Body.isValid();
 | |
| 
 | |
|       if (Prev->Body) {
 | |
|         // If it's not the case that both 'inline' and 'extern' are
 | |
|         // specified on the definition, then it is always externally visible.
 | |
|         if (!Prev->isInlineSpecified() ||
 | |
|             Prev->getStorageClass() != SC_Extern)
 | |
|           return false;
 | |
|       } else if (Prev->isInlineSpecified() && 
 | |
|                  Prev->getStorageClass() != SC_Extern) {
 | |
|         return false;
 | |
|       }
 | |
|     }
 | |
|     return FoundBody;
 | |
|   }
 | |
| 
 | |
|   if (Context.getLangOpts().CPlusPlus)
 | |
|     return false;
 | |
| 
 | |
|   // C99 6.7.4p6:
 | |
|   //   [...] If all of the file scope declarations for a function in a 
 | |
|   //   translation unit include the inline function specifier without extern, 
 | |
|   //   then the definition in that translation unit is an inline definition.
 | |
|   if (isInlineSpecified() && getStorageClass() != SC_Extern)
 | |
|     return false;
 | |
|   const FunctionDecl *Prev = this;
 | |
|   bool FoundBody = false;
 | |
|   while ((Prev = Prev->getPreviousDecl())) {
 | |
|     FoundBody |= Prev->Body.isValid();
 | |
|     if (RedeclForcesDefC99(Prev))
 | |
|       return false;
 | |
|   }
 | |
|   return FoundBody;
 | |
| }
 | |
| 
 | |
| /// \brief For an inline function definition in C, or for a gnu_inline function
 | |
| /// in C++, determine whether the definition will be externally visible.
 | |
| ///
 | |
| /// Inline function definitions are always available for inlining optimizations.
 | |
| /// However, depending on the language dialect, declaration specifiers, and
 | |
| /// attributes, the definition of an inline function may or may not be
 | |
| /// "externally" visible to other translation units in the program.
 | |
| ///
 | |
| /// In C99, inline definitions are not externally visible by default. However,
 | |
| /// if even one of the global-scope declarations is marked "extern inline", the
 | |
| /// inline definition becomes externally visible (C99 6.7.4p6).
 | |
| ///
 | |
| /// In GNU89 mode, or if the gnu_inline attribute is attached to the function
 | |
| /// definition, we use the GNU semantics for inline, which are nearly the 
 | |
| /// opposite of C99 semantics. In particular, "inline" by itself will create 
 | |
| /// an externally visible symbol, but "extern inline" will not create an 
 | |
| /// externally visible symbol.
 | |
| bool FunctionDecl::isInlineDefinitionExternallyVisible() const {
 | |
|   assert(doesThisDeclarationHaveABody() && "Must have the function definition");
 | |
|   assert(isInlined() && "Function must be inline");
 | |
|   ASTContext &Context = getASTContext();
 | |
|   
 | |
|   if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
 | |
|     // Note: If you change the logic here, please change
 | |
|     // doesDeclarationForceExternallyVisibleDefinition as well.
 | |
|     //
 | |
|     // If it's not the case that both 'inline' and 'extern' are
 | |
|     // specified on the definition, then this inline definition is
 | |
|     // externally visible.
 | |
|     if (!(isInlineSpecified() && getStorageClass() == SC_Extern))
 | |
|       return true;
 | |
|     
 | |
|     // If any declaration is 'inline' but not 'extern', then this definition
 | |
|     // is externally visible.
 | |
|     for (redecl_iterator Redecl = redecls_begin(), RedeclEnd = redecls_end();
 | |
|          Redecl != RedeclEnd;
 | |
|          ++Redecl) {
 | |
|       if (Redecl->isInlineSpecified() && 
 | |
|           Redecl->getStorageClass() != SC_Extern)
 | |
|         return true;
 | |
|     }    
 | |
|     
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // The rest of this function is C-only.
 | |
|   assert(!Context.getLangOpts().CPlusPlus &&
 | |
|          "should not use C inline rules in C++");
 | |
| 
 | |
|   // C99 6.7.4p6:
 | |
|   //   [...] If all of the file scope declarations for a function in a 
 | |
|   //   translation unit include the inline function specifier without extern, 
 | |
|   //   then the definition in that translation unit is an inline definition.
 | |
|   for (redecl_iterator Redecl = redecls_begin(), RedeclEnd = redecls_end();
 | |
|        Redecl != RedeclEnd;
 | |
|        ++Redecl) {
 | |
|     if (RedeclForcesDefC99(*Redecl))
 | |
|       return true;
 | |
|   }
 | |
|   
 | |
|   // C99 6.7.4p6:
 | |
|   //   An inline definition does not provide an external definition for the 
 | |
|   //   function, and does not forbid an external definition in another 
 | |
|   //   translation unit.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// getOverloadedOperator - Which C++ overloaded operator this
 | |
| /// function represents, if any.
 | |
| OverloadedOperatorKind FunctionDecl::getOverloadedOperator() const {
 | |
|   if (getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
 | |
|     return getDeclName().getCXXOverloadedOperator();
 | |
|   else
 | |
|     return OO_None;
 | |
| }
 | |
| 
 | |
| /// getLiteralIdentifier - The literal suffix identifier this function
 | |
| /// represents, if any.
 | |
| const IdentifierInfo *FunctionDecl::getLiteralIdentifier() const {
 | |
|   if (getDeclName().getNameKind() == DeclarationName::CXXLiteralOperatorName)
 | |
|     return getDeclName().getCXXLiteralIdentifier();
 | |
|   else
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| FunctionDecl::TemplatedKind FunctionDecl::getTemplatedKind() const {
 | |
|   if (TemplateOrSpecialization.isNull())
 | |
|     return TK_NonTemplate;
 | |
|   if (TemplateOrSpecialization.is<FunctionTemplateDecl *>())
 | |
|     return TK_FunctionTemplate;
 | |
|   if (TemplateOrSpecialization.is<MemberSpecializationInfo *>())
 | |
|     return TK_MemberSpecialization;
 | |
|   if (TemplateOrSpecialization.is<FunctionTemplateSpecializationInfo *>())
 | |
|     return TK_FunctionTemplateSpecialization;
 | |
|   if (TemplateOrSpecialization.is
 | |
|                                <DependentFunctionTemplateSpecializationInfo*>())
 | |
|     return TK_DependentFunctionTemplateSpecialization;
 | |
| 
 | |
|   llvm_unreachable("Did we miss a TemplateOrSpecialization type?");
 | |
| }
 | |
| 
 | |
| FunctionDecl *FunctionDecl::getInstantiatedFromMemberFunction() const {
 | |
|   if (MemberSpecializationInfo *Info = getMemberSpecializationInfo())
 | |
|     return cast<FunctionDecl>(Info->getInstantiatedFrom());
 | |
|   
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| void 
 | |
| FunctionDecl::setInstantiationOfMemberFunction(ASTContext &C,
 | |
|                                                FunctionDecl *FD,
 | |
|                                                TemplateSpecializationKind TSK) {
 | |
|   assert(TemplateOrSpecialization.isNull() && 
 | |
|          "Member function is already a specialization");
 | |
|   MemberSpecializationInfo *Info 
 | |
|     = new (C) MemberSpecializationInfo(FD, TSK);
 | |
|   TemplateOrSpecialization = Info;
 | |
| }
 | |
| 
 | |
| bool FunctionDecl::isImplicitlyInstantiable() const {
 | |
|   // If the function is invalid, it can't be implicitly instantiated.
 | |
|   if (isInvalidDecl())
 | |
|     return false;
 | |
|   
 | |
|   switch (getTemplateSpecializationKind()) {
 | |
|   case TSK_Undeclared:
 | |
|   case TSK_ExplicitInstantiationDefinition:
 | |
|     return false;
 | |
|       
 | |
|   case TSK_ImplicitInstantiation:
 | |
|     return true;
 | |
| 
 | |
|   // It is possible to instantiate TSK_ExplicitSpecialization kind
 | |
|   // if the FunctionDecl has a class scope specialization pattern.
 | |
|   case TSK_ExplicitSpecialization:
 | |
|     return getClassScopeSpecializationPattern() != 0;
 | |
| 
 | |
|   case TSK_ExplicitInstantiationDeclaration:
 | |
|     // Handled below.
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // Find the actual template from which we will instantiate.
 | |
|   const FunctionDecl *PatternDecl = getTemplateInstantiationPattern();
 | |
|   bool HasPattern = false;
 | |
|   if (PatternDecl)
 | |
|     HasPattern = PatternDecl->hasBody(PatternDecl);
 | |
|   
 | |
|   // C++0x [temp.explicit]p9:
 | |
|   //   Except for inline functions, other explicit instantiation declarations
 | |
|   //   have the effect of suppressing the implicit instantiation of the entity
 | |
|   //   to which they refer. 
 | |
|   if (!HasPattern || !PatternDecl) 
 | |
|     return true;
 | |
| 
 | |
|   return PatternDecl->isInlined();
 | |
| }
 | |
| 
 | |
| bool FunctionDecl::isTemplateInstantiation() const {
 | |
|   switch (getTemplateSpecializationKind()) {
 | |
|     case TSK_Undeclared:
 | |
|     case TSK_ExplicitSpecialization:
 | |
|       return false;      
 | |
|     case TSK_ImplicitInstantiation:
 | |
|     case TSK_ExplicitInstantiationDeclaration:
 | |
|     case TSK_ExplicitInstantiationDefinition:
 | |
|       return true;
 | |
|   }
 | |
|   llvm_unreachable("All TSK values handled.");
 | |
| }
 | |
|    
 | |
| FunctionDecl *FunctionDecl::getTemplateInstantiationPattern() const {
 | |
|   // Handle class scope explicit specialization special case.
 | |
|   if (getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
 | |
|     return getClassScopeSpecializationPattern();
 | |
| 
 | |
|   if (FunctionTemplateDecl *Primary = getPrimaryTemplate()) {
 | |
|     while (Primary->getInstantiatedFromMemberTemplate()) {
 | |
|       // If we have hit a point where the user provided a specialization of
 | |
|       // this template, we're done looking.
 | |
|       if (Primary->isMemberSpecialization())
 | |
|         break;
 | |
|       
 | |
|       Primary = Primary->getInstantiatedFromMemberTemplate();
 | |
|     }
 | |
|     
 | |
|     return Primary->getTemplatedDecl();
 | |
|   } 
 | |
|     
 | |
|   return getInstantiatedFromMemberFunction();
 | |
| }
 | |
| 
 | |
| FunctionTemplateDecl *FunctionDecl::getPrimaryTemplate() const {
 | |
|   if (FunctionTemplateSpecializationInfo *Info
 | |
|         = TemplateOrSpecialization
 | |
|             .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
 | |
|     return Info->Template.getPointer();
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| FunctionDecl *FunctionDecl::getClassScopeSpecializationPattern() const {
 | |
|     return getASTContext().getClassScopeSpecializationPattern(this);
 | |
| }
 | |
| 
 | |
| const TemplateArgumentList *
 | |
| FunctionDecl::getTemplateSpecializationArgs() const {
 | |
|   if (FunctionTemplateSpecializationInfo *Info
 | |
|         = TemplateOrSpecialization
 | |
|             .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
 | |
|     return Info->TemplateArguments;
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| const ASTTemplateArgumentListInfo *
 | |
| FunctionDecl::getTemplateSpecializationArgsAsWritten() const {
 | |
|   if (FunctionTemplateSpecializationInfo *Info
 | |
|         = TemplateOrSpecialization
 | |
|             .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
 | |
|     return Info->TemplateArgumentsAsWritten;
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| void
 | |
| FunctionDecl::setFunctionTemplateSpecialization(ASTContext &C,
 | |
|                                                 FunctionTemplateDecl *Template,
 | |
|                                      const TemplateArgumentList *TemplateArgs,
 | |
|                                                 void *InsertPos,
 | |
|                                                 TemplateSpecializationKind TSK,
 | |
|                         const TemplateArgumentListInfo *TemplateArgsAsWritten,
 | |
|                                           SourceLocation PointOfInstantiation) {
 | |
|   assert(TSK != TSK_Undeclared && 
 | |
|          "Must specify the type of function template specialization");
 | |
|   FunctionTemplateSpecializationInfo *Info
 | |
|     = TemplateOrSpecialization.dyn_cast<FunctionTemplateSpecializationInfo*>();
 | |
|   if (!Info)
 | |
|     Info = FunctionTemplateSpecializationInfo::Create(C, this, Template, TSK,
 | |
|                                                       TemplateArgs,
 | |
|                                                       TemplateArgsAsWritten,
 | |
|                                                       PointOfInstantiation);
 | |
|   TemplateOrSpecialization = Info;
 | |
|   Template->addSpecialization(Info, InsertPos);
 | |
| }
 | |
| 
 | |
| void
 | |
| FunctionDecl::setDependentTemplateSpecialization(ASTContext &Context,
 | |
|                                     const UnresolvedSetImpl &Templates,
 | |
|                              const TemplateArgumentListInfo &TemplateArgs) {
 | |
|   assert(TemplateOrSpecialization.isNull());
 | |
|   size_t Size = sizeof(DependentFunctionTemplateSpecializationInfo);
 | |
|   Size += Templates.size() * sizeof(FunctionTemplateDecl*);
 | |
|   Size += TemplateArgs.size() * sizeof(TemplateArgumentLoc);
 | |
|   void *Buffer = Context.Allocate(Size);
 | |
|   DependentFunctionTemplateSpecializationInfo *Info =
 | |
|     new (Buffer) DependentFunctionTemplateSpecializationInfo(Templates,
 | |
|                                                              TemplateArgs);
 | |
|   TemplateOrSpecialization = Info;
 | |
| }
 | |
| 
 | |
| DependentFunctionTemplateSpecializationInfo::
 | |
| DependentFunctionTemplateSpecializationInfo(const UnresolvedSetImpl &Ts,
 | |
|                                       const TemplateArgumentListInfo &TArgs)
 | |
|   : AngleLocs(TArgs.getLAngleLoc(), TArgs.getRAngleLoc()) {
 | |
| 
 | |
|   d.NumTemplates = Ts.size();
 | |
|   d.NumArgs = TArgs.size();
 | |
| 
 | |
|   FunctionTemplateDecl **TsArray =
 | |
|     const_cast<FunctionTemplateDecl**>(getTemplates());
 | |
|   for (unsigned I = 0, E = Ts.size(); I != E; ++I)
 | |
|     TsArray[I] = cast<FunctionTemplateDecl>(Ts[I]->getUnderlyingDecl());
 | |
| 
 | |
|   TemplateArgumentLoc *ArgsArray =
 | |
|     const_cast<TemplateArgumentLoc*>(getTemplateArgs());
 | |
|   for (unsigned I = 0, E = TArgs.size(); I != E; ++I)
 | |
|     new (&ArgsArray[I]) TemplateArgumentLoc(TArgs[I]);
 | |
| }
 | |
| 
 | |
| TemplateSpecializationKind FunctionDecl::getTemplateSpecializationKind() const {
 | |
|   // For a function template specialization, query the specialization
 | |
|   // information object.
 | |
|   FunctionTemplateSpecializationInfo *FTSInfo
 | |
|     = TemplateOrSpecialization.dyn_cast<FunctionTemplateSpecializationInfo*>();
 | |
|   if (FTSInfo)
 | |
|     return FTSInfo->getTemplateSpecializationKind();
 | |
| 
 | |
|   MemberSpecializationInfo *MSInfo
 | |
|     = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>();
 | |
|   if (MSInfo)
 | |
|     return MSInfo->getTemplateSpecializationKind();
 | |
|   
 | |
|   return TSK_Undeclared;
 | |
| }
 | |
| 
 | |
| void
 | |
| FunctionDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
 | |
|                                           SourceLocation PointOfInstantiation) {
 | |
|   if (FunctionTemplateSpecializationInfo *FTSInfo
 | |
|         = TemplateOrSpecialization.dyn_cast<
 | |
|                                     FunctionTemplateSpecializationInfo*>()) {
 | |
|     FTSInfo->setTemplateSpecializationKind(TSK);
 | |
|     if (TSK != TSK_ExplicitSpecialization &&
 | |
|         PointOfInstantiation.isValid() &&
 | |
|         FTSInfo->getPointOfInstantiation().isInvalid())
 | |
|       FTSInfo->setPointOfInstantiation(PointOfInstantiation);
 | |
|   } else if (MemberSpecializationInfo *MSInfo
 | |
|              = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>()) {
 | |
|     MSInfo->setTemplateSpecializationKind(TSK);
 | |
|     if (TSK != TSK_ExplicitSpecialization &&
 | |
|         PointOfInstantiation.isValid() &&
 | |
|         MSInfo->getPointOfInstantiation().isInvalid())
 | |
|       MSInfo->setPointOfInstantiation(PointOfInstantiation);
 | |
|   } else
 | |
|     llvm_unreachable("Function cannot have a template specialization kind");
 | |
| }
 | |
| 
 | |
| SourceLocation FunctionDecl::getPointOfInstantiation() const {
 | |
|   if (FunctionTemplateSpecializationInfo *FTSInfo
 | |
|         = TemplateOrSpecialization.dyn_cast<
 | |
|                                         FunctionTemplateSpecializationInfo*>())
 | |
|     return FTSInfo->getPointOfInstantiation();
 | |
|   else if (MemberSpecializationInfo *MSInfo
 | |
|              = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>())
 | |
|     return MSInfo->getPointOfInstantiation();
 | |
|   
 | |
|   return SourceLocation();
 | |
| }
 | |
| 
 | |
| bool FunctionDecl::isOutOfLine() const {
 | |
|   if (Decl::isOutOfLine())
 | |
|     return true;
 | |
|   
 | |
|   // If this function was instantiated from a member function of a 
 | |
|   // class template, check whether that member function was defined out-of-line.
 | |
|   if (FunctionDecl *FD = getInstantiatedFromMemberFunction()) {
 | |
|     const FunctionDecl *Definition;
 | |
|     if (FD->hasBody(Definition))
 | |
|       return Definition->isOutOfLine();
 | |
|   }
 | |
|   
 | |
|   // If this function was instantiated from a function template,
 | |
|   // check whether that function template was defined out-of-line.
 | |
|   if (FunctionTemplateDecl *FunTmpl = getPrimaryTemplate()) {
 | |
|     const FunctionDecl *Definition;
 | |
|     if (FunTmpl->getTemplatedDecl()->hasBody(Definition))
 | |
|       return Definition->isOutOfLine();
 | |
|   }
 | |
|   
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| SourceRange FunctionDecl::getSourceRange() const {
 | |
|   return SourceRange(getOuterLocStart(), EndRangeLoc);
 | |
| }
 | |
| 
 | |
| unsigned FunctionDecl::getMemoryFunctionKind() const {
 | |
|   IdentifierInfo *FnInfo = getIdentifier();
 | |
| 
 | |
|   if (!FnInfo)
 | |
|     return 0;
 | |
|     
 | |
|   // Builtin handling.
 | |
|   switch (getBuiltinID()) {
 | |
|   case Builtin::BI__builtin_memset:
 | |
|   case Builtin::BI__builtin___memset_chk:
 | |
|   case Builtin::BImemset:
 | |
|     return Builtin::BImemset;
 | |
| 
 | |
|   case Builtin::BI__builtin_memcpy:
 | |
|   case Builtin::BI__builtin___memcpy_chk:
 | |
|   case Builtin::BImemcpy:
 | |
|     return Builtin::BImemcpy;
 | |
| 
 | |
|   case Builtin::BI__builtin_memmove:
 | |
|   case Builtin::BI__builtin___memmove_chk:
 | |
|   case Builtin::BImemmove:
 | |
|     return Builtin::BImemmove;
 | |
| 
 | |
|   case Builtin::BIstrlcpy:
 | |
|     return Builtin::BIstrlcpy;
 | |
|   case Builtin::BIstrlcat:
 | |
|     return Builtin::BIstrlcat;
 | |
| 
 | |
|   case Builtin::BI__builtin_memcmp:
 | |
|   case Builtin::BImemcmp:
 | |
|     return Builtin::BImemcmp;
 | |
| 
 | |
|   case Builtin::BI__builtin_strncpy:
 | |
|   case Builtin::BI__builtin___strncpy_chk:
 | |
|   case Builtin::BIstrncpy:
 | |
|     return Builtin::BIstrncpy;
 | |
| 
 | |
|   case Builtin::BI__builtin_strncmp:
 | |
|   case Builtin::BIstrncmp:
 | |
|     return Builtin::BIstrncmp;
 | |
| 
 | |
|   case Builtin::BI__builtin_strncasecmp:
 | |
|   case Builtin::BIstrncasecmp:
 | |
|     return Builtin::BIstrncasecmp;
 | |
| 
 | |
|   case Builtin::BI__builtin_strncat:
 | |
|   case Builtin::BI__builtin___strncat_chk:
 | |
|   case Builtin::BIstrncat:
 | |
|     return Builtin::BIstrncat;
 | |
| 
 | |
|   case Builtin::BI__builtin_strndup:
 | |
|   case Builtin::BIstrndup:
 | |
|     return Builtin::BIstrndup;
 | |
| 
 | |
|   case Builtin::BI__builtin_strlen:
 | |
|   case Builtin::BIstrlen:
 | |
|     return Builtin::BIstrlen;
 | |
| 
 | |
|   default:
 | |
|     if (isExternC()) {
 | |
|       if (FnInfo->isStr("memset"))
 | |
|         return Builtin::BImemset;
 | |
|       else if (FnInfo->isStr("memcpy"))
 | |
|         return Builtin::BImemcpy;
 | |
|       else if (FnInfo->isStr("memmove"))
 | |
|         return Builtin::BImemmove;
 | |
|       else if (FnInfo->isStr("memcmp"))
 | |
|         return Builtin::BImemcmp;
 | |
|       else if (FnInfo->isStr("strncpy"))
 | |
|         return Builtin::BIstrncpy;
 | |
|       else if (FnInfo->isStr("strncmp"))
 | |
|         return Builtin::BIstrncmp;
 | |
|       else if (FnInfo->isStr("strncasecmp"))
 | |
|         return Builtin::BIstrncasecmp;
 | |
|       else if (FnInfo->isStr("strncat"))
 | |
|         return Builtin::BIstrncat;
 | |
|       else if (FnInfo->isStr("strndup"))
 | |
|         return Builtin::BIstrndup;
 | |
|       else if (FnInfo->isStr("strlen"))
 | |
|         return Builtin::BIstrlen;
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // FieldDecl Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| FieldDecl *FieldDecl::Create(const ASTContext &C, DeclContext *DC,
 | |
|                              SourceLocation StartLoc, SourceLocation IdLoc,
 | |
|                              IdentifierInfo *Id, QualType T,
 | |
|                              TypeSourceInfo *TInfo, Expr *BW, bool Mutable,
 | |
|                              InClassInitStyle InitStyle) {
 | |
|   return new (C) FieldDecl(Decl::Field, DC, StartLoc, IdLoc, Id, T, TInfo,
 | |
|                            BW, Mutable, InitStyle);
 | |
| }
 | |
| 
 | |
| FieldDecl *FieldDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
 | |
|   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(FieldDecl));
 | |
|   return new (Mem) FieldDecl(Field, 0, SourceLocation(), SourceLocation(),
 | |
|                              0, QualType(), 0, 0, false, ICIS_NoInit);
 | |
| }
 | |
| 
 | |
| bool FieldDecl::isAnonymousStructOrUnion() const {
 | |
|   if (!isImplicit() || getDeclName())
 | |
|     return false;
 | |
| 
 | |
|   if (const RecordType *Record = getType()->getAs<RecordType>())
 | |
|     return Record->getDecl()->isAnonymousStructOrUnion();
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| unsigned FieldDecl::getBitWidthValue(const ASTContext &Ctx) const {
 | |
|   assert(isBitField() && "not a bitfield");
 | |
|   Expr *BitWidth = InitializerOrBitWidth.getPointer();
 | |
|   return BitWidth->EvaluateKnownConstInt(Ctx).getZExtValue();
 | |
| }
 | |
| 
 | |
| unsigned FieldDecl::getFieldIndex() const {
 | |
|   const FieldDecl *Canonical = getCanonicalDecl();
 | |
|   if (Canonical != this)
 | |
|     return Canonical->getFieldIndex();
 | |
| 
 | |
|   if (CachedFieldIndex) return CachedFieldIndex - 1;
 | |
| 
 | |
|   unsigned Index = 0;
 | |
|   const RecordDecl *RD = getParent();
 | |
| 
 | |
|   for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
 | |
|        I != E; ++I, ++Index)
 | |
|     I->getCanonicalDecl()->CachedFieldIndex = Index + 1;
 | |
| 
 | |
|   assert(CachedFieldIndex && "failed to find field in parent");
 | |
|   return CachedFieldIndex - 1;
 | |
| }
 | |
| 
 | |
| SourceRange FieldDecl::getSourceRange() const {
 | |
|   if (const Expr *E = InitializerOrBitWidth.getPointer())
 | |
|     return SourceRange(getInnerLocStart(), E->getLocEnd());
 | |
|   return DeclaratorDecl::getSourceRange();
 | |
| }
 | |
| 
 | |
| void FieldDecl::setBitWidth(Expr *Width) {
 | |
|   assert(!InitializerOrBitWidth.getPointer() && !hasInClassInitializer() &&
 | |
|          "bit width or initializer already set");
 | |
|   InitializerOrBitWidth.setPointer(Width);
 | |
| }
 | |
| 
 | |
| void FieldDecl::setInClassInitializer(Expr *Init) {
 | |
|   assert(!InitializerOrBitWidth.getPointer() && hasInClassInitializer() &&
 | |
|          "bit width or initializer already set");
 | |
|   InitializerOrBitWidth.setPointer(Init);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // TagDecl Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| SourceLocation TagDecl::getOuterLocStart() const {
 | |
|   return getTemplateOrInnerLocStart(this);
 | |
| }
 | |
| 
 | |
| SourceRange TagDecl::getSourceRange() const {
 | |
|   SourceLocation E = RBraceLoc.isValid() ? RBraceLoc : getLocation();
 | |
|   return SourceRange(getOuterLocStart(), E);
 | |
| }
 | |
| 
 | |
| TagDecl *TagDecl::getCanonicalDecl() { return getFirstDecl(); }
 | |
| 
 | |
| void TagDecl::setTypedefNameForAnonDecl(TypedefNameDecl *TDD) {
 | |
|   NamedDeclOrQualifier = TDD;
 | |
|   if (TypeForDecl)
 | |
|     assert(TypeForDecl->isLinkageValid());
 | |
|   assert(isLinkageValid());
 | |
| }
 | |
| 
 | |
| void TagDecl::startDefinition() {
 | |
|   IsBeingDefined = true;
 | |
| 
 | |
|   if (CXXRecordDecl *D = dyn_cast<CXXRecordDecl>(this)) {
 | |
|     struct CXXRecordDecl::DefinitionData *Data = 
 | |
|       new (getASTContext()) struct CXXRecordDecl::DefinitionData(D);
 | |
|     for (redecl_iterator I = redecls_begin(), E = redecls_end(); I != E; ++I)
 | |
|       cast<CXXRecordDecl>(*I)->DefinitionData = Data;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void TagDecl::completeDefinition() {
 | |
|   assert((!isa<CXXRecordDecl>(this) ||
 | |
|           cast<CXXRecordDecl>(this)->hasDefinition()) &&
 | |
|          "definition completed but not started");
 | |
| 
 | |
|   IsCompleteDefinition = true;
 | |
|   IsBeingDefined = false;
 | |
| 
 | |
|   if (ASTMutationListener *L = getASTMutationListener())
 | |
|     L->CompletedTagDefinition(this);
 | |
| }
 | |
| 
 | |
| TagDecl *TagDecl::getDefinition() const {
 | |
|   if (isCompleteDefinition())
 | |
|     return const_cast<TagDecl *>(this);
 | |
| 
 | |
|   // If it's possible for us to have an out-of-date definition, check now.
 | |
|   if (MayHaveOutOfDateDef) {
 | |
|     if (IdentifierInfo *II = getIdentifier()) {
 | |
|       if (II->isOutOfDate()) {
 | |
|         updateOutOfDate(*II);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(this))
 | |
|     return CXXRD->getDefinition();
 | |
| 
 | |
|   for (redecl_iterator R = redecls_begin(), REnd = redecls_end();
 | |
|        R != REnd; ++R)
 | |
|     if (R->isCompleteDefinition())
 | |
|       return *R;
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| void TagDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) {
 | |
|   if (QualifierLoc) {
 | |
|     // Make sure the extended qualifier info is allocated.
 | |
|     if (!hasExtInfo())
 | |
|       NamedDeclOrQualifier = new (getASTContext()) ExtInfo;
 | |
|     // Set qualifier info.
 | |
|     getExtInfo()->QualifierLoc = QualifierLoc;
 | |
|   } else {
 | |
|     // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
 | |
|     if (hasExtInfo()) {
 | |
|       if (getExtInfo()->NumTemplParamLists == 0) {
 | |
|         getASTContext().Deallocate(getExtInfo());
 | |
|         NamedDeclOrQualifier = (TypedefNameDecl*) 0;
 | |
|       }
 | |
|       else
 | |
|         getExtInfo()->QualifierLoc = QualifierLoc;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void TagDecl::setTemplateParameterListsInfo(ASTContext &Context,
 | |
|                                             unsigned NumTPLists,
 | |
|                                             TemplateParameterList **TPLists) {
 | |
|   assert(NumTPLists > 0);
 | |
|   // Make sure the extended decl info is allocated.
 | |
|   if (!hasExtInfo())
 | |
|     // Allocate external info struct.
 | |
|     NamedDeclOrQualifier = new (getASTContext()) ExtInfo;
 | |
|   // Set the template parameter lists info.
 | |
|   getExtInfo()->setTemplateParameterListsInfo(Context, NumTPLists, TPLists);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // EnumDecl Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| void EnumDecl::anchor() { }
 | |
| 
 | |
| EnumDecl *EnumDecl::Create(ASTContext &C, DeclContext *DC,
 | |
|                            SourceLocation StartLoc, SourceLocation IdLoc,
 | |
|                            IdentifierInfo *Id,
 | |
|                            EnumDecl *PrevDecl, bool IsScoped,
 | |
|                            bool IsScopedUsingClassTag, bool IsFixed) {
 | |
|   EnumDecl *Enum = new (C) EnumDecl(DC, StartLoc, IdLoc, Id, PrevDecl,
 | |
|                                     IsScoped, IsScopedUsingClassTag, IsFixed);
 | |
|   Enum->MayHaveOutOfDateDef = C.getLangOpts().Modules;
 | |
|   C.getTypeDeclType(Enum, PrevDecl);
 | |
|   return Enum;
 | |
| }
 | |
| 
 | |
| EnumDecl *EnumDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
 | |
|   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(EnumDecl));
 | |
|   EnumDecl *Enum = new (Mem) EnumDecl(0, SourceLocation(), SourceLocation(),
 | |
|                                       0, 0, false, false, false);
 | |
|   Enum->MayHaveOutOfDateDef = C.getLangOpts().Modules;
 | |
|   return Enum;
 | |
| }
 | |
| 
 | |
| void EnumDecl::completeDefinition(QualType NewType,
 | |
|                                   QualType NewPromotionType,
 | |
|                                   unsigned NumPositiveBits,
 | |
|                                   unsigned NumNegativeBits) {
 | |
|   assert(!isCompleteDefinition() && "Cannot redefine enums!");
 | |
|   if (!IntegerType)
 | |
|     IntegerType = NewType.getTypePtr();
 | |
|   PromotionType = NewPromotionType;
 | |
|   setNumPositiveBits(NumPositiveBits);
 | |
|   setNumNegativeBits(NumNegativeBits);
 | |
|   TagDecl::completeDefinition();
 | |
| }
 | |
| 
 | |
| TemplateSpecializationKind EnumDecl::getTemplateSpecializationKind() const {
 | |
|   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
 | |
|     return MSI->getTemplateSpecializationKind();
 | |
| 
 | |
|   return TSK_Undeclared;
 | |
| }
 | |
| 
 | |
| void EnumDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
 | |
|                                          SourceLocation PointOfInstantiation) {
 | |
|   MemberSpecializationInfo *MSI = getMemberSpecializationInfo();
 | |
|   assert(MSI && "Not an instantiated member enumeration?");
 | |
|   MSI->setTemplateSpecializationKind(TSK);
 | |
|   if (TSK != TSK_ExplicitSpecialization &&
 | |
|       PointOfInstantiation.isValid() &&
 | |
|       MSI->getPointOfInstantiation().isInvalid())
 | |
|     MSI->setPointOfInstantiation(PointOfInstantiation);
 | |
| }
 | |
| 
 | |
| EnumDecl *EnumDecl::getInstantiatedFromMemberEnum() const {
 | |
|   if (SpecializationInfo)
 | |
|     return cast<EnumDecl>(SpecializationInfo->getInstantiatedFrom());
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| void EnumDecl::setInstantiationOfMemberEnum(ASTContext &C, EnumDecl *ED,
 | |
|                                             TemplateSpecializationKind TSK) {
 | |
|   assert(!SpecializationInfo && "Member enum is already a specialization");
 | |
|   SpecializationInfo = new (C) MemberSpecializationInfo(ED, TSK);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // RecordDecl Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| RecordDecl::RecordDecl(Kind DK, TagKind TK, DeclContext *DC,
 | |
|                        SourceLocation StartLoc, SourceLocation IdLoc,
 | |
|                        IdentifierInfo *Id, RecordDecl *PrevDecl)
 | |
|   : TagDecl(DK, TK, DC, IdLoc, Id, PrevDecl, StartLoc) {
 | |
|   HasFlexibleArrayMember = false;
 | |
|   AnonymousStructOrUnion = false;
 | |
|   HasObjectMember = false;
 | |
|   HasVolatileMember = false;
 | |
|   LoadedFieldsFromExternalStorage = false;
 | |
|   assert(classof(static_cast<Decl*>(this)) && "Invalid Kind!");
 | |
| }
 | |
| 
 | |
| RecordDecl *RecordDecl::Create(const ASTContext &C, TagKind TK, DeclContext *DC,
 | |
|                                SourceLocation StartLoc, SourceLocation IdLoc,
 | |
|                                IdentifierInfo *Id, RecordDecl* PrevDecl) {
 | |
|   RecordDecl* R = new (C) RecordDecl(Record, TK, DC, StartLoc, IdLoc, Id,
 | |
|                                      PrevDecl);
 | |
|   R->MayHaveOutOfDateDef = C.getLangOpts().Modules;
 | |
| 
 | |
|   C.getTypeDeclType(R, PrevDecl);
 | |
|   return R;
 | |
| }
 | |
| 
 | |
| RecordDecl *RecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) {
 | |
|   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(RecordDecl));
 | |
|   RecordDecl *R = new (Mem) RecordDecl(Record, TTK_Struct, 0, SourceLocation(),
 | |
|                                        SourceLocation(), 0, 0);
 | |
|   R->MayHaveOutOfDateDef = C.getLangOpts().Modules;
 | |
|   return R;
 | |
| }
 | |
| 
 | |
| bool RecordDecl::isInjectedClassName() const {
 | |
|   return isImplicit() && getDeclName() && getDeclContext()->isRecord() &&
 | |
|     cast<RecordDecl>(getDeclContext())->getDeclName() == getDeclName();
 | |
| }
 | |
| 
 | |
| RecordDecl::field_iterator RecordDecl::field_begin() const {
 | |
|   if (hasExternalLexicalStorage() && !LoadedFieldsFromExternalStorage)
 | |
|     LoadFieldsFromExternalStorage();
 | |
| 
 | |
|   return field_iterator(decl_iterator(FirstDecl));
 | |
| }
 | |
| 
 | |
| /// completeDefinition - Notes that the definition of this type is now
 | |
| /// complete.
 | |
| void RecordDecl::completeDefinition() {
 | |
|   assert(!isCompleteDefinition() && "Cannot redefine record!");
 | |
|   TagDecl::completeDefinition();
 | |
| }
 | |
| 
 | |
| /// isMsStruct - Get whether or not this record uses ms_struct layout.
 | |
| /// This which can be turned on with an attribute, pragma, or the
 | |
| /// -mms-bitfields command-line option.
 | |
| bool RecordDecl::isMsStruct(const ASTContext &C) const {
 | |
|   return hasAttr<MsStructAttr>() || C.getLangOpts().MSBitfields == 1;
 | |
| }
 | |
| 
 | |
| static bool isFieldOrIndirectField(Decl::Kind K) {
 | |
|   return FieldDecl::classofKind(K) || IndirectFieldDecl::classofKind(K);
 | |
| }
 | |
| 
 | |
| void RecordDecl::LoadFieldsFromExternalStorage() const {
 | |
|   ExternalASTSource *Source = getASTContext().getExternalSource();
 | |
|   assert(hasExternalLexicalStorage() && Source && "No external storage?");
 | |
| 
 | |
|   // Notify that we have a RecordDecl doing some initialization.
 | |
|   ExternalASTSource::Deserializing TheFields(Source);
 | |
| 
 | |
|   SmallVector<Decl*, 64> Decls;
 | |
|   LoadedFieldsFromExternalStorage = true;  
 | |
|   switch (Source->FindExternalLexicalDecls(this, isFieldOrIndirectField,
 | |
|                                            Decls)) {
 | |
|   case ELR_Success:
 | |
|     break;
 | |
|     
 | |
|   case ELR_AlreadyLoaded:
 | |
|   case ELR_Failure:
 | |
|     return;
 | |
|   }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   // Check that all decls we got were FieldDecls.
 | |
|   for (unsigned i=0, e=Decls.size(); i != e; ++i)
 | |
|     assert(isa<FieldDecl>(Decls[i]) || isa<IndirectFieldDecl>(Decls[i]));
 | |
| #endif
 | |
| 
 | |
|   if (Decls.empty())
 | |
|     return;
 | |
| 
 | |
|   llvm::tie(FirstDecl, LastDecl) = BuildDeclChain(Decls,
 | |
|                                                  /*FieldsAlreadyLoaded=*/false);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // BlockDecl Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| void BlockDecl::setParams(ArrayRef<ParmVarDecl *> NewParamInfo) {
 | |
|   assert(ParamInfo == 0 && "Already has param info!");
 | |
| 
 | |
|   // Zero params -> null pointer.
 | |
|   if (!NewParamInfo.empty()) {
 | |
|     NumParams = NewParamInfo.size();
 | |
|     ParamInfo = new (getASTContext()) ParmVarDecl*[NewParamInfo.size()];
 | |
|     std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void BlockDecl::setCaptures(ASTContext &Context,
 | |
|                             const Capture *begin,
 | |
|                             const Capture *end,
 | |
|                             bool capturesCXXThis) {
 | |
|   CapturesCXXThis = capturesCXXThis;
 | |
| 
 | |
|   if (begin == end) {
 | |
|     NumCaptures = 0;
 | |
|     Captures = 0;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   NumCaptures = end - begin;
 | |
| 
 | |
|   // Avoid new Capture[] because we don't want to provide a default
 | |
|   // constructor.
 | |
|   size_t allocationSize = NumCaptures * sizeof(Capture);
 | |
|   void *buffer = Context.Allocate(allocationSize, /*alignment*/sizeof(void*));
 | |
|   memcpy(buffer, begin, allocationSize);
 | |
|   Captures = static_cast<Capture*>(buffer);
 | |
| }
 | |
| 
 | |
| bool BlockDecl::capturesVariable(const VarDecl *variable) const {
 | |
|   for (capture_const_iterator
 | |
|          i = capture_begin(), e = capture_end(); i != e; ++i)
 | |
|     // Only auto vars can be captured, so no redeclaration worries.
 | |
|     if (i->getVariable() == variable)
 | |
|       return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| SourceRange BlockDecl::getSourceRange() const {
 | |
|   return SourceRange(getLocation(), Body? Body->getLocEnd() : getLocation());
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Other Decl Allocation/Deallocation Method Implementations
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| void TranslationUnitDecl::anchor() { }
 | |
| 
 | |
| TranslationUnitDecl *TranslationUnitDecl::Create(ASTContext &C) {
 | |
|   return new (C) TranslationUnitDecl(C);
 | |
| }
 | |
| 
 | |
| void LabelDecl::anchor() { }
 | |
| 
 | |
| LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC,
 | |
|                              SourceLocation IdentL, IdentifierInfo *II) {
 | |
|   return new (C) LabelDecl(DC, IdentL, II, 0, IdentL);
 | |
| }
 | |
| 
 | |
| LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC,
 | |
|                              SourceLocation IdentL, IdentifierInfo *II,
 | |
|                              SourceLocation GnuLabelL) {
 | |
|   assert(GnuLabelL != IdentL && "Use this only for GNU local labels");
 | |
|   return new (C) LabelDecl(DC, IdentL, II, 0, GnuLabelL);
 | |
| }
 | |
| 
 | |
| LabelDecl *LabelDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
 | |
|   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(LabelDecl));
 | |
|   return new (Mem) LabelDecl(0, SourceLocation(), 0, 0, SourceLocation());
 | |
| }
 | |
| 
 | |
| void ValueDecl::anchor() { }
 | |
| 
 | |
| bool ValueDecl::isWeak() const {
 | |
|   for (attr_iterator I = attr_begin(), E = attr_end(); I != E; ++I)
 | |
|     if (isa<WeakAttr>(*I) || isa<WeakRefAttr>(*I))
 | |
|       return true;
 | |
| 
 | |
|   return isWeakImported();
 | |
| }
 | |
| 
 | |
| void ImplicitParamDecl::anchor() { }
 | |
| 
 | |
| ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, DeclContext *DC,
 | |
|                                              SourceLocation IdLoc,
 | |
|                                              IdentifierInfo *Id,
 | |
|                                              QualType Type) {
 | |
|   return new (C) ImplicitParamDecl(DC, IdLoc, Id, Type);
 | |
| }
 | |
| 
 | |
| ImplicitParamDecl *ImplicitParamDecl::CreateDeserialized(ASTContext &C, 
 | |
|                                                          unsigned ID) {
 | |
|   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(ImplicitParamDecl));
 | |
|   return new (Mem) ImplicitParamDecl(0, SourceLocation(), 0, QualType());
 | |
| }
 | |
| 
 | |
| FunctionDecl *FunctionDecl::Create(ASTContext &C, DeclContext *DC,
 | |
|                                    SourceLocation StartLoc,
 | |
|                                    const DeclarationNameInfo &NameInfo,
 | |
|                                    QualType T, TypeSourceInfo *TInfo,
 | |
|                                    StorageClass SC,
 | |
|                                    bool isInlineSpecified, 
 | |
|                                    bool hasWrittenPrototype,
 | |
|                                    bool isConstexprSpecified) {
 | |
|   FunctionDecl *New = new (C) FunctionDecl(Function, DC, StartLoc, NameInfo,
 | |
|                                            T, TInfo, SC,
 | |
|                                            isInlineSpecified,
 | |
|                                            isConstexprSpecified);
 | |
|   New->HasWrittenPrototype = hasWrittenPrototype;
 | |
|   return New;
 | |
| }
 | |
| 
 | |
| FunctionDecl *FunctionDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
 | |
|   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(FunctionDecl));
 | |
|   return new (Mem) FunctionDecl(Function, 0, SourceLocation(), 
 | |
|                                 DeclarationNameInfo(), QualType(), 0,
 | |
|                                 SC_None, false, false);
 | |
| }
 | |
| 
 | |
| BlockDecl *BlockDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) {
 | |
|   return new (C) BlockDecl(DC, L);
 | |
| }
 | |
| 
 | |
| BlockDecl *BlockDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
 | |
|   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(BlockDecl));
 | |
|   return new (Mem) BlockDecl(0, SourceLocation());
 | |
| }
 | |
| 
 | |
| MSPropertyDecl *MSPropertyDecl::CreateDeserialized(ASTContext &C,
 | |
|                                                    unsigned ID) {
 | |
|   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(MSPropertyDecl));
 | |
|   return new (Mem) MSPropertyDecl(0, SourceLocation(), DeclarationName(),
 | |
|                                   QualType(), 0, SourceLocation(),
 | |
|                                   0, 0);
 | |
| }
 | |
| 
 | |
| CapturedDecl *CapturedDecl::Create(ASTContext &C, DeclContext *DC,
 | |
|                                    unsigned NumParams) {
 | |
|   unsigned Size = sizeof(CapturedDecl) + NumParams * sizeof(ImplicitParamDecl*);
 | |
|   return new (C.Allocate(Size)) CapturedDecl(DC, NumParams);
 | |
| }
 | |
| 
 | |
| CapturedDecl *CapturedDecl::CreateDeserialized(ASTContext &C, unsigned ID,
 | |
|                                    unsigned NumParams) {
 | |
|   unsigned Size = sizeof(CapturedDecl) + NumParams * sizeof(ImplicitParamDecl*);
 | |
|   void *Mem = AllocateDeserializedDecl(C, ID, Size);
 | |
|   return new (Mem) CapturedDecl(0, NumParams);
 | |
| }
 | |
| 
 | |
| EnumConstantDecl *EnumConstantDecl::Create(ASTContext &C, EnumDecl *CD,
 | |
|                                            SourceLocation L,
 | |
|                                            IdentifierInfo *Id, QualType T,
 | |
|                                            Expr *E, const llvm::APSInt &V) {
 | |
|   return new (C) EnumConstantDecl(CD, L, Id, T, E, V);
 | |
| }
 | |
| 
 | |
| EnumConstantDecl *
 | |
| EnumConstantDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
 | |
|   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(EnumConstantDecl));
 | |
|   return new (Mem) EnumConstantDecl(0, SourceLocation(), 0, QualType(), 0, 
 | |
|                                     llvm::APSInt());
 | |
| }
 | |
| 
 | |
| void IndirectFieldDecl::anchor() { }
 | |
| 
 | |
| IndirectFieldDecl *
 | |
| IndirectFieldDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L,
 | |
|                           IdentifierInfo *Id, QualType T, NamedDecl **CH,
 | |
|                           unsigned CHS) {
 | |
|   return new (C) IndirectFieldDecl(DC, L, Id, T, CH, CHS);
 | |
| }
 | |
| 
 | |
| IndirectFieldDecl *IndirectFieldDecl::CreateDeserialized(ASTContext &C,
 | |
|                                                          unsigned ID) {
 | |
|   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(IndirectFieldDecl));
 | |
|   return new (Mem) IndirectFieldDecl(0, SourceLocation(), DeclarationName(),
 | |
|                                      QualType(), 0, 0);
 | |
| }
 | |
| 
 | |
| SourceRange EnumConstantDecl::getSourceRange() const {
 | |
|   SourceLocation End = getLocation();
 | |
|   if (Init)
 | |
|     End = Init->getLocEnd();
 | |
|   return SourceRange(getLocation(), End);
 | |
| }
 | |
| 
 | |
| void TypeDecl::anchor() { }
 | |
| 
 | |
| TypedefDecl *TypedefDecl::Create(ASTContext &C, DeclContext *DC,
 | |
|                                  SourceLocation StartLoc, SourceLocation IdLoc,
 | |
|                                  IdentifierInfo *Id, TypeSourceInfo *TInfo) {
 | |
|   return new (C) TypedefDecl(DC, StartLoc, IdLoc, Id, TInfo);
 | |
| }
 | |
| 
 | |
| void TypedefNameDecl::anchor() { }
 | |
| 
 | |
| TypedefDecl *TypedefDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
 | |
|   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(TypedefDecl));
 | |
|   return new (Mem) TypedefDecl(0, SourceLocation(), SourceLocation(), 0, 0);
 | |
| }
 | |
| 
 | |
| TypeAliasDecl *TypeAliasDecl::Create(ASTContext &C, DeclContext *DC,
 | |
|                                      SourceLocation StartLoc,
 | |
|                                      SourceLocation IdLoc, IdentifierInfo *Id,
 | |
|                                      TypeSourceInfo *TInfo) {
 | |
|   return new (C) TypeAliasDecl(DC, StartLoc, IdLoc, Id, TInfo);
 | |
| }
 | |
| 
 | |
| TypeAliasDecl *TypeAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
 | |
|   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(TypeAliasDecl));
 | |
|   return new (Mem) TypeAliasDecl(0, SourceLocation(), SourceLocation(), 0, 0);
 | |
| }
 | |
| 
 | |
| SourceRange TypedefDecl::getSourceRange() const {
 | |
|   SourceLocation RangeEnd = getLocation();
 | |
|   if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
 | |
|     if (typeIsPostfix(TInfo->getType()))
 | |
|       RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
 | |
|   }
 | |
|   return SourceRange(getLocStart(), RangeEnd);
 | |
| }
 | |
| 
 | |
| SourceRange TypeAliasDecl::getSourceRange() const {
 | |
|   SourceLocation RangeEnd = getLocStart();
 | |
|   if (TypeSourceInfo *TInfo = getTypeSourceInfo())
 | |
|     RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
 | |
|   return SourceRange(getLocStart(), RangeEnd);
 | |
| }
 | |
| 
 | |
| void FileScopeAsmDecl::anchor() { }
 | |
| 
 | |
| FileScopeAsmDecl *FileScopeAsmDecl::Create(ASTContext &C, DeclContext *DC,
 | |
|                                            StringLiteral *Str,
 | |
|                                            SourceLocation AsmLoc,
 | |
|                                            SourceLocation RParenLoc) {
 | |
|   return new (C) FileScopeAsmDecl(DC, Str, AsmLoc, RParenLoc);
 | |
| }
 | |
| 
 | |
| FileScopeAsmDecl *FileScopeAsmDecl::CreateDeserialized(ASTContext &C, 
 | |
|                                                        unsigned ID) {
 | |
|   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(FileScopeAsmDecl));
 | |
|   return new (Mem) FileScopeAsmDecl(0, 0, SourceLocation(), SourceLocation());
 | |
| }
 | |
| 
 | |
| void EmptyDecl::anchor() {}
 | |
| 
 | |
| EmptyDecl *EmptyDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) {
 | |
|   return new (C) EmptyDecl(DC, L);
 | |
| }
 | |
| 
 | |
| EmptyDecl *EmptyDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
 | |
|   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(EmptyDecl));
 | |
|   return new (Mem) EmptyDecl(0, SourceLocation());
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // ImportDecl Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// \brief Retrieve the number of module identifiers needed to name the given
 | |
| /// module.
 | |
| static unsigned getNumModuleIdentifiers(Module *Mod) {
 | |
|   unsigned Result = 1;
 | |
|   while (Mod->Parent) {
 | |
|     Mod = Mod->Parent;
 | |
|     ++Result;
 | |
|   }
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc, 
 | |
|                        Module *Imported,
 | |
|                        ArrayRef<SourceLocation> IdentifierLocs)
 | |
|   : Decl(Import, DC, StartLoc), ImportedAndComplete(Imported, true),
 | |
|     NextLocalImport()
 | |
| {
 | |
|   assert(getNumModuleIdentifiers(Imported) == IdentifierLocs.size());
 | |
|   SourceLocation *StoredLocs = reinterpret_cast<SourceLocation *>(this + 1);
 | |
|   memcpy(StoredLocs, IdentifierLocs.data(), 
 | |
|          IdentifierLocs.size() * sizeof(SourceLocation));
 | |
| }
 | |
| 
 | |
| ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc, 
 | |
|                        Module *Imported, SourceLocation EndLoc)
 | |
|   : Decl(Import, DC, StartLoc), ImportedAndComplete(Imported, false),
 | |
|     NextLocalImport()
 | |
| {
 | |
|   *reinterpret_cast<SourceLocation *>(this + 1) = EndLoc;
 | |
| }
 | |
| 
 | |
| ImportDecl *ImportDecl::Create(ASTContext &C, DeclContext *DC, 
 | |
|                                SourceLocation StartLoc, Module *Imported,
 | |
|                                ArrayRef<SourceLocation> IdentifierLocs) {
 | |
|   void *Mem = C.Allocate(sizeof(ImportDecl) + 
 | |
|                          IdentifierLocs.size() * sizeof(SourceLocation));
 | |
|   return new (Mem) ImportDecl(DC, StartLoc, Imported, IdentifierLocs);
 | |
| }
 | |
| 
 | |
| ImportDecl *ImportDecl::CreateImplicit(ASTContext &C, DeclContext *DC, 
 | |
|                                        SourceLocation StartLoc,
 | |
|                                        Module *Imported, 
 | |
|                                        SourceLocation EndLoc) {
 | |
|   void *Mem = C.Allocate(sizeof(ImportDecl) + sizeof(SourceLocation));
 | |
|   ImportDecl *Import = new (Mem) ImportDecl(DC, StartLoc, Imported, EndLoc);
 | |
|   Import->setImplicit();
 | |
|   return Import;
 | |
| }
 | |
| 
 | |
| ImportDecl *ImportDecl::CreateDeserialized(ASTContext &C, unsigned ID,
 | |
|                                            unsigned NumLocations) {
 | |
|   void *Mem = AllocateDeserializedDecl(C, ID, 
 | |
|                                        (sizeof(ImportDecl) + 
 | |
|                                         NumLocations * sizeof(SourceLocation)));
 | |
|   return new (Mem) ImportDecl(EmptyShell());  
 | |
| }
 | |
| 
 | |
| ArrayRef<SourceLocation> ImportDecl::getIdentifierLocs() const {
 | |
|   if (!ImportedAndComplete.getInt())
 | |
|     return None;
 | |
| 
 | |
|   const SourceLocation *StoredLocs
 | |
|     = reinterpret_cast<const SourceLocation *>(this + 1);
 | |
|   return ArrayRef<SourceLocation>(StoredLocs, 
 | |
|                                   getNumModuleIdentifiers(getImportedModule()));
 | |
| }
 | |
| 
 | |
| SourceRange ImportDecl::getSourceRange() const {
 | |
|   if (!ImportedAndComplete.getInt())
 | |
|     return SourceRange(getLocation(), 
 | |
|                        *reinterpret_cast<const SourceLocation *>(this + 1));
 | |
|   
 | |
|   return SourceRange(getLocation(), getIdentifierLocs().back());
 | |
| }
 | 
