2136 lines
		
	
	
		
			84 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2136 lines
		
	
	
		
			84 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===--- DeclCXX.cpp - C++ Declaration AST Node Implementation ------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the C++ related Decl classes.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| #include "clang/AST/DeclCXX.h"
 | |
| #include "clang/AST/ASTContext.h"
 | |
| #include "clang/AST/ASTLambda.h"
 | |
| #include "clang/AST/ASTMutationListener.h"
 | |
| #include "clang/AST/CXXInheritance.h"
 | |
| #include "clang/AST/DeclTemplate.h"
 | |
| #include "clang/AST/Expr.h"
 | |
| #include "clang/AST/ExprCXX.h"
 | |
| #include "clang/AST/TypeLoc.h"
 | |
| #include "clang/Basic/IdentifierTable.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| using namespace clang;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Decl Allocation/Deallocation Method Implementations
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| void AccessSpecDecl::anchor() { }
 | |
| 
 | |
| AccessSpecDecl *AccessSpecDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
 | |
|   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(AccessSpecDecl));
 | |
|   return new (Mem) AccessSpecDecl(EmptyShell());
 | |
| }
 | |
| 
 | |
| void LazyASTUnresolvedSet::getFromExternalSource(ASTContext &C) const {
 | |
|   ExternalASTSource *Source = C.getExternalSource();
 | |
|   assert(Impl.Decls.isLazy() && "getFromExternalSource for non-lazy set");
 | |
|   assert(Source && "getFromExternalSource with no external source");
 | |
| 
 | |
|   for (ASTUnresolvedSet::iterator I = Impl.begin(); I != Impl.end(); ++I)
 | |
|     I.setDecl(cast<NamedDecl>(Source->GetExternalDecl(
 | |
|         reinterpret_cast<uintptr_t>(I.getDecl()) >> 2)));
 | |
|   Impl.Decls.setLazy(false);
 | |
| }
 | |
| 
 | |
| CXXRecordDecl::DefinitionData::DefinitionData(CXXRecordDecl *D)
 | |
|   : UserDeclaredConstructor(false), UserDeclaredSpecialMembers(0),
 | |
|     Aggregate(true), PlainOldData(true), Empty(true), Polymorphic(false),
 | |
|     Abstract(false), IsStandardLayout(true), HasNoNonEmptyBases(true),
 | |
|     HasPrivateFields(false), HasProtectedFields(false), HasPublicFields(false),
 | |
|     HasMutableFields(false), HasOnlyCMembers(true),
 | |
|     HasInClassInitializer(false), HasUninitializedReferenceMember(false),
 | |
|     NeedOverloadResolutionForMoveConstructor(false),
 | |
|     NeedOverloadResolutionForMoveAssignment(false),
 | |
|     NeedOverloadResolutionForDestructor(false),
 | |
|     DefaultedMoveConstructorIsDeleted(false),
 | |
|     DefaultedMoveAssignmentIsDeleted(false),
 | |
|     DefaultedDestructorIsDeleted(false),
 | |
|     HasTrivialSpecialMembers(SMF_All),
 | |
|     DeclaredNonTrivialSpecialMembers(0),
 | |
|     HasIrrelevantDestructor(true),
 | |
|     HasConstexprNonCopyMoveConstructor(false),
 | |
|     DefaultedDefaultConstructorIsConstexpr(true),
 | |
|     HasConstexprDefaultConstructor(false),
 | |
|     HasNonLiteralTypeFieldsOrBases(false), ComputedVisibleConversions(false),
 | |
|     UserProvidedDefaultConstructor(false), DeclaredSpecialMembers(0),
 | |
|     ImplicitCopyConstructorHasConstParam(true),
 | |
|     ImplicitCopyAssignmentHasConstParam(true),
 | |
|     HasDeclaredCopyConstructorWithConstParam(false),
 | |
|     HasDeclaredCopyAssignmentWithConstParam(false),
 | |
|     IsLambda(false), NumBases(0), NumVBases(0), Bases(), VBases(),
 | |
|     Definition(D), FirstFriend() {
 | |
| }
 | |
| 
 | |
| CXXBaseSpecifier *CXXRecordDecl::DefinitionData::getBasesSlowCase() const {
 | |
|   return Bases.get(Definition->getASTContext().getExternalSource());
 | |
| }
 | |
| 
 | |
| CXXBaseSpecifier *CXXRecordDecl::DefinitionData::getVBasesSlowCase() const {
 | |
|   return VBases.get(Definition->getASTContext().getExternalSource());
 | |
| }
 | |
| 
 | |
| CXXRecordDecl::CXXRecordDecl(Kind K, TagKind TK, DeclContext *DC,
 | |
|                              SourceLocation StartLoc, SourceLocation IdLoc,
 | |
|                              IdentifierInfo *Id, CXXRecordDecl *PrevDecl)
 | |
|   : RecordDecl(K, TK, DC, StartLoc, IdLoc, Id, PrevDecl),
 | |
|     DefinitionData(PrevDecl ? PrevDecl->DefinitionData : 0),
 | |
|     TemplateOrInstantiation() { }
 | |
| 
 | |
| CXXRecordDecl *CXXRecordDecl::Create(const ASTContext &C, TagKind TK,
 | |
|                                      DeclContext *DC, SourceLocation StartLoc,
 | |
|                                      SourceLocation IdLoc, IdentifierInfo *Id,
 | |
|                                      CXXRecordDecl* PrevDecl,
 | |
|                                      bool DelayTypeCreation) {
 | |
|   CXXRecordDecl* R = new (C) CXXRecordDecl(CXXRecord, TK, DC, StartLoc, IdLoc,
 | |
|                                            Id, PrevDecl);
 | |
|   R->MayHaveOutOfDateDef = C.getLangOpts().Modules;
 | |
| 
 | |
|   // FIXME: DelayTypeCreation seems like such a hack
 | |
|   if (!DelayTypeCreation)
 | |
|     C.getTypeDeclType(R, PrevDecl);
 | |
|   return R;
 | |
| }
 | |
| 
 | |
| CXXRecordDecl *CXXRecordDecl::CreateLambda(const ASTContext &C, DeclContext *DC,
 | |
|                                            TypeSourceInfo *Info, SourceLocation Loc,
 | |
|                                            bool Dependent, bool IsGeneric, 
 | |
|                                            LambdaCaptureDefault CaptureDefault) {
 | |
|   CXXRecordDecl* R = new (C) CXXRecordDecl(CXXRecord, TTK_Class, DC, Loc, Loc,
 | |
|                                            0, 0);
 | |
|   R->IsBeingDefined = true;
 | |
|   R->DefinitionData = new (C) struct LambdaDefinitionData(R, Info, 
 | |
|                                                           Dependent, 
 | |
|                                                           IsGeneric, 
 | |
|                                                           CaptureDefault);
 | |
|   R->MayHaveOutOfDateDef = false;
 | |
|   R->setImplicit(true);
 | |
|   C.getTypeDeclType(R, /*PrevDecl=*/0);
 | |
|   return R;
 | |
| }
 | |
| 
 | |
| CXXRecordDecl *
 | |
| CXXRecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) {
 | |
|   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(CXXRecordDecl));
 | |
|   CXXRecordDecl *R = new (Mem) CXXRecordDecl(CXXRecord, TTK_Struct, 0,
 | |
|                                              SourceLocation(), SourceLocation(),
 | |
|                                              0, 0);
 | |
|   R->MayHaveOutOfDateDef = false;
 | |
|   return R;
 | |
| }
 | |
| 
 | |
| void
 | |
| CXXRecordDecl::setBases(CXXBaseSpecifier const * const *Bases,
 | |
|                         unsigned NumBases) {
 | |
|   ASTContext &C = getASTContext();
 | |
| 
 | |
|   if (!data().Bases.isOffset() && data().NumBases > 0)
 | |
|     C.Deallocate(data().getBases());
 | |
| 
 | |
|   if (NumBases) {
 | |
|     // C++ [dcl.init.aggr]p1:
 | |
|     //   An aggregate is [...] a class with [...] no base classes [...].
 | |
|     data().Aggregate = false;
 | |
| 
 | |
|     // C++ [class]p4:
 | |
|     //   A POD-struct is an aggregate class...
 | |
|     data().PlainOldData = false;
 | |
|   }
 | |
| 
 | |
|   // The set of seen virtual base types.
 | |
|   llvm::SmallPtrSet<CanQualType, 8> SeenVBaseTypes;
 | |
|   
 | |
|   // The virtual bases of this class.
 | |
|   SmallVector<const CXXBaseSpecifier *, 8> VBases;
 | |
| 
 | |
|   data().Bases = new(C) CXXBaseSpecifier [NumBases];
 | |
|   data().NumBases = NumBases;
 | |
|   for (unsigned i = 0; i < NumBases; ++i) {
 | |
|     data().getBases()[i] = *Bases[i];
 | |
|     // Keep track of inherited vbases for this base class.
 | |
|     const CXXBaseSpecifier *Base = Bases[i];
 | |
|     QualType BaseType = Base->getType();
 | |
|     // Skip dependent types; we can't do any checking on them now.
 | |
|     if (BaseType->isDependentType())
 | |
|       continue;
 | |
|     CXXRecordDecl *BaseClassDecl
 | |
|       = cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl());
 | |
| 
 | |
|     // A class with a non-empty base class is not empty.
 | |
|     // FIXME: Standard ref?
 | |
|     if (!BaseClassDecl->isEmpty()) {
 | |
|       if (!data().Empty) {
 | |
|         // C++0x [class]p7:
 | |
|         //   A standard-layout class is a class that:
 | |
|         //    [...]
 | |
|         //    -- either has no non-static data members in the most derived
 | |
|         //       class and at most one base class with non-static data members,
 | |
|         //       or has no base classes with non-static data members, and
 | |
|         // If this is the second non-empty base, then neither of these two
 | |
|         // clauses can be true.
 | |
|         data().IsStandardLayout = false;
 | |
|       }
 | |
| 
 | |
|       data().Empty = false;
 | |
|       data().HasNoNonEmptyBases = false;
 | |
|     }
 | |
|     
 | |
|     // C++ [class.virtual]p1:
 | |
|     //   A class that declares or inherits a virtual function is called a 
 | |
|     //   polymorphic class.
 | |
|     if (BaseClassDecl->isPolymorphic())
 | |
|       data().Polymorphic = true;
 | |
| 
 | |
|     // C++0x [class]p7:
 | |
|     //   A standard-layout class is a class that: [...]
 | |
|     //    -- has no non-standard-layout base classes
 | |
|     if (!BaseClassDecl->isStandardLayout())
 | |
|       data().IsStandardLayout = false;
 | |
| 
 | |
|     // Record if this base is the first non-literal field or base.
 | |
|     if (!hasNonLiteralTypeFieldsOrBases() && !BaseType->isLiteralType(C))
 | |
|       data().HasNonLiteralTypeFieldsOrBases = true;
 | |
|     
 | |
|     // Now go through all virtual bases of this base and add them.
 | |
|     for (CXXRecordDecl::base_class_iterator VBase =
 | |
|           BaseClassDecl->vbases_begin(),
 | |
|          E = BaseClassDecl->vbases_end(); VBase != E; ++VBase) {
 | |
|       // Add this base if it's not already in the list.
 | |
|       if (SeenVBaseTypes.insert(C.getCanonicalType(VBase->getType()))) {
 | |
|         VBases.push_back(VBase);
 | |
| 
 | |
|         // C++11 [class.copy]p8:
 | |
|         //   The implicitly-declared copy constructor for a class X will have
 | |
|         //   the form 'X::X(const X&)' if each [...] virtual base class B of X
 | |
|         //   has a copy constructor whose first parameter is of type
 | |
|         //   'const B&' or 'const volatile B&' [...]
 | |
|         if (CXXRecordDecl *VBaseDecl = VBase->getType()->getAsCXXRecordDecl())
 | |
|           if (!VBaseDecl->hasCopyConstructorWithConstParam())
 | |
|             data().ImplicitCopyConstructorHasConstParam = false;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (Base->isVirtual()) {
 | |
|       // Add this base if it's not already in the list.
 | |
|       if (SeenVBaseTypes.insert(C.getCanonicalType(BaseType)))
 | |
|         VBases.push_back(Base);
 | |
| 
 | |
|       // C++0x [meta.unary.prop] is_empty:
 | |
|       //    T is a class type, but not a union type, with ... no virtual base
 | |
|       //    classes
 | |
|       data().Empty = false;
 | |
| 
 | |
|       // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25:
 | |
|       //   A [default constructor, copy/move constructor, or copy/move assignment
 | |
|       //   operator for a class X] is trivial [...] if:
 | |
|       //    -- class X has [...] no virtual base classes
 | |
|       data().HasTrivialSpecialMembers &= SMF_Destructor;
 | |
| 
 | |
|       // C++0x [class]p7:
 | |
|       //   A standard-layout class is a class that: [...]
 | |
|       //    -- has [...] no virtual base classes
 | |
|       data().IsStandardLayout = false;
 | |
| 
 | |
|       // C++11 [dcl.constexpr]p4:
 | |
|       //   In the definition of a constexpr constructor [...]
 | |
|       //    -- the class shall not have any virtual base classes
 | |
|       data().DefaultedDefaultConstructorIsConstexpr = false;
 | |
|     } else {
 | |
|       // C++ [class.ctor]p5:
 | |
|       //   A default constructor is trivial [...] if:
 | |
|       //    -- all the direct base classes of its class have trivial default
 | |
|       //       constructors.
 | |
|       if (!BaseClassDecl->hasTrivialDefaultConstructor())
 | |
|         data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor;
 | |
| 
 | |
|       // C++0x [class.copy]p13:
 | |
|       //   A copy/move constructor for class X is trivial if [...]
 | |
|       //    [...]
 | |
|       //    -- the constructor selected to copy/move each direct base class
 | |
|       //       subobject is trivial, and
 | |
|       if (!BaseClassDecl->hasTrivialCopyConstructor())
 | |
|         data().HasTrivialSpecialMembers &= ~SMF_CopyConstructor;
 | |
|       // If the base class doesn't have a simple move constructor, we'll eagerly
 | |
|       // declare it and perform overload resolution to determine which function
 | |
|       // it actually calls. If it does have a simple move constructor, this
 | |
|       // check is correct.
 | |
|       if (!BaseClassDecl->hasTrivialMoveConstructor())
 | |
|         data().HasTrivialSpecialMembers &= ~SMF_MoveConstructor;
 | |
| 
 | |
|       // C++0x [class.copy]p27:
 | |
|       //   A copy/move assignment operator for class X is trivial if [...]
 | |
|       //    [...]
 | |
|       //    -- the assignment operator selected to copy/move each direct base
 | |
|       //       class subobject is trivial, and
 | |
|       if (!BaseClassDecl->hasTrivialCopyAssignment())
 | |
|         data().HasTrivialSpecialMembers &= ~SMF_CopyAssignment;
 | |
|       // If the base class doesn't have a simple move assignment, we'll eagerly
 | |
|       // declare it and perform overload resolution to determine which function
 | |
|       // it actually calls. If it does have a simple move assignment, this
 | |
|       // check is correct.
 | |
|       if (!BaseClassDecl->hasTrivialMoveAssignment())
 | |
|         data().HasTrivialSpecialMembers &= ~SMF_MoveAssignment;
 | |
| 
 | |
|       // C++11 [class.ctor]p6:
 | |
|       //   If that user-written default constructor would satisfy the
 | |
|       //   requirements of a constexpr constructor, the implicitly-defined
 | |
|       //   default constructor is constexpr.
 | |
|       if (!BaseClassDecl->hasConstexprDefaultConstructor())
 | |
|         data().DefaultedDefaultConstructorIsConstexpr = false;
 | |
|     }
 | |
| 
 | |
|     // C++ [class.ctor]p3:
 | |
|     //   A destructor is trivial if all the direct base classes of its class
 | |
|     //   have trivial destructors.
 | |
|     if (!BaseClassDecl->hasTrivialDestructor())
 | |
|       data().HasTrivialSpecialMembers &= ~SMF_Destructor;
 | |
| 
 | |
|     if (!BaseClassDecl->hasIrrelevantDestructor())
 | |
|       data().HasIrrelevantDestructor = false;
 | |
| 
 | |
|     // C++11 [class.copy]p18:
 | |
|     //   The implicitly-declared copy assignment oeprator for a class X will
 | |
|     //   have the form 'X& X::operator=(const X&)' if each direct base class B
 | |
|     //   of X has a copy assignment operator whose parameter is of type 'const
 | |
|     //   B&', 'const volatile B&', or 'B' [...]
 | |
|     if (!BaseClassDecl->hasCopyAssignmentWithConstParam())
 | |
|       data().ImplicitCopyAssignmentHasConstParam = false;
 | |
| 
 | |
|     // C++11 [class.copy]p8:
 | |
|     //   The implicitly-declared copy constructor for a class X will have
 | |
|     //   the form 'X::X(const X&)' if each direct [...] base class B of X
 | |
|     //   has a copy constructor whose first parameter is of type
 | |
|     //   'const B&' or 'const volatile B&' [...]
 | |
|     if (!BaseClassDecl->hasCopyConstructorWithConstParam())
 | |
|       data().ImplicitCopyConstructorHasConstParam = false;
 | |
| 
 | |
|     // A class has an Objective-C object member if... or any of its bases
 | |
|     // has an Objective-C object member.
 | |
|     if (BaseClassDecl->hasObjectMember())
 | |
|       setHasObjectMember(true);
 | |
|     
 | |
|     if (BaseClassDecl->hasVolatileMember())
 | |
|       setHasVolatileMember(true);
 | |
| 
 | |
|     // Keep track of the presence of mutable fields.
 | |
|     if (BaseClassDecl->hasMutableFields())
 | |
|       data().HasMutableFields = true;
 | |
| 
 | |
|     if (BaseClassDecl->hasUninitializedReferenceMember())
 | |
|       data().HasUninitializedReferenceMember = true;
 | |
| 
 | |
|     addedClassSubobject(BaseClassDecl);
 | |
|   }
 | |
|   
 | |
|   if (VBases.empty())
 | |
|     return;
 | |
| 
 | |
|   // Create base specifier for any direct or indirect virtual bases.
 | |
|   data().VBases = new (C) CXXBaseSpecifier[VBases.size()];
 | |
|   data().NumVBases = VBases.size();
 | |
|   for (int I = 0, E = VBases.size(); I != E; ++I) {
 | |
|     QualType Type = VBases[I]->getType();
 | |
|     if (!Type->isDependentType())
 | |
|       addedClassSubobject(Type->getAsCXXRecordDecl());
 | |
|     data().getVBases()[I] = *VBases[I];
 | |
|   }
 | |
| }
 | |
| 
 | |
| void CXXRecordDecl::addedClassSubobject(CXXRecordDecl *Subobj) {
 | |
|   // C++11 [class.copy]p11:
 | |
|   //   A defaulted copy/move constructor for a class X is defined as
 | |
|   //   deleted if X has:
 | |
|   //    -- a direct or virtual base class B that cannot be copied/moved [...]
 | |
|   //    -- a non-static data member of class type M (or array thereof)
 | |
|   //       that cannot be copied or moved [...]
 | |
|   if (!Subobj->hasSimpleMoveConstructor())
 | |
|     data().NeedOverloadResolutionForMoveConstructor = true;
 | |
| 
 | |
|   // C++11 [class.copy]p23:
 | |
|   //   A defaulted copy/move assignment operator for a class X is defined as
 | |
|   //   deleted if X has:
 | |
|   //    -- a direct or virtual base class B that cannot be copied/moved [...]
 | |
|   //    -- a non-static data member of class type M (or array thereof)
 | |
|   //        that cannot be copied or moved [...]
 | |
|   if (!Subobj->hasSimpleMoveAssignment())
 | |
|     data().NeedOverloadResolutionForMoveAssignment = true;
 | |
| 
 | |
|   // C++11 [class.ctor]p5, C++11 [class.copy]p11, C++11 [class.dtor]p5:
 | |
|   //   A defaulted [ctor or dtor] for a class X is defined as
 | |
|   //   deleted if X has:
 | |
|   //    -- any direct or virtual base class [...] has a type with a destructor
 | |
|   //       that is deleted or inaccessible from the defaulted [ctor or dtor].
 | |
|   //    -- any non-static data member has a type with a destructor
 | |
|   //       that is deleted or inaccessible from the defaulted [ctor or dtor].
 | |
|   if (!Subobj->hasSimpleDestructor()) {
 | |
|     data().NeedOverloadResolutionForMoveConstructor = true;
 | |
|     data().NeedOverloadResolutionForDestructor = true;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Callback function for CXXRecordDecl::forallBases that acknowledges
 | |
| /// that it saw a base class.
 | |
| static bool SawBase(const CXXRecordDecl *, void *) {
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool CXXRecordDecl::hasAnyDependentBases() const {
 | |
|   if (!isDependentContext())
 | |
|     return false;
 | |
| 
 | |
|   return !forallBases(SawBase, 0);
 | |
| }
 | |
| 
 | |
| bool CXXRecordDecl::isTriviallyCopyable() const {
 | |
|   // C++0x [class]p5:
 | |
|   //   A trivially copyable class is a class that:
 | |
|   //   -- has no non-trivial copy constructors,
 | |
|   if (hasNonTrivialCopyConstructor()) return false;
 | |
|   //   -- has no non-trivial move constructors,
 | |
|   if (hasNonTrivialMoveConstructor()) return false;
 | |
|   //   -- has no non-trivial copy assignment operators,
 | |
|   if (hasNonTrivialCopyAssignment()) return false;
 | |
|   //   -- has no non-trivial move assignment operators, and
 | |
|   if (hasNonTrivialMoveAssignment()) return false;
 | |
|   //   -- has a trivial destructor.
 | |
|   if (!hasTrivialDestructor()) return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void CXXRecordDecl::markedVirtualFunctionPure() {
 | |
|   // C++ [class.abstract]p2: 
 | |
|   //   A class is abstract if it has at least one pure virtual function.
 | |
|   data().Abstract = true;
 | |
| }
 | |
| 
 | |
| void CXXRecordDecl::addedMember(Decl *D) {
 | |
|   if (!D->isImplicit() &&
 | |
|       !isa<FieldDecl>(D) &&
 | |
|       !isa<IndirectFieldDecl>(D) &&
 | |
|       (!isa<TagDecl>(D) || cast<TagDecl>(D)->getTagKind() == TTK_Class ||
 | |
|         cast<TagDecl>(D)->getTagKind() == TTK_Interface))
 | |
|     data().HasOnlyCMembers = false;
 | |
| 
 | |
|   // Ignore friends and invalid declarations.
 | |
|   if (D->getFriendObjectKind() || D->isInvalidDecl())
 | |
|     return;
 | |
|   
 | |
|   FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D);
 | |
|   if (FunTmpl)
 | |
|     D = FunTmpl->getTemplatedDecl();
 | |
|   
 | |
|   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
 | |
|     if (Method->isVirtual()) {
 | |
|       // C++ [dcl.init.aggr]p1:
 | |
|       //   An aggregate is an array or a class with [...] no virtual functions.
 | |
|       data().Aggregate = false;
 | |
|       
 | |
|       // C++ [class]p4:
 | |
|       //   A POD-struct is an aggregate class...
 | |
|       data().PlainOldData = false;
 | |
|       
 | |
|       // Virtual functions make the class non-empty.
 | |
|       // FIXME: Standard ref?
 | |
|       data().Empty = false;
 | |
| 
 | |
|       // C++ [class.virtual]p1:
 | |
|       //   A class that declares or inherits a virtual function is called a 
 | |
|       //   polymorphic class.
 | |
|       data().Polymorphic = true;
 | |
| 
 | |
|       // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25:
 | |
|       //   A [default constructor, copy/move constructor, or copy/move
 | |
|       //   assignment operator for a class X] is trivial [...] if:
 | |
|       //    -- class X has no virtual functions [...]
 | |
|       data().HasTrivialSpecialMembers &= SMF_Destructor;
 | |
| 
 | |
|       // C++0x [class]p7:
 | |
|       //   A standard-layout class is a class that: [...]
 | |
|       //    -- has no virtual functions
 | |
|       data().IsStandardLayout = false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Notify the listener if an implicit member was added after the definition
 | |
|   // was completed.
 | |
|   if (!isBeingDefined() && D->isImplicit())
 | |
|     if (ASTMutationListener *L = getASTMutationListener())
 | |
|       L->AddedCXXImplicitMember(data().Definition, D);
 | |
| 
 | |
|   // The kind of special member this declaration is, if any.
 | |
|   unsigned SMKind = 0;
 | |
| 
 | |
|   // Handle constructors.
 | |
|   if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
 | |
|     if (!Constructor->isImplicit()) {
 | |
|       // Note that we have a user-declared constructor.
 | |
|       data().UserDeclaredConstructor = true;
 | |
| 
 | |
|       // C++ [class]p4:
 | |
|       //   A POD-struct is an aggregate class [...]
 | |
|       // Since the POD bit is meant to be C++03 POD-ness, clear it even if the
 | |
|       // type is technically an aggregate in C++0x since it wouldn't be in 03.
 | |
|       data().PlainOldData = false;
 | |
|     }
 | |
| 
 | |
|     // Technically, "user-provided" is only defined for special member
 | |
|     // functions, but the intent of the standard is clearly that it should apply
 | |
|     // to all functions.
 | |
|     bool UserProvided = Constructor->isUserProvided();
 | |
| 
 | |
|     if (Constructor->isDefaultConstructor()) {
 | |
|       SMKind |= SMF_DefaultConstructor;
 | |
| 
 | |
|       if (UserProvided)
 | |
|         data().UserProvidedDefaultConstructor = true;
 | |
|       if (Constructor->isConstexpr())
 | |
|         data().HasConstexprDefaultConstructor = true;
 | |
|     }
 | |
| 
 | |
|     if (!FunTmpl) {
 | |
|       unsigned Quals;
 | |
|       if (Constructor->isCopyConstructor(Quals)) {
 | |
|         SMKind |= SMF_CopyConstructor;
 | |
| 
 | |
|         if (Quals & Qualifiers::Const)
 | |
|           data().HasDeclaredCopyConstructorWithConstParam = true;
 | |
|       } else if (Constructor->isMoveConstructor())
 | |
|         SMKind |= SMF_MoveConstructor;
 | |
|     }
 | |
| 
 | |
|     // Record if we see any constexpr constructors which are neither copy
 | |
|     // nor move constructors.
 | |
|     if (Constructor->isConstexpr() && !Constructor->isCopyOrMoveConstructor())
 | |
|       data().HasConstexprNonCopyMoveConstructor = true;
 | |
| 
 | |
|     // C++ [dcl.init.aggr]p1:
 | |
|     //   An aggregate is an array or a class with no user-declared
 | |
|     //   constructors [...].
 | |
|     // C++11 [dcl.init.aggr]p1:
 | |
|     //   An aggregate is an array or a class with no user-provided
 | |
|     //   constructors [...].
 | |
|     if (getASTContext().getLangOpts().CPlusPlus11
 | |
|           ? UserProvided : !Constructor->isImplicit())
 | |
|       data().Aggregate = false;
 | |
|   }
 | |
| 
 | |
|   // Handle destructors.
 | |
|   if (CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) {
 | |
|     SMKind |= SMF_Destructor;
 | |
| 
 | |
|     if (!DD->isImplicit())
 | |
|       data().HasIrrelevantDestructor = false;
 | |
| 
 | |
|     // C++11 [class.dtor]p5:
 | |
|     //   A destructor is trivial if [...] the destructor is not virtual.
 | |
|     if (DD->isVirtual())
 | |
|       data().HasTrivialSpecialMembers &= ~SMF_Destructor;
 | |
|   }
 | |
| 
 | |
|   // Handle member functions.
 | |
|   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
 | |
|     if (Method->isCopyAssignmentOperator()) {
 | |
|       SMKind |= SMF_CopyAssignment;
 | |
| 
 | |
|       const ReferenceType *ParamTy =
 | |
|         Method->getParamDecl(0)->getType()->getAs<ReferenceType>();
 | |
|       if (!ParamTy || ParamTy->getPointeeType().isConstQualified())
 | |
|         data().HasDeclaredCopyAssignmentWithConstParam = true;
 | |
|     }
 | |
| 
 | |
|     if (Method->isMoveAssignmentOperator())
 | |
|       SMKind |= SMF_MoveAssignment;
 | |
| 
 | |
|     // Keep the list of conversion functions up-to-date.
 | |
|     if (CXXConversionDecl *Conversion = dyn_cast<CXXConversionDecl>(D)) {
 | |
|       // FIXME: We use the 'unsafe' accessor for the access specifier here,
 | |
|       // because Sema may not have set it yet. That's really just a misdesign
 | |
|       // in Sema. However, LLDB *will* have set the access specifier correctly,
 | |
|       // and adds declarations after the class is technically completed,
 | |
|       // so completeDefinition()'s overriding of the access specifiers doesn't
 | |
|       // work.
 | |
|       AccessSpecifier AS = Conversion->getAccessUnsafe();
 | |
| 
 | |
|       if (Conversion->getPrimaryTemplate()) {
 | |
|         // We don't record specializations.
 | |
|       } else {
 | |
|         ASTContext &Ctx = getASTContext();
 | |
|         ASTUnresolvedSet &Conversions = data().Conversions.get(Ctx);
 | |
|         NamedDecl *Primary =
 | |
|             FunTmpl ? cast<NamedDecl>(FunTmpl) : cast<NamedDecl>(Conversion);
 | |
|         if (Primary->getPreviousDecl())
 | |
|           Conversions.replace(cast<NamedDecl>(Primary->getPreviousDecl()),
 | |
|                               Primary, AS);
 | |
|         else
 | |
|           Conversions.addDecl(Ctx, Primary, AS);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (SMKind) {
 | |
|       // If this is the first declaration of a special member, we no longer have
 | |
|       // an implicit trivial special member.
 | |
|       data().HasTrivialSpecialMembers &=
 | |
|         data().DeclaredSpecialMembers | ~SMKind;
 | |
| 
 | |
|       if (!Method->isImplicit() && !Method->isUserProvided()) {
 | |
|         // This method is user-declared but not user-provided. We can't work out
 | |
|         // whether it's trivial yet (not until we get to the end of the class).
 | |
|         // We'll handle this method in finishedDefaultedOrDeletedMember.
 | |
|       } else if (Method->isTrivial())
 | |
|         data().HasTrivialSpecialMembers |= SMKind;
 | |
|       else
 | |
|         data().DeclaredNonTrivialSpecialMembers |= SMKind;
 | |
| 
 | |
|       // Note when we have declared a declared special member, and suppress the
 | |
|       // implicit declaration of this special member.
 | |
|       data().DeclaredSpecialMembers |= SMKind;
 | |
| 
 | |
|       if (!Method->isImplicit()) {
 | |
|         data().UserDeclaredSpecialMembers |= SMKind;
 | |
| 
 | |
|         // C++03 [class]p4:
 | |
|         //   A POD-struct is an aggregate class that has [...] no user-defined
 | |
|         //   copy assignment operator and no user-defined destructor.
 | |
|         //
 | |
|         // Since the POD bit is meant to be C++03 POD-ness, and in C++03,
 | |
|         // aggregates could not have any constructors, clear it even for an
 | |
|         // explicitly defaulted or deleted constructor.
 | |
|         // type is technically an aggregate in C++0x since it wouldn't be in 03.
 | |
|         //
 | |
|         // Also, a user-declared move assignment operator makes a class non-POD.
 | |
|         // This is an extension in C++03.
 | |
|         data().PlainOldData = false;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Handle non-static data members.
 | |
|   if (FieldDecl *Field = dyn_cast<FieldDecl>(D)) {
 | |
|     // C++ [class.bit]p2:
 | |
|     //   A declaration for a bit-field that omits the identifier declares an 
 | |
|     //   unnamed bit-field. Unnamed bit-fields are not members and cannot be 
 | |
|     //   initialized.
 | |
|     if (Field->isUnnamedBitfield())
 | |
|       return;
 | |
|     
 | |
|     // C++ [dcl.init.aggr]p1:
 | |
|     //   An aggregate is an array or a class (clause 9) with [...] no
 | |
|     //   private or protected non-static data members (clause 11).
 | |
|     //
 | |
|     // A POD must be an aggregate.    
 | |
|     if (D->getAccess() == AS_private || D->getAccess() == AS_protected) {
 | |
|       data().Aggregate = false;
 | |
|       data().PlainOldData = false;
 | |
|     }
 | |
| 
 | |
|     // C++0x [class]p7:
 | |
|     //   A standard-layout class is a class that:
 | |
|     //    [...]
 | |
|     //    -- has the same access control for all non-static data members,
 | |
|     switch (D->getAccess()) {
 | |
|     case AS_private:    data().HasPrivateFields = true;   break;
 | |
|     case AS_protected:  data().HasProtectedFields = true; break;
 | |
|     case AS_public:     data().HasPublicFields = true;    break;
 | |
|     case AS_none:       llvm_unreachable("Invalid access specifier");
 | |
|     };
 | |
|     if ((data().HasPrivateFields + data().HasProtectedFields +
 | |
|          data().HasPublicFields) > 1)
 | |
|       data().IsStandardLayout = false;
 | |
| 
 | |
|     // Keep track of the presence of mutable fields.
 | |
|     if (Field->isMutable())
 | |
|       data().HasMutableFields = true;
 | |
|     
 | |
|     // C++0x [class]p9:
 | |
|     //   A POD struct is a class that is both a trivial class and a 
 | |
|     //   standard-layout class, and has no non-static data members of type 
 | |
|     //   non-POD struct, non-POD union (or array of such types).
 | |
|     //
 | |
|     // Automatic Reference Counting: the presence of a member of Objective-C pointer type
 | |
|     // that does not explicitly have no lifetime makes the class a non-POD.
 | |
|     // However, we delay setting PlainOldData to false in this case so that
 | |
|     // Sema has a chance to diagnostic causes where the same class will be
 | |
|     // non-POD with Automatic Reference Counting but a POD without ARC.
 | |
|     // In this case, the class will become a non-POD class when we complete
 | |
|     // the definition.
 | |
|     ASTContext &Context = getASTContext();
 | |
|     QualType T = Context.getBaseElementType(Field->getType());
 | |
|     if (T->isObjCRetainableType() || T.isObjCGCStrong()) {
 | |
|       if (!Context.getLangOpts().ObjCAutoRefCount ||
 | |
|           T.getObjCLifetime() != Qualifiers::OCL_ExplicitNone)
 | |
|         setHasObjectMember(true);
 | |
|     } else if (!T.isCXX98PODType(Context))
 | |
|       data().PlainOldData = false;
 | |
|     
 | |
|     if (T->isReferenceType()) {
 | |
|       if (!Field->hasInClassInitializer())
 | |
|         data().HasUninitializedReferenceMember = true;
 | |
| 
 | |
|       // C++0x [class]p7:
 | |
|       //   A standard-layout class is a class that:
 | |
|       //    -- has no non-static data members of type [...] reference,
 | |
|       data().IsStandardLayout = false;
 | |
|     }
 | |
| 
 | |
|     // Record if this field is the first non-literal or volatile field or base.
 | |
|     if (!T->isLiteralType(Context) || T.isVolatileQualified())
 | |
|       data().HasNonLiteralTypeFieldsOrBases = true;
 | |
| 
 | |
|     if (Field->hasInClassInitializer()) {
 | |
|       data().HasInClassInitializer = true;
 | |
| 
 | |
|       // C++11 [class]p5:
 | |
|       //   A default constructor is trivial if [...] no non-static data member
 | |
|       //   of its class has a brace-or-equal-initializer.
 | |
|       data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor;
 | |
| 
 | |
|       // C++11 [dcl.init.aggr]p1:
 | |
|       //   An aggregate is a [...] class with [...] no
 | |
|       //   brace-or-equal-initializers for non-static data members.
 | |
|       //
 | |
|       // This rule was removed in C++1y.
 | |
|       if (!getASTContext().getLangOpts().CPlusPlus1y)
 | |
|         data().Aggregate = false;
 | |
| 
 | |
|       // C++11 [class]p10:
 | |
|       //   A POD struct is [...] a trivial class.
 | |
|       data().PlainOldData = false;
 | |
|     }
 | |
| 
 | |
|     // C++11 [class.copy]p23:
 | |
|     //   A defaulted copy/move assignment operator for a class X is defined
 | |
|     //   as deleted if X has:
 | |
|     //    -- a non-static data member of reference type
 | |
|     if (T->isReferenceType())
 | |
|       data().DefaultedMoveAssignmentIsDeleted = true;
 | |
| 
 | |
|     if (const RecordType *RecordTy = T->getAs<RecordType>()) {
 | |
|       CXXRecordDecl* FieldRec = cast<CXXRecordDecl>(RecordTy->getDecl());
 | |
|       if (FieldRec->getDefinition()) {
 | |
|         addedClassSubobject(FieldRec);
 | |
| 
 | |
|         // We may need to perform overload resolution to determine whether a
 | |
|         // field can be moved if it's const or volatile qualified.
 | |
|         if (T.getCVRQualifiers() & (Qualifiers::Const | Qualifiers::Volatile)) {
 | |
|           data().NeedOverloadResolutionForMoveConstructor = true;
 | |
|           data().NeedOverloadResolutionForMoveAssignment = true;
 | |
|         }
 | |
| 
 | |
|         // C++11 [class.ctor]p5, C++11 [class.copy]p11:
 | |
|         //   A defaulted [special member] for a class X is defined as
 | |
|         //   deleted if:
 | |
|         //    -- X is a union-like class that has a variant member with a
 | |
|         //       non-trivial [corresponding special member]
 | |
|         if (isUnion()) {
 | |
|           if (FieldRec->hasNonTrivialMoveConstructor())
 | |
|             data().DefaultedMoveConstructorIsDeleted = true;
 | |
|           if (FieldRec->hasNonTrivialMoveAssignment())
 | |
|             data().DefaultedMoveAssignmentIsDeleted = true;
 | |
|           if (FieldRec->hasNonTrivialDestructor())
 | |
|             data().DefaultedDestructorIsDeleted = true;
 | |
|         }
 | |
| 
 | |
|         // C++0x [class.ctor]p5:
 | |
|         //   A default constructor is trivial [...] if:
 | |
|         //    -- for all the non-static data members of its class that are of
 | |
|         //       class type (or array thereof), each such class has a trivial
 | |
|         //       default constructor.
 | |
|         if (!FieldRec->hasTrivialDefaultConstructor())
 | |
|           data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor;
 | |
| 
 | |
|         // C++0x [class.copy]p13:
 | |
|         //   A copy/move constructor for class X is trivial if [...]
 | |
|         //    [...]
 | |
|         //    -- for each non-static data member of X that is of class type (or
 | |
|         //       an array thereof), the constructor selected to copy/move that
 | |
|         //       member is trivial;
 | |
|         if (!FieldRec->hasTrivialCopyConstructor())
 | |
|           data().HasTrivialSpecialMembers &= ~SMF_CopyConstructor;
 | |
|         // If the field doesn't have a simple move constructor, we'll eagerly
 | |
|         // declare the move constructor for this class and we'll decide whether
 | |
|         // it's trivial then.
 | |
|         if (!FieldRec->hasTrivialMoveConstructor())
 | |
|           data().HasTrivialSpecialMembers &= ~SMF_MoveConstructor;
 | |
| 
 | |
|         // C++0x [class.copy]p27:
 | |
|         //   A copy/move assignment operator for class X is trivial if [...]
 | |
|         //    [...]
 | |
|         //    -- for each non-static data member of X that is of class type (or
 | |
|         //       an array thereof), the assignment operator selected to
 | |
|         //       copy/move that member is trivial;
 | |
|         if (!FieldRec->hasTrivialCopyAssignment())
 | |
|           data().HasTrivialSpecialMembers &= ~SMF_CopyAssignment;
 | |
|         // If the field doesn't have a simple move assignment, we'll eagerly
 | |
|         // declare the move assignment for this class and we'll decide whether
 | |
|         // it's trivial then.
 | |
|         if (!FieldRec->hasTrivialMoveAssignment())
 | |
|           data().HasTrivialSpecialMembers &= ~SMF_MoveAssignment;
 | |
| 
 | |
|         if (!FieldRec->hasTrivialDestructor())
 | |
|           data().HasTrivialSpecialMembers &= ~SMF_Destructor;
 | |
|         if (!FieldRec->hasIrrelevantDestructor())
 | |
|           data().HasIrrelevantDestructor = false;
 | |
|         if (FieldRec->hasObjectMember())
 | |
|           setHasObjectMember(true);
 | |
|         if (FieldRec->hasVolatileMember())
 | |
|           setHasVolatileMember(true);
 | |
| 
 | |
|         // C++0x [class]p7:
 | |
|         //   A standard-layout class is a class that:
 | |
|         //    -- has no non-static data members of type non-standard-layout
 | |
|         //       class (or array of such types) [...]
 | |
|         if (!FieldRec->isStandardLayout())
 | |
|           data().IsStandardLayout = false;
 | |
| 
 | |
|         // C++0x [class]p7:
 | |
|         //   A standard-layout class is a class that:
 | |
|         //    [...]
 | |
|         //    -- has no base classes of the same type as the first non-static
 | |
|         //       data member.
 | |
|         // We don't want to expend bits in the state of the record decl
 | |
|         // tracking whether this is the first non-static data member so we
 | |
|         // cheat a bit and use some of the existing state: the empty bit.
 | |
|         // Virtual bases and virtual methods make a class non-empty, but they
 | |
|         // also make it non-standard-layout so we needn't check here.
 | |
|         // A non-empty base class may leave the class standard-layout, but not
 | |
|         // if we have arrived here, and have at least on non-static data
 | |
|         // member. If IsStandardLayout remains true, then the first non-static
 | |
|         // data member must come through here with Empty still true, and Empty
 | |
|         // will subsequently be set to false below.
 | |
|         if (data().IsStandardLayout && data().Empty) {
 | |
|           for (CXXRecordDecl::base_class_const_iterator BI = bases_begin(),
 | |
|                                                         BE = bases_end();
 | |
|                BI != BE; ++BI) {
 | |
|             if (Context.hasSameUnqualifiedType(BI->getType(), T)) {
 | |
|               data().IsStandardLayout = false;
 | |
|               break;
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|         
 | |
|         // Keep track of the presence of mutable fields.
 | |
|         if (FieldRec->hasMutableFields())
 | |
|           data().HasMutableFields = true;
 | |
| 
 | |
|         // C++11 [class.copy]p13:
 | |
|         //   If the implicitly-defined constructor would satisfy the
 | |
|         //   requirements of a constexpr constructor, the implicitly-defined
 | |
|         //   constructor is constexpr.
 | |
|         // C++11 [dcl.constexpr]p4:
 | |
|         //    -- every constructor involved in initializing non-static data
 | |
|         //       members [...] shall be a constexpr constructor
 | |
|         if (!Field->hasInClassInitializer() &&
 | |
|             !FieldRec->hasConstexprDefaultConstructor() && !isUnion())
 | |
|           // The standard requires any in-class initializer to be a constant
 | |
|           // expression. We consider this to be a defect.
 | |
|           data().DefaultedDefaultConstructorIsConstexpr = false;
 | |
| 
 | |
|         // C++11 [class.copy]p8:
 | |
|         //   The implicitly-declared copy constructor for a class X will have
 | |
|         //   the form 'X::X(const X&)' if [...] for all the non-static data
 | |
|         //   members of X that are of a class type M (or array thereof), each
 | |
|         //   such class type has a copy constructor whose first parameter is
 | |
|         //   of type 'const M&' or 'const volatile M&'.
 | |
|         if (!FieldRec->hasCopyConstructorWithConstParam())
 | |
|           data().ImplicitCopyConstructorHasConstParam = false;
 | |
| 
 | |
|         // C++11 [class.copy]p18:
 | |
|         //   The implicitly-declared copy assignment oeprator for a class X will
 | |
|         //   have the form 'X& X::operator=(const X&)' if [...] for all the
 | |
|         //   non-static data members of X that are of a class type M (or array
 | |
|         //   thereof), each such class type has a copy assignment operator whose
 | |
|         //   parameter is of type 'const M&', 'const volatile M&' or 'M'.
 | |
|         if (!FieldRec->hasCopyAssignmentWithConstParam())
 | |
|           data().ImplicitCopyAssignmentHasConstParam = false;
 | |
| 
 | |
|         if (FieldRec->hasUninitializedReferenceMember() &&
 | |
|             !Field->hasInClassInitializer())
 | |
|           data().HasUninitializedReferenceMember = true;
 | |
|       }
 | |
|     } else {
 | |
|       // Base element type of field is a non-class type.
 | |
|       if (!T->isLiteralType(Context) ||
 | |
|           (!Field->hasInClassInitializer() && !isUnion()))
 | |
|         data().DefaultedDefaultConstructorIsConstexpr = false;
 | |
| 
 | |
|       // C++11 [class.copy]p23:
 | |
|       //   A defaulted copy/move assignment operator for a class X is defined
 | |
|       //   as deleted if X has:
 | |
|       //    -- a non-static data member of const non-class type (or array
 | |
|       //       thereof)
 | |
|       if (T.isConstQualified())
 | |
|         data().DefaultedMoveAssignmentIsDeleted = true;
 | |
|     }
 | |
| 
 | |
|     // C++0x [class]p7:
 | |
|     //   A standard-layout class is a class that:
 | |
|     //    [...]
 | |
|     //    -- either has no non-static data members in the most derived
 | |
|     //       class and at most one base class with non-static data members,
 | |
|     //       or has no base classes with non-static data members, and
 | |
|     // At this point we know that we have a non-static data member, so the last
 | |
|     // clause holds.
 | |
|     if (!data().HasNoNonEmptyBases)
 | |
|       data().IsStandardLayout = false;
 | |
| 
 | |
|     // If this is not a zero-length bit-field, then the class is not empty.
 | |
|     if (data().Empty) {
 | |
|       if (!Field->isBitField() ||
 | |
|           (!Field->getBitWidth()->isTypeDependent() &&
 | |
|            !Field->getBitWidth()->isValueDependent() &&
 | |
|            Field->getBitWidthValue(Context) != 0))
 | |
|         data().Empty = false;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Handle using declarations of conversion functions.
 | |
|   if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(D)) {
 | |
|     if (Shadow->getDeclName().getNameKind()
 | |
|           == DeclarationName::CXXConversionFunctionName) {
 | |
|       ASTContext &Ctx = getASTContext();
 | |
|       data().Conversions.get(Ctx).addDecl(Ctx, Shadow, Shadow->getAccess());
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void CXXRecordDecl::finishedDefaultedOrDeletedMember(CXXMethodDecl *D) {
 | |
|   assert(!D->isImplicit() && !D->isUserProvided());
 | |
| 
 | |
|   // The kind of special member this declaration is, if any.
 | |
|   unsigned SMKind = 0;
 | |
| 
 | |
|   if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
 | |
|     if (Constructor->isDefaultConstructor()) {
 | |
|       SMKind |= SMF_DefaultConstructor;
 | |
|       if (Constructor->isConstexpr())
 | |
|         data().HasConstexprDefaultConstructor = true;
 | |
|     }
 | |
|     if (Constructor->isCopyConstructor())
 | |
|       SMKind |= SMF_CopyConstructor;
 | |
|     else if (Constructor->isMoveConstructor())
 | |
|       SMKind |= SMF_MoveConstructor;
 | |
|     else if (Constructor->isConstexpr())
 | |
|       // We may now know that the constructor is constexpr.
 | |
|       data().HasConstexprNonCopyMoveConstructor = true;
 | |
|   } else if (isa<CXXDestructorDecl>(D))
 | |
|     SMKind |= SMF_Destructor;
 | |
|   else if (D->isCopyAssignmentOperator())
 | |
|     SMKind |= SMF_CopyAssignment;
 | |
|   else if (D->isMoveAssignmentOperator())
 | |
|     SMKind |= SMF_MoveAssignment;
 | |
| 
 | |
|   // Update which trivial / non-trivial special members we have.
 | |
|   // addedMember will have skipped this step for this member.
 | |
|   if (D->isTrivial())
 | |
|     data().HasTrivialSpecialMembers |= SMKind;
 | |
|   else
 | |
|     data().DeclaredNonTrivialSpecialMembers |= SMKind;
 | |
| }
 | |
| 
 | |
| bool CXXRecordDecl::isCLike() const {
 | |
|   if (getTagKind() == TTK_Class || getTagKind() == TTK_Interface ||
 | |
|       !TemplateOrInstantiation.isNull())
 | |
|     return false;
 | |
|   if (!hasDefinition())
 | |
|     return true;
 | |
| 
 | |
|   return isPOD() && data().HasOnlyCMembers;
 | |
| }
 | |
|  
 | |
| bool CXXRecordDecl::isGenericLambda() const { 
 | |
|   if (!isLambda()) return false;
 | |
|   return getLambdaData().IsGenericLambda;
 | |
| }
 | |
| 
 | |
| CXXMethodDecl* CXXRecordDecl::getLambdaCallOperator() const {
 | |
|   if (!isLambda()) return 0;
 | |
|   DeclarationName Name = 
 | |
|     getASTContext().DeclarationNames.getCXXOperatorName(OO_Call);
 | |
|   DeclContext::lookup_const_result Calls = lookup(Name);
 | |
| 
 | |
|   assert(!Calls.empty() && "Missing lambda call operator!");
 | |
|   assert(Calls.size() == 1 && "More than one lambda call operator!"); 
 | |
|    
 | |
|   NamedDecl *CallOp = Calls.front();
 | |
|   if (FunctionTemplateDecl *CallOpTmpl = 
 | |
|                     dyn_cast<FunctionTemplateDecl>(CallOp)) 
 | |
|     return cast<CXXMethodDecl>(CallOpTmpl->getTemplatedDecl());
 | |
|   
 | |
|   return cast<CXXMethodDecl>(CallOp);
 | |
| }
 | |
| 
 | |
| CXXMethodDecl* CXXRecordDecl::getLambdaStaticInvoker() const {
 | |
|   if (!isLambda()) return 0;
 | |
|   DeclarationName Name = 
 | |
|     &getASTContext().Idents.get(getLambdaStaticInvokerName());
 | |
|   DeclContext::lookup_const_result Invoker = lookup(Name);
 | |
|   if (Invoker.empty()) return 0;
 | |
|   assert(Invoker.size() == 1 && "More than one static invoker operator!");  
 | |
|   NamedDecl *InvokerFun = Invoker.front();
 | |
|   if (FunctionTemplateDecl *InvokerTemplate =
 | |
|                   dyn_cast<FunctionTemplateDecl>(InvokerFun)) 
 | |
|     return cast<CXXMethodDecl>(InvokerTemplate->getTemplatedDecl());
 | |
|   
 | |
|   return cast<CXXMethodDecl>(InvokerFun); 
 | |
| }
 | |
| 
 | |
| void CXXRecordDecl::getCaptureFields(
 | |
|        llvm::DenseMap<const VarDecl *, FieldDecl *> &Captures,
 | |
|        FieldDecl *&ThisCapture) const {
 | |
|   Captures.clear();
 | |
|   ThisCapture = 0;
 | |
| 
 | |
|   LambdaDefinitionData &Lambda = getLambdaData();
 | |
|   RecordDecl::field_iterator Field = field_begin();
 | |
|   for (LambdaExpr::Capture *C = Lambda.Captures, *CEnd = C + Lambda.NumCaptures;
 | |
|        C != CEnd; ++C, ++Field) {
 | |
|     if (C->capturesThis())
 | |
|       ThisCapture = *Field;
 | |
|     else if (C->capturesVariable())
 | |
|       Captures[C->getCapturedVar()] = *Field;
 | |
|   }
 | |
|   assert(Field == field_end());
 | |
| }
 | |
| 
 | |
| TemplateParameterList * 
 | |
| CXXRecordDecl::getGenericLambdaTemplateParameterList() const {
 | |
|   if (!isLambda()) return 0;
 | |
|   CXXMethodDecl *CallOp = getLambdaCallOperator();     
 | |
|   if (FunctionTemplateDecl *Tmpl = CallOp->getDescribedFunctionTemplate())
 | |
|     return Tmpl->getTemplateParameters();
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| static CanQualType GetConversionType(ASTContext &Context, NamedDecl *Conv) {
 | |
|   QualType T;
 | |
|   if (isa<UsingShadowDecl>(Conv))
 | |
|     Conv = cast<UsingShadowDecl>(Conv)->getTargetDecl();
 | |
|   if (FunctionTemplateDecl *ConvTemp = dyn_cast<FunctionTemplateDecl>(Conv))
 | |
|     T = ConvTemp->getTemplatedDecl()->getResultType();
 | |
|   else 
 | |
|     T = cast<CXXConversionDecl>(Conv)->getConversionType();
 | |
|   return Context.getCanonicalType(T);
 | |
| }
 | |
| 
 | |
| /// Collect the visible conversions of a base class.
 | |
| ///
 | |
| /// \param Record a base class of the class we're considering
 | |
| /// \param InVirtual whether this base class is a virtual base (or a base
 | |
| ///   of a virtual base)
 | |
| /// \param Access the access along the inheritance path to this base
 | |
| /// \param ParentHiddenTypes the conversions provided by the inheritors
 | |
| ///   of this base
 | |
| /// \param Output the set to which to add conversions from non-virtual bases
 | |
| /// \param VOutput the set to which to add conversions from virtual bases
 | |
| /// \param HiddenVBaseCs the set of conversions which were hidden in a
 | |
| ///   virtual base along some inheritance path
 | |
| static void CollectVisibleConversions(ASTContext &Context,
 | |
|                                       CXXRecordDecl *Record,
 | |
|                                       bool InVirtual,
 | |
|                                       AccessSpecifier Access,
 | |
|                   const llvm::SmallPtrSet<CanQualType, 8> &ParentHiddenTypes,
 | |
|                                       ASTUnresolvedSet &Output,
 | |
|                                       UnresolvedSetImpl &VOutput,
 | |
|                            llvm::SmallPtrSet<NamedDecl*, 8> &HiddenVBaseCs) {
 | |
|   // The set of types which have conversions in this class or its
 | |
|   // subclasses.  As an optimization, we don't copy the derived set
 | |
|   // unless it might change.
 | |
|   const llvm::SmallPtrSet<CanQualType, 8> *HiddenTypes = &ParentHiddenTypes;
 | |
|   llvm::SmallPtrSet<CanQualType, 8> HiddenTypesBuffer;
 | |
| 
 | |
|   // Collect the direct conversions and figure out which conversions
 | |
|   // will be hidden in the subclasses.
 | |
|   CXXRecordDecl::conversion_iterator ConvI = Record->conversion_begin();
 | |
|   CXXRecordDecl::conversion_iterator ConvE = Record->conversion_end();
 | |
|   if (ConvI != ConvE) {
 | |
|     HiddenTypesBuffer = ParentHiddenTypes;
 | |
|     HiddenTypes = &HiddenTypesBuffer;
 | |
| 
 | |
|     for (CXXRecordDecl::conversion_iterator I = ConvI; I != ConvE; ++I) {
 | |
|       CanQualType ConvType(GetConversionType(Context, I.getDecl()));
 | |
|       bool Hidden = ParentHiddenTypes.count(ConvType);
 | |
|       if (!Hidden)
 | |
|         HiddenTypesBuffer.insert(ConvType);
 | |
| 
 | |
|       // If this conversion is hidden and we're in a virtual base,
 | |
|       // remember that it's hidden along some inheritance path.
 | |
|       if (Hidden && InVirtual)
 | |
|         HiddenVBaseCs.insert(cast<NamedDecl>(I.getDecl()->getCanonicalDecl()));
 | |
| 
 | |
|       // If this conversion isn't hidden, add it to the appropriate output.
 | |
|       else if (!Hidden) {
 | |
|         AccessSpecifier IAccess
 | |
|           = CXXRecordDecl::MergeAccess(Access, I.getAccess());
 | |
| 
 | |
|         if (InVirtual)
 | |
|           VOutput.addDecl(I.getDecl(), IAccess);
 | |
|         else
 | |
|           Output.addDecl(Context, I.getDecl(), IAccess);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Collect information recursively from any base classes.
 | |
|   for (CXXRecordDecl::base_class_iterator
 | |
|          I = Record->bases_begin(), E = Record->bases_end(); I != E; ++I) {
 | |
|     const RecordType *RT = I->getType()->getAs<RecordType>();
 | |
|     if (!RT) continue;
 | |
| 
 | |
|     AccessSpecifier BaseAccess
 | |
|       = CXXRecordDecl::MergeAccess(Access, I->getAccessSpecifier());
 | |
|     bool BaseInVirtual = InVirtual || I->isVirtual();
 | |
| 
 | |
|     CXXRecordDecl *Base = cast<CXXRecordDecl>(RT->getDecl());
 | |
|     CollectVisibleConversions(Context, Base, BaseInVirtual, BaseAccess,
 | |
|                               *HiddenTypes, Output, VOutput, HiddenVBaseCs);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Collect the visible conversions of a class.
 | |
| ///
 | |
| /// This would be extremely straightforward if it weren't for virtual
 | |
| /// bases.  It might be worth special-casing that, really.
 | |
| static void CollectVisibleConversions(ASTContext &Context,
 | |
|                                       CXXRecordDecl *Record,
 | |
|                                       ASTUnresolvedSet &Output) {
 | |
|   // The collection of all conversions in virtual bases that we've
 | |
|   // found.  These will be added to the output as long as they don't
 | |
|   // appear in the hidden-conversions set.
 | |
|   UnresolvedSet<8> VBaseCs;
 | |
|   
 | |
|   // The set of conversions in virtual bases that we've determined to
 | |
|   // be hidden.
 | |
|   llvm::SmallPtrSet<NamedDecl*, 8> HiddenVBaseCs;
 | |
| 
 | |
|   // The set of types hidden by classes derived from this one.
 | |
|   llvm::SmallPtrSet<CanQualType, 8> HiddenTypes;
 | |
| 
 | |
|   // Go ahead and collect the direct conversions and add them to the
 | |
|   // hidden-types set.
 | |
|   CXXRecordDecl::conversion_iterator ConvI = Record->conversion_begin();
 | |
|   CXXRecordDecl::conversion_iterator ConvE = Record->conversion_end();
 | |
|   Output.append(Context, ConvI, ConvE);
 | |
|   for (; ConvI != ConvE; ++ConvI)
 | |
|     HiddenTypes.insert(GetConversionType(Context, ConvI.getDecl()));
 | |
| 
 | |
|   // Recursively collect conversions from base classes.
 | |
|   for (CXXRecordDecl::base_class_iterator
 | |
|          I = Record->bases_begin(), E = Record->bases_end(); I != E; ++I) {
 | |
|     const RecordType *RT = I->getType()->getAs<RecordType>();
 | |
|     if (!RT) continue;
 | |
| 
 | |
|     CollectVisibleConversions(Context, cast<CXXRecordDecl>(RT->getDecl()),
 | |
|                               I->isVirtual(), I->getAccessSpecifier(),
 | |
|                               HiddenTypes, Output, VBaseCs, HiddenVBaseCs);
 | |
|   }
 | |
| 
 | |
|   // Add any unhidden conversions provided by virtual bases.
 | |
|   for (UnresolvedSetIterator I = VBaseCs.begin(), E = VBaseCs.end();
 | |
|          I != E; ++I) {
 | |
|     if (!HiddenVBaseCs.count(cast<NamedDecl>(I.getDecl()->getCanonicalDecl())))
 | |
|       Output.addDecl(Context, I.getDecl(), I.getAccess());
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// getVisibleConversionFunctions - get all conversion functions visible
 | |
| /// in current class; including conversion function templates.
 | |
| std::pair<CXXRecordDecl::conversion_iterator,CXXRecordDecl::conversion_iterator>
 | |
| CXXRecordDecl::getVisibleConversionFunctions() {
 | |
|   ASTContext &Ctx = getASTContext();
 | |
| 
 | |
|   ASTUnresolvedSet *Set;
 | |
|   if (bases_begin() == bases_end()) {
 | |
|     // If root class, all conversions are visible.
 | |
|     Set = &data().Conversions.get(Ctx);
 | |
|   } else {
 | |
|     Set = &data().VisibleConversions.get(Ctx);
 | |
|     // If visible conversion list is not evaluated, evaluate it.
 | |
|     if (!data().ComputedVisibleConversions) {
 | |
|       CollectVisibleConversions(Ctx, this, *Set);
 | |
|       data().ComputedVisibleConversions = true;
 | |
|     }
 | |
|   }
 | |
|   return std::make_pair(Set->begin(), Set->end());
 | |
| }
 | |
| 
 | |
| void CXXRecordDecl::removeConversion(const NamedDecl *ConvDecl) {
 | |
|   // This operation is O(N) but extremely rare.  Sema only uses it to
 | |
|   // remove UsingShadowDecls in a class that were followed by a direct
 | |
|   // declaration, e.g.:
 | |
|   //   class A : B {
 | |
|   //     using B::operator int;
 | |
|   //     operator int();
 | |
|   //   };
 | |
|   // This is uncommon by itself and even more uncommon in conjunction
 | |
|   // with sufficiently large numbers of directly-declared conversions
 | |
|   // that asymptotic behavior matters.
 | |
| 
 | |
|   ASTUnresolvedSet &Convs = data().Conversions.get(getASTContext());
 | |
|   for (unsigned I = 0, E = Convs.size(); I != E; ++I) {
 | |
|     if (Convs[I].getDecl() == ConvDecl) {
 | |
|       Convs.erase(I);
 | |
|       assert(std::find(Convs.begin(), Convs.end(), ConvDecl) == Convs.end()
 | |
|              && "conversion was found multiple times in unresolved set");
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("conversion not found in set!");
 | |
| }
 | |
| 
 | |
| CXXRecordDecl *CXXRecordDecl::getInstantiatedFromMemberClass() const {
 | |
|   if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo())
 | |
|     return cast<CXXRecordDecl>(MSInfo->getInstantiatedFrom());
 | |
|   
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| void 
 | |
| CXXRecordDecl::setInstantiationOfMemberClass(CXXRecordDecl *RD,
 | |
|                                              TemplateSpecializationKind TSK) {
 | |
|   assert(TemplateOrInstantiation.isNull() && 
 | |
|          "Previous template or instantiation?");
 | |
|   assert(!isa<ClassTemplateSpecializationDecl>(this));
 | |
|   TemplateOrInstantiation 
 | |
|     = new (getASTContext()) MemberSpecializationInfo(RD, TSK);
 | |
| }
 | |
| 
 | |
| TemplateSpecializationKind CXXRecordDecl::getTemplateSpecializationKind() const{
 | |
|   if (const ClassTemplateSpecializationDecl *Spec
 | |
|         = dyn_cast<ClassTemplateSpecializationDecl>(this))
 | |
|     return Spec->getSpecializationKind();
 | |
|   
 | |
|   if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo())
 | |
|     return MSInfo->getTemplateSpecializationKind();
 | |
|   
 | |
|   return TSK_Undeclared;
 | |
| }
 | |
| 
 | |
| void 
 | |
| CXXRecordDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK) {
 | |
|   if (ClassTemplateSpecializationDecl *Spec
 | |
|       = dyn_cast<ClassTemplateSpecializationDecl>(this)) {
 | |
|     Spec->setSpecializationKind(TSK);
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) {
 | |
|     MSInfo->setTemplateSpecializationKind(TSK);
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   llvm_unreachable("Not a class template or member class specialization");
 | |
| }
 | |
| 
 | |
| CXXDestructorDecl *CXXRecordDecl::getDestructor() const {
 | |
|   ASTContext &Context = getASTContext();
 | |
|   QualType ClassType = Context.getTypeDeclType(this);
 | |
| 
 | |
|   DeclarationName Name
 | |
|     = Context.DeclarationNames.getCXXDestructorName(
 | |
|                                           Context.getCanonicalType(ClassType));
 | |
| 
 | |
|   DeclContext::lookup_const_result R = lookup(Name);
 | |
|   if (R.empty())
 | |
|     return 0;
 | |
| 
 | |
|   CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(R.front());
 | |
|   return Dtor;
 | |
| }
 | |
| 
 | |
| void CXXRecordDecl::completeDefinition() {
 | |
|   completeDefinition(0);
 | |
| }
 | |
| 
 | |
| void CXXRecordDecl::completeDefinition(CXXFinalOverriderMap *FinalOverriders) {
 | |
|   RecordDecl::completeDefinition();
 | |
|   
 | |
|   if (hasObjectMember() && getASTContext().getLangOpts().ObjCAutoRefCount) {
 | |
|     // Objective-C Automatic Reference Counting:
 | |
|     //   If a class has a non-static data member of Objective-C pointer
 | |
|     //   type (or array thereof), it is a non-POD type and its
 | |
|     //   default constructor (if any), copy constructor, move constructor,
 | |
|     //   copy assignment operator, move assignment operator, and destructor are
 | |
|     //   non-trivial.
 | |
|     struct DefinitionData &Data = data();
 | |
|     Data.PlainOldData = false;
 | |
|     Data.HasTrivialSpecialMembers = 0;
 | |
|     Data.HasIrrelevantDestructor = false;
 | |
|   }
 | |
|   
 | |
|   // If the class may be abstract (but hasn't been marked as such), check for
 | |
|   // any pure final overriders.
 | |
|   if (mayBeAbstract()) {
 | |
|     CXXFinalOverriderMap MyFinalOverriders;
 | |
|     if (!FinalOverriders) {
 | |
|       getFinalOverriders(MyFinalOverriders);
 | |
|       FinalOverriders = &MyFinalOverriders;
 | |
|     }
 | |
|     
 | |
|     bool Done = false;
 | |
|     for (CXXFinalOverriderMap::iterator M = FinalOverriders->begin(), 
 | |
|                                      MEnd = FinalOverriders->end();
 | |
|          M != MEnd && !Done; ++M) {
 | |
|       for (OverridingMethods::iterator SO = M->second.begin(), 
 | |
|                                     SOEnd = M->second.end();
 | |
|            SO != SOEnd && !Done; ++SO) {
 | |
|         assert(SO->second.size() > 0 && 
 | |
|                "All virtual functions have overridding virtual functions");
 | |
|         
 | |
|         // C++ [class.abstract]p4:
 | |
|         //   A class is abstract if it contains or inherits at least one
 | |
|         //   pure virtual function for which the final overrider is pure
 | |
|         //   virtual.
 | |
|         if (SO->second.front().Method->isPure()) {
 | |
|           data().Abstract = true;
 | |
|           Done = true;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Set access bits correctly on the directly-declared conversions.
 | |
|   for (conversion_iterator I = conversion_begin(), E = conversion_end();
 | |
|        I != E; ++I)
 | |
|     I.setAccess((*I)->getAccess());
 | |
| }
 | |
| 
 | |
| bool CXXRecordDecl::mayBeAbstract() const {
 | |
|   if (data().Abstract || isInvalidDecl() || !data().Polymorphic ||
 | |
|       isDependentContext())
 | |
|     return false;
 | |
|   
 | |
|   for (CXXRecordDecl::base_class_const_iterator B = bases_begin(),
 | |
|                                              BEnd = bases_end();
 | |
|        B != BEnd; ++B) {
 | |
|     CXXRecordDecl *BaseDecl 
 | |
|       = cast<CXXRecordDecl>(B->getType()->getAs<RecordType>()->getDecl());
 | |
|     if (BaseDecl->isAbstract())
 | |
|       return true;
 | |
|   }
 | |
|   
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void CXXMethodDecl::anchor() { }
 | |
| 
 | |
| bool CXXMethodDecl::isStatic() const {
 | |
|   const CXXMethodDecl *MD = getCanonicalDecl();
 | |
| 
 | |
|   if (MD->getStorageClass() == SC_Static)
 | |
|     return true;
 | |
| 
 | |
|   OverloadedOperatorKind OOK = getDeclName().getCXXOverloadedOperator();
 | |
|   return isStaticOverloadedOperator(OOK);
 | |
| }
 | |
| 
 | |
| static bool recursivelyOverrides(const CXXMethodDecl *DerivedMD,
 | |
|                                  const CXXMethodDecl *BaseMD) {
 | |
|   for (CXXMethodDecl::method_iterator I = DerivedMD->begin_overridden_methods(),
 | |
|          E = DerivedMD->end_overridden_methods(); I != E; ++I) {
 | |
|     const CXXMethodDecl *MD = *I;
 | |
|     if (MD->getCanonicalDecl() == BaseMD->getCanonicalDecl())
 | |
|       return true;
 | |
|     if (recursivelyOverrides(MD, BaseMD))
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| CXXMethodDecl *
 | |
| CXXMethodDecl::getCorrespondingMethodInClass(const CXXRecordDecl *RD,
 | |
|                                              bool MayBeBase) {
 | |
|   if (this->getParent()->getCanonicalDecl() == RD->getCanonicalDecl())
 | |
|     return this;
 | |
| 
 | |
|   // Lookup doesn't work for destructors, so handle them separately.
 | |
|   if (isa<CXXDestructorDecl>(this)) {
 | |
|     CXXMethodDecl *MD = RD->getDestructor();
 | |
|     if (MD) {
 | |
|       if (recursivelyOverrides(MD, this))
 | |
|         return MD;
 | |
|       if (MayBeBase && recursivelyOverrides(this, MD))
 | |
|         return MD;
 | |
|     }
 | |
|     return NULL;
 | |
|   }
 | |
| 
 | |
|   lookup_const_result Candidates = RD->lookup(getDeclName());
 | |
|   for (NamedDecl * const * I = Candidates.begin(); I != Candidates.end(); ++I) {
 | |
|     CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*I);
 | |
|     if (!MD)
 | |
|       continue;
 | |
|     if (recursivelyOverrides(MD, this))
 | |
|       return MD;
 | |
|     if (MayBeBase && recursivelyOverrides(this, MD))
 | |
|       return MD;
 | |
|   }
 | |
| 
 | |
|   for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
 | |
|          E = RD->bases_end(); I != E; ++I) {
 | |
|     const RecordType *RT = I->getType()->getAs<RecordType>();
 | |
|     if (!RT)
 | |
|       continue;
 | |
|     const CXXRecordDecl *Base = cast<CXXRecordDecl>(RT->getDecl());
 | |
|     CXXMethodDecl *T = this->getCorrespondingMethodInClass(Base);
 | |
|     if (T)
 | |
|       return T;
 | |
|   }
 | |
| 
 | |
|   return NULL;
 | |
| }
 | |
| 
 | |
| CXXMethodDecl *
 | |
| CXXMethodDecl::Create(ASTContext &C, CXXRecordDecl *RD,
 | |
|                       SourceLocation StartLoc,
 | |
|                       const DeclarationNameInfo &NameInfo,
 | |
|                       QualType T, TypeSourceInfo *TInfo,
 | |
|                       StorageClass SC, bool isInline,
 | |
|                       bool isConstexpr, SourceLocation EndLocation) {
 | |
|   return new (C) CXXMethodDecl(CXXMethod, RD, StartLoc, NameInfo, T, TInfo,
 | |
|                                SC, isInline, isConstexpr,
 | |
|                                EndLocation);
 | |
| }
 | |
| 
 | |
| CXXMethodDecl *CXXMethodDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
 | |
|   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(CXXMethodDecl));
 | |
|   return new (Mem) CXXMethodDecl(CXXMethod, 0, SourceLocation(), 
 | |
|                                  DeclarationNameInfo(), QualType(),
 | |
|                                  0, SC_None, false, false,
 | |
|                                  SourceLocation());
 | |
| }
 | |
| 
 | |
| bool CXXMethodDecl::isUsualDeallocationFunction() const {
 | |
|   if (getOverloadedOperator() != OO_Delete &&
 | |
|       getOverloadedOperator() != OO_Array_Delete)
 | |
|     return false;
 | |
| 
 | |
|   // C++ [basic.stc.dynamic.deallocation]p2:
 | |
|   //   A template instance is never a usual deallocation function,
 | |
|   //   regardless of its signature.
 | |
|   if (getPrimaryTemplate())
 | |
|     return false;
 | |
| 
 | |
|   // C++ [basic.stc.dynamic.deallocation]p2:
 | |
|   //   If a class T has a member deallocation function named operator delete 
 | |
|   //   with exactly one parameter, then that function is a usual (non-placement)
 | |
|   //   deallocation function. [...]
 | |
|   if (getNumParams() == 1)
 | |
|     return true;
 | |
|   
 | |
|   // C++ [basic.stc.dynamic.deallocation]p2:
 | |
|   //   [...] If class T does not declare such an operator delete but does 
 | |
|   //   declare a member deallocation function named operator delete with 
 | |
|   //   exactly two parameters, the second of which has type std::size_t (18.1),
 | |
|   //   then this function is a usual deallocation function.
 | |
|   ASTContext &Context = getASTContext();
 | |
|   if (getNumParams() != 2 ||
 | |
|       !Context.hasSameUnqualifiedType(getParamDecl(1)->getType(),
 | |
|                                       Context.getSizeType()))
 | |
|     return false;
 | |
|                  
 | |
|   // This function is a usual deallocation function if there are no 
 | |
|   // single-parameter deallocation functions of the same kind.
 | |
|   DeclContext::lookup_const_result R = getDeclContext()->lookup(getDeclName());
 | |
|   for (DeclContext::lookup_const_result::iterator I = R.begin(), E = R.end();
 | |
|        I != E; ++I) {
 | |
|     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(*I))
 | |
|       if (FD->getNumParams() == 1)
 | |
|         return false;
 | |
|   }
 | |
|   
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool CXXMethodDecl::isCopyAssignmentOperator() const {
 | |
|   // C++0x [class.copy]p17:
 | |
|   //  A user-declared copy assignment operator X::operator= is a non-static 
 | |
|   //  non-template member function of class X with exactly one parameter of 
 | |
|   //  type X, X&, const X&, volatile X& or const volatile X&.
 | |
|   if (/*operator=*/getOverloadedOperator() != OO_Equal ||
 | |
|       /*non-static*/ isStatic() || 
 | |
|       /*non-template*/getPrimaryTemplate() || getDescribedFunctionTemplate() ||
 | |
|       getNumParams() != 1)
 | |
|     return false;
 | |
|       
 | |
|   QualType ParamType = getParamDecl(0)->getType();
 | |
|   if (const LValueReferenceType *Ref = ParamType->getAs<LValueReferenceType>())
 | |
|     ParamType = Ref->getPointeeType();
 | |
|   
 | |
|   ASTContext &Context = getASTContext();
 | |
|   QualType ClassType
 | |
|     = Context.getCanonicalType(Context.getTypeDeclType(getParent()));
 | |
|   return Context.hasSameUnqualifiedType(ClassType, ParamType);
 | |
| }
 | |
| 
 | |
| bool CXXMethodDecl::isMoveAssignmentOperator() const {
 | |
|   // C++0x [class.copy]p19:
 | |
|   //  A user-declared move assignment operator X::operator= is a non-static
 | |
|   //  non-template member function of class X with exactly one parameter of type
 | |
|   //  X&&, const X&&, volatile X&&, or const volatile X&&.
 | |
|   if (getOverloadedOperator() != OO_Equal || isStatic() ||
 | |
|       getPrimaryTemplate() || getDescribedFunctionTemplate() ||
 | |
|       getNumParams() != 1)
 | |
|     return false;
 | |
| 
 | |
|   QualType ParamType = getParamDecl(0)->getType();
 | |
|   if (!isa<RValueReferenceType>(ParamType))
 | |
|     return false;
 | |
|   ParamType = ParamType->getPointeeType();
 | |
| 
 | |
|   ASTContext &Context = getASTContext();
 | |
|   QualType ClassType
 | |
|     = Context.getCanonicalType(Context.getTypeDeclType(getParent()));
 | |
|   return Context.hasSameUnqualifiedType(ClassType, ParamType);
 | |
| }
 | |
| 
 | |
| void CXXMethodDecl::addOverriddenMethod(const CXXMethodDecl *MD) {
 | |
|   assert(MD->isCanonicalDecl() && "Method is not canonical!");
 | |
|   assert(!MD->getParent()->isDependentContext() &&
 | |
|          "Can't add an overridden method to a class template!");
 | |
|   assert(MD->isVirtual() && "Method is not virtual!");
 | |
| 
 | |
|   getASTContext().addOverriddenMethod(this, MD);
 | |
| }
 | |
| 
 | |
| CXXMethodDecl::method_iterator CXXMethodDecl::begin_overridden_methods() const {
 | |
|   if (isa<CXXConstructorDecl>(this)) return 0;
 | |
|   return getASTContext().overridden_methods_begin(this);
 | |
| }
 | |
| 
 | |
| CXXMethodDecl::method_iterator CXXMethodDecl::end_overridden_methods() const {
 | |
|   if (isa<CXXConstructorDecl>(this)) return 0;
 | |
|   return getASTContext().overridden_methods_end(this);
 | |
| }
 | |
| 
 | |
| unsigned CXXMethodDecl::size_overridden_methods() const {
 | |
|   if (isa<CXXConstructorDecl>(this)) return 0;
 | |
|   return getASTContext().overridden_methods_size(this);
 | |
| }
 | |
| 
 | |
| QualType CXXMethodDecl::getThisType(ASTContext &C) const {
 | |
|   // C++ 9.3.2p1: The type of this in a member function of a class X is X*.
 | |
|   // If the member function is declared const, the type of this is const X*,
 | |
|   // if the member function is declared volatile, the type of this is
 | |
|   // volatile X*, and if the member function is declared const volatile,
 | |
|   // the type of this is const volatile X*.
 | |
| 
 | |
|   assert(isInstance() && "No 'this' for static methods!");
 | |
| 
 | |
|   QualType ClassTy = C.getTypeDeclType(getParent());
 | |
|   ClassTy = C.getQualifiedType(ClassTy,
 | |
|                                Qualifiers::fromCVRMask(getTypeQualifiers()));
 | |
|   return C.getPointerType(ClassTy);
 | |
| }
 | |
| 
 | |
| bool CXXMethodDecl::hasInlineBody() const {
 | |
|   // If this function is a template instantiation, look at the template from 
 | |
|   // which it was instantiated.
 | |
|   const FunctionDecl *CheckFn = getTemplateInstantiationPattern();
 | |
|   if (!CheckFn)
 | |
|     CheckFn = this;
 | |
|   
 | |
|   const FunctionDecl *fn;
 | |
|   return CheckFn->hasBody(fn) && !fn->isOutOfLine();
 | |
| }
 | |
| 
 | |
| bool CXXMethodDecl::isLambdaStaticInvoker() const {
 | |
|   const CXXRecordDecl *P = getParent();
 | |
|   if (P->isLambda()) {
 | |
|     if (const CXXMethodDecl *StaticInvoker = P->getLambdaStaticInvoker()) {
 | |
|       if (StaticInvoker == this) return true;
 | |
|       if (P->isGenericLambda() && this->isFunctionTemplateSpecialization())
 | |
|         return StaticInvoker == this->getPrimaryTemplate()->getTemplatedDecl();
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
 | |
|                                        TypeSourceInfo *TInfo, bool IsVirtual,
 | |
|                                        SourceLocation L, Expr *Init,
 | |
|                                        SourceLocation R,
 | |
|                                        SourceLocation EllipsisLoc)
 | |
|   : Initializee(TInfo), MemberOrEllipsisLocation(EllipsisLoc), Init(Init), 
 | |
|     LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(IsVirtual), 
 | |
|     IsWritten(false), SourceOrderOrNumArrayIndices(0)
 | |
| {
 | |
| }
 | |
| 
 | |
| CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
 | |
|                                        FieldDecl *Member,
 | |
|                                        SourceLocation MemberLoc,
 | |
|                                        SourceLocation L, Expr *Init,
 | |
|                                        SourceLocation R)
 | |
|   : Initializee(Member), MemberOrEllipsisLocation(MemberLoc), Init(Init),
 | |
|     LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(false),
 | |
|     IsWritten(false), SourceOrderOrNumArrayIndices(0)
 | |
| {
 | |
| }
 | |
| 
 | |
| CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
 | |
|                                        IndirectFieldDecl *Member,
 | |
|                                        SourceLocation MemberLoc,
 | |
|                                        SourceLocation L, Expr *Init,
 | |
|                                        SourceLocation R)
 | |
|   : Initializee(Member), MemberOrEllipsisLocation(MemberLoc), Init(Init),
 | |
|     LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(false),
 | |
|     IsWritten(false), SourceOrderOrNumArrayIndices(0)
 | |
| {
 | |
| }
 | |
| 
 | |
| CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
 | |
|                                        TypeSourceInfo *TInfo,
 | |
|                                        SourceLocation L, Expr *Init, 
 | |
|                                        SourceLocation R)
 | |
|   : Initializee(TInfo), MemberOrEllipsisLocation(), Init(Init),
 | |
|     LParenLoc(L), RParenLoc(R), IsDelegating(true), IsVirtual(false),
 | |
|     IsWritten(false), SourceOrderOrNumArrayIndices(0)
 | |
| {
 | |
| }
 | |
| 
 | |
| CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
 | |
|                                        FieldDecl *Member,
 | |
|                                        SourceLocation MemberLoc,
 | |
|                                        SourceLocation L, Expr *Init,
 | |
|                                        SourceLocation R,
 | |
|                                        VarDecl **Indices,
 | |
|                                        unsigned NumIndices)
 | |
|   : Initializee(Member), MemberOrEllipsisLocation(MemberLoc), Init(Init), 
 | |
|     LParenLoc(L), RParenLoc(R), IsVirtual(false),
 | |
|     IsWritten(false), SourceOrderOrNumArrayIndices(NumIndices)
 | |
| {
 | |
|   VarDecl **MyIndices = reinterpret_cast<VarDecl **> (this + 1);
 | |
|   memcpy(MyIndices, Indices, NumIndices * sizeof(VarDecl *));
 | |
| }
 | |
| 
 | |
| CXXCtorInitializer *CXXCtorInitializer::Create(ASTContext &Context,
 | |
|                                                FieldDecl *Member, 
 | |
|                                                SourceLocation MemberLoc,
 | |
|                                                SourceLocation L, Expr *Init,
 | |
|                                                SourceLocation R,
 | |
|                                                VarDecl **Indices,
 | |
|                                                unsigned NumIndices) {
 | |
|   void *Mem = Context.Allocate(sizeof(CXXCtorInitializer) +
 | |
|                                sizeof(VarDecl *) * NumIndices,
 | |
|                                llvm::alignOf<CXXCtorInitializer>());
 | |
|   return new (Mem) CXXCtorInitializer(Context, Member, MemberLoc, L, Init, R,
 | |
|                                       Indices, NumIndices);
 | |
| }
 | |
| 
 | |
| TypeLoc CXXCtorInitializer::getBaseClassLoc() const {
 | |
|   if (isBaseInitializer())
 | |
|     return Initializee.get<TypeSourceInfo*>()->getTypeLoc();
 | |
|   else
 | |
|     return TypeLoc();
 | |
| }
 | |
| 
 | |
| const Type *CXXCtorInitializer::getBaseClass() const {
 | |
|   if (isBaseInitializer())
 | |
|     return Initializee.get<TypeSourceInfo*>()->getType().getTypePtr();
 | |
|   else
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| SourceLocation CXXCtorInitializer::getSourceLocation() const {
 | |
|   if (isAnyMemberInitializer())
 | |
|     return getMemberLocation();
 | |
| 
 | |
|   if (isInClassMemberInitializer())
 | |
|     return getAnyMember()->getLocation();
 | |
|   
 | |
|   if (TypeSourceInfo *TSInfo = Initializee.get<TypeSourceInfo*>())
 | |
|     return TSInfo->getTypeLoc().getLocalSourceRange().getBegin();
 | |
|   
 | |
|   return SourceLocation();
 | |
| }
 | |
| 
 | |
| SourceRange CXXCtorInitializer::getSourceRange() const {
 | |
|   if (isInClassMemberInitializer()) {
 | |
|     FieldDecl *D = getAnyMember();
 | |
|     if (Expr *I = D->getInClassInitializer())
 | |
|       return I->getSourceRange();
 | |
|     return SourceRange();
 | |
|   }
 | |
| 
 | |
|   return SourceRange(getSourceLocation(), getRParenLoc());
 | |
| }
 | |
| 
 | |
| void CXXConstructorDecl::anchor() { }
 | |
| 
 | |
| CXXConstructorDecl *
 | |
| CXXConstructorDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
 | |
|   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(CXXConstructorDecl));
 | |
|   return new (Mem) CXXConstructorDecl(0, SourceLocation(),DeclarationNameInfo(),
 | |
|                                       QualType(), 0, false, false, false,false);
 | |
| }
 | |
| 
 | |
| CXXConstructorDecl *
 | |
| CXXConstructorDecl::Create(ASTContext &C, CXXRecordDecl *RD,
 | |
|                            SourceLocation StartLoc,
 | |
|                            const DeclarationNameInfo &NameInfo,
 | |
|                            QualType T, TypeSourceInfo *TInfo,
 | |
|                            bool isExplicit, bool isInline,
 | |
|                            bool isImplicitlyDeclared, bool isConstexpr) {
 | |
|   assert(NameInfo.getName().getNameKind()
 | |
|          == DeclarationName::CXXConstructorName &&
 | |
|          "Name must refer to a constructor");
 | |
|   return new (C) CXXConstructorDecl(RD, StartLoc, NameInfo, T, TInfo,
 | |
|                                     isExplicit, isInline, isImplicitlyDeclared,
 | |
|                                     isConstexpr);
 | |
| }
 | |
| 
 | |
| CXXConstructorDecl *CXXConstructorDecl::getTargetConstructor() const {
 | |
|   assert(isDelegatingConstructor() && "Not a delegating constructor!");
 | |
|   Expr *E = (*init_begin())->getInit()->IgnoreImplicit();
 | |
|   if (CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(E))
 | |
|     return Construct->getConstructor();
 | |
|   
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| bool CXXConstructorDecl::isDefaultConstructor() const {
 | |
|   // C++ [class.ctor]p5:
 | |
|   //   A default constructor for a class X is a constructor of class
 | |
|   //   X that can be called without an argument.
 | |
|   return (getNumParams() == 0) ||
 | |
|          (getNumParams() > 0 && getParamDecl(0)->hasDefaultArg());
 | |
| }
 | |
| 
 | |
| bool
 | |
| CXXConstructorDecl::isCopyConstructor(unsigned &TypeQuals) const {
 | |
|   return isCopyOrMoveConstructor(TypeQuals) &&
 | |
|          getParamDecl(0)->getType()->isLValueReferenceType();
 | |
| }
 | |
| 
 | |
| bool CXXConstructorDecl::isMoveConstructor(unsigned &TypeQuals) const {
 | |
|   return isCopyOrMoveConstructor(TypeQuals) &&
 | |
|     getParamDecl(0)->getType()->isRValueReferenceType();
 | |
| }
 | |
| 
 | |
| /// \brief Determine whether this is a copy or move constructor.
 | |
| bool CXXConstructorDecl::isCopyOrMoveConstructor(unsigned &TypeQuals) const {
 | |
|   // C++ [class.copy]p2:
 | |
|   //   A non-template constructor for class X is a copy constructor
 | |
|   //   if its first parameter is of type X&, const X&, volatile X& or
 | |
|   //   const volatile X&, and either there are no other parameters
 | |
|   //   or else all other parameters have default arguments (8.3.6).
 | |
|   // C++0x [class.copy]p3:
 | |
|   //   A non-template constructor for class X is a move constructor if its
 | |
|   //   first parameter is of type X&&, const X&&, volatile X&&, or 
 | |
|   //   const volatile X&&, and either there are no other parameters or else 
 | |
|   //   all other parameters have default arguments.
 | |
|   if ((getNumParams() < 1) ||
 | |
|       (getNumParams() > 1 && !getParamDecl(1)->hasDefaultArg()) ||
 | |
|       (getPrimaryTemplate() != 0) ||
 | |
|       (getDescribedFunctionTemplate() != 0))
 | |
|     return false;
 | |
|   
 | |
|   const ParmVarDecl *Param = getParamDecl(0);
 | |
|   
 | |
|   // Do we have a reference type? 
 | |
|   const ReferenceType *ParamRefType = Param->getType()->getAs<ReferenceType>();
 | |
|   if (!ParamRefType)
 | |
|     return false;
 | |
|   
 | |
|   // Is it a reference to our class type?
 | |
|   ASTContext &Context = getASTContext();
 | |
|   
 | |
|   CanQualType PointeeType
 | |
|     = Context.getCanonicalType(ParamRefType->getPointeeType());
 | |
|   CanQualType ClassTy 
 | |
|     = Context.getCanonicalType(Context.getTagDeclType(getParent()));
 | |
|   if (PointeeType.getUnqualifiedType() != ClassTy)
 | |
|     return false;
 | |
|   
 | |
|   // FIXME: other qualifiers?
 | |
|   
 | |
|   // We have a copy or move constructor.
 | |
|   TypeQuals = PointeeType.getCVRQualifiers();
 | |
|   return true;  
 | |
| }
 | |
| 
 | |
| bool CXXConstructorDecl::isConvertingConstructor(bool AllowExplicit) const {
 | |
|   // C++ [class.conv.ctor]p1:
 | |
|   //   A constructor declared without the function-specifier explicit
 | |
|   //   that can be called with a single parameter specifies a
 | |
|   //   conversion from the type of its first parameter to the type of
 | |
|   //   its class. Such a constructor is called a converting
 | |
|   //   constructor.
 | |
|   if (isExplicit() && !AllowExplicit)
 | |
|     return false;
 | |
| 
 | |
|   return (getNumParams() == 0 &&
 | |
|           getType()->getAs<FunctionProtoType>()->isVariadic()) ||
 | |
|          (getNumParams() == 1) ||
 | |
|          (getNumParams() > 1 &&
 | |
|           (getParamDecl(1)->hasDefaultArg() ||
 | |
|            getParamDecl(1)->isParameterPack()));
 | |
| }
 | |
| 
 | |
| bool CXXConstructorDecl::isSpecializationCopyingObject() const {
 | |
|   if ((getNumParams() < 1) ||
 | |
|       (getNumParams() > 1 && !getParamDecl(1)->hasDefaultArg()) ||
 | |
|       (getPrimaryTemplate() == 0) ||
 | |
|       (getDescribedFunctionTemplate() != 0))
 | |
|     return false;
 | |
| 
 | |
|   const ParmVarDecl *Param = getParamDecl(0);
 | |
| 
 | |
|   ASTContext &Context = getASTContext();
 | |
|   CanQualType ParamType = Context.getCanonicalType(Param->getType());
 | |
|   
 | |
|   // Is it the same as our our class type?
 | |
|   CanQualType ClassTy 
 | |
|     = Context.getCanonicalType(Context.getTagDeclType(getParent()));
 | |
|   if (ParamType.getUnqualifiedType() != ClassTy)
 | |
|     return false;
 | |
|   
 | |
|   return true;  
 | |
| }
 | |
| 
 | |
| const CXXConstructorDecl *CXXConstructorDecl::getInheritedConstructor() const {
 | |
|   // Hack: we store the inherited constructor in the overridden method table
 | |
|   method_iterator It = getASTContext().overridden_methods_begin(this);
 | |
|   if (It == getASTContext().overridden_methods_end(this))
 | |
|     return 0;
 | |
| 
 | |
|   return cast<CXXConstructorDecl>(*It);
 | |
| }
 | |
| 
 | |
| void
 | |
| CXXConstructorDecl::setInheritedConstructor(const CXXConstructorDecl *BaseCtor){
 | |
|   // Hack: we store the inherited constructor in the overridden method table
 | |
|   assert(getASTContext().overridden_methods_size(this) == 0 &&
 | |
|          "Base ctor already set.");
 | |
|   getASTContext().addOverriddenMethod(this, BaseCtor);
 | |
| }
 | |
| 
 | |
| void CXXDestructorDecl::anchor() { }
 | |
| 
 | |
| CXXDestructorDecl *
 | |
| CXXDestructorDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
 | |
|   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(CXXDestructorDecl));
 | |
|   return new (Mem) CXXDestructorDecl(0, SourceLocation(), DeclarationNameInfo(),
 | |
|                                    QualType(), 0, false, false);
 | |
| }
 | |
| 
 | |
| CXXDestructorDecl *
 | |
| CXXDestructorDecl::Create(ASTContext &C, CXXRecordDecl *RD,
 | |
|                           SourceLocation StartLoc,
 | |
|                           const DeclarationNameInfo &NameInfo,
 | |
|                           QualType T, TypeSourceInfo *TInfo,
 | |
|                           bool isInline, bool isImplicitlyDeclared) {
 | |
|   assert(NameInfo.getName().getNameKind()
 | |
|          == DeclarationName::CXXDestructorName &&
 | |
|          "Name must refer to a destructor");
 | |
|   return new (C) CXXDestructorDecl(RD, StartLoc, NameInfo, T, TInfo, isInline,
 | |
|                                    isImplicitlyDeclared);
 | |
| }
 | |
| 
 | |
| void CXXConversionDecl::anchor() { }
 | |
| 
 | |
| CXXConversionDecl *
 | |
| CXXConversionDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
 | |
|   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(CXXConversionDecl));
 | |
|   return new (Mem) CXXConversionDecl(0, SourceLocation(), DeclarationNameInfo(),
 | |
|                                      QualType(), 0, false, false, false,
 | |
|                                      SourceLocation());
 | |
| }
 | |
| 
 | |
| CXXConversionDecl *
 | |
| CXXConversionDecl::Create(ASTContext &C, CXXRecordDecl *RD,
 | |
|                           SourceLocation StartLoc,
 | |
|                           const DeclarationNameInfo &NameInfo,
 | |
|                           QualType T, TypeSourceInfo *TInfo,
 | |
|                           bool isInline, bool isExplicit,
 | |
|                           bool isConstexpr, SourceLocation EndLocation) {
 | |
|   assert(NameInfo.getName().getNameKind()
 | |
|          == DeclarationName::CXXConversionFunctionName &&
 | |
|          "Name must refer to a conversion function");
 | |
|   return new (C) CXXConversionDecl(RD, StartLoc, NameInfo, T, TInfo,
 | |
|                                    isInline, isExplicit, isConstexpr,
 | |
|                                    EndLocation);
 | |
| }
 | |
| 
 | |
| bool CXXConversionDecl::isLambdaToBlockPointerConversion() const {
 | |
|   return isImplicit() && getParent()->isLambda() &&
 | |
|          getConversionType()->isBlockPointerType();
 | |
| }
 | |
| 
 | |
| void LinkageSpecDecl::anchor() { }
 | |
| 
 | |
| LinkageSpecDecl *LinkageSpecDecl::Create(ASTContext &C,
 | |
|                                          DeclContext *DC,
 | |
|                                          SourceLocation ExternLoc,
 | |
|                                          SourceLocation LangLoc,
 | |
|                                          LanguageIDs Lang,
 | |
|                                          bool HasBraces) {
 | |
|   return new (C) LinkageSpecDecl(DC, ExternLoc, LangLoc, Lang, HasBraces);
 | |
| }
 | |
| 
 | |
| LinkageSpecDecl *LinkageSpecDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
 | |
|   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(LinkageSpecDecl));
 | |
|   return new (Mem) LinkageSpecDecl(0, SourceLocation(), SourceLocation(),
 | |
|                                    lang_c, false);
 | |
| }
 | |
| 
 | |
| void UsingDirectiveDecl::anchor() { }
 | |
| 
 | |
| UsingDirectiveDecl *UsingDirectiveDecl::Create(ASTContext &C, DeclContext *DC,
 | |
|                                                SourceLocation L,
 | |
|                                                SourceLocation NamespaceLoc,
 | |
|                                            NestedNameSpecifierLoc QualifierLoc,
 | |
|                                                SourceLocation IdentLoc,
 | |
|                                                NamedDecl *Used,
 | |
|                                                DeclContext *CommonAncestor) {
 | |
|   if (NamespaceDecl *NS = dyn_cast_or_null<NamespaceDecl>(Used))
 | |
|     Used = NS->getOriginalNamespace();
 | |
|   return new (C) UsingDirectiveDecl(DC, L, NamespaceLoc, QualifierLoc,
 | |
|                                     IdentLoc, Used, CommonAncestor);
 | |
| }
 | |
| 
 | |
| UsingDirectiveDecl *
 | |
| UsingDirectiveDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
 | |
|   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(UsingDirectiveDecl));
 | |
|   return new (Mem) UsingDirectiveDecl(0, SourceLocation(), SourceLocation(),
 | |
|                                       NestedNameSpecifierLoc(),
 | |
|                                       SourceLocation(), 0, 0);
 | |
| }
 | |
| 
 | |
| NamespaceDecl *UsingDirectiveDecl::getNominatedNamespace() {
 | |
|   if (NamespaceAliasDecl *NA =
 | |
|         dyn_cast_or_null<NamespaceAliasDecl>(NominatedNamespace))
 | |
|     return NA->getNamespace();
 | |
|   return cast_or_null<NamespaceDecl>(NominatedNamespace);
 | |
| }
 | |
| 
 | |
| void NamespaceDecl::anchor() { }
 | |
| 
 | |
| NamespaceDecl::NamespaceDecl(DeclContext *DC, bool Inline, 
 | |
|                              SourceLocation StartLoc,
 | |
|                              SourceLocation IdLoc, IdentifierInfo *Id,
 | |
|                              NamespaceDecl *PrevDecl)
 | |
|   : NamedDecl(Namespace, DC, IdLoc, Id), DeclContext(Namespace),
 | |
|     LocStart(StartLoc), RBraceLoc(), AnonOrFirstNamespaceAndInline(0, Inline) 
 | |
| {
 | |
|   setPreviousDecl(PrevDecl);
 | |
|   
 | |
|   if (PrevDecl)
 | |
|     AnonOrFirstNamespaceAndInline.setPointer(PrevDecl->getOriginalNamespace());
 | |
| }
 | |
| 
 | |
| NamespaceDecl *NamespaceDecl::Create(ASTContext &C, DeclContext *DC,
 | |
|                                      bool Inline, SourceLocation StartLoc,
 | |
|                                      SourceLocation IdLoc, IdentifierInfo *Id,
 | |
|                                      NamespaceDecl *PrevDecl) {
 | |
|   return new (C) NamespaceDecl(DC, Inline, StartLoc, IdLoc, Id, PrevDecl);
 | |
| }
 | |
| 
 | |
| NamespaceDecl *NamespaceDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
 | |
|   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(NamespaceDecl));
 | |
|   return new (Mem) NamespaceDecl(0, false, SourceLocation(), SourceLocation(), 
 | |
|                                  0, 0);
 | |
| }
 | |
| 
 | |
| void NamespaceAliasDecl::anchor() { }
 | |
| 
 | |
| NamespaceAliasDecl *NamespaceAliasDecl::Create(ASTContext &C, DeclContext *DC,
 | |
|                                                SourceLocation UsingLoc,
 | |
|                                                SourceLocation AliasLoc,
 | |
|                                                IdentifierInfo *Alias,
 | |
|                                            NestedNameSpecifierLoc QualifierLoc,
 | |
|                                                SourceLocation IdentLoc,
 | |
|                                                NamedDecl *Namespace) {
 | |
|   if (NamespaceDecl *NS = dyn_cast_or_null<NamespaceDecl>(Namespace))
 | |
|     Namespace = NS->getOriginalNamespace();
 | |
|   return new (C) NamespaceAliasDecl(DC, UsingLoc, AliasLoc, Alias, 
 | |
|                                     QualifierLoc, IdentLoc, Namespace);
 | |
| }
 | |
| 
 | |
| NamespaceAliasDecl *
 | |
| NamespaceAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
 | |
|   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(NamespaceAliasDecl));
 | |
|   return new (Mem) NamespaceAliasDecl(0, SourceLocation(), SourceLocation(), 0,
 | |
|                                       NestedNameSpecifierLoc(), 
 | |
|                                       SourceLocation(), 0);
 | |
| }
 | |
| 
 | |
| void UsingShadowDecl::anchor() { }
 | |
| 
 | |
| UsingShadowDecl *
 | |
| UsingShadowDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
 | |
|   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(UsingShadowDecl));
 | |
|   return new (Mem) UsingShadowDecl(0, SourceLocation(), 0, 0);
 | |
| }
 | |
| 
 | |
| UsingDecl *UsingShadowDecl::getUsingDecl() const {
 | |
|   const UsingShadowDecl *Shadow = this;
 | |
|   while (const UsingShadowDecl *NextShadow =
 | |
|          dyn_cast<UsingShadowDecl>(Shadow->UsingOrNextShadow))
 | |
|     Shadow = NextShadow;
 | |
|   return cast<UsingDecl>(Shadow->UsingOrNextShadow);
 | |
| }
 | |
| 
 | |
| void UsingDecl::anchor() { }
 | |
| 
 | |
| void UsingDecl::addShadowDecl(UsingShadowDecl *S) {
 | |
|   assert(std::find(shadow_begin(), shadow_end(), S) == shadow_end() &&
 | |
|          "declaration already in set");
 | |
|   assert(S->getUsingDecl() == this);
 | |
| 
 | |
|   if (FirstUsingShadow.getPointer())
 | |
|     S->UsingOrNextShadow = FirstUsingShadow.getPointer();
 | |
|   FirstUsingShadow.setPointer(S);
 | |
| }
 | |
| 
 | |
| void UsingDecl::removeShadowDecl(UsingShadowDecl *S) {
 | |
|   assert(std::find(shadow_begin(), shadow_end(), S) != shadow_end() &&
 | |
|          "declaration not in set");
 | |
|   assert(S->getUsingDecl() == this);
 | |
| 
 | |
|   // Remove S from the shadow decl chain. This is O(n) but hopefully rare.
 | |
| 
 | |
|   if (FirstUsingShadow.getPointer() == S) {
 | |
|     FirstUsingShadow.setPointer(
 | |
|       dyn_cast<UsingShadowDecl>(S->UsingOrNextShadow));
 | |
|     S->UsingOrNextShadow = this;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   UsingShadowDecl *Prev = FirstUsingShadow.getPointer();
 | |
|   while (Prev->UsingOrNextShadow != S)
 | |
|     Prev = cast<UsingShadowDecl>(Prev->UsingOrNextShadow);
 | |
|   Prev->UsingOrNextShadow = S->UsingOrNextShadow;
 | |
|   S->UsingOrNextShadow = this;
 | |
| }
 | |
| 
 | |
| UsingDecl *UsingDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation UL,
 | |
|                              NestedNameSpecifierLoc QualifierLoc,
 | |
|                              const DeclarationNameInfo &NameInfo,
 | |
|                              bool HasTypename) {
 | |
|   return new (C) UsingDecl(DC, UL, QualifierLoc, NameInfo, HasTypename);
 | |
| }
 | |
| 
 | |
| UsingDecl *UsingDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
 | |
|   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(UsingDecl));
 | |
|   return new (Mem) UsingDecl(0, SourceLocation(), NestedNameSpecifierLoc(),
 | |
|                              DeclarationNameInfo(), false);
 | |
| }
 | |
| 
 | |
| SourceRange UsingDecl::getSourceRange() const {
 | |
|   SourceLocation Begin = isAccessDeclaration()
 | |
|     ? getQualifierLoc().getBeginLoc() : UsingLocation;
 | |
|   return SourceRange(Begin, getNameInfo().getEndLoc());
 | |
| }
 | |
| 
 | |
| void UnresolvedUsingValueDecl::anchor() { }
 | |
| 
 | |
| UnresolvedUsingValueDecl *
 | |
| UnresolvedUsingValueDecl::Create(ASTContext &C, DeclContext *DC,
 | |
|                                  SourceLocation UsingLoc,
 | |
|                                  NestedNameSpecifierLoc QualifierLoc,
 | |
|                                  const DeclarationNameInfo &NameInfo) {
 | |
|   return new (C) UnresolvedUsingValueDecl(DC, C.DependentTy, UsingLoc,
 | |
|                                           QualifierLoc, NameInfo);
 | |
| }
 | |
| 
 | |
| UnresolvedUsingValueDecl *
 | |
| UnresolvedUsingValueDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
 | |
|   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(UnresolvedUsingValueDecl));
 | |
|   return new (Mem) UnresolvedUsingValueDecl(0, QualType(), SourceLocation(),
 | |
|                                             NestedNameSpecifierLoc(),
 | |
|                                             DeclarationNameInfo());
 | |
| }
 | |
| 
 | |
| SourceRange UnresolvedUsingValueDecl::getSourceRange() const {
 | |
|   SourceLocation Begin = isAccessDeclaration()
 | |
|     ? getQualifierLoc().getBeginLoc() : UsingLocation;
 | |
|   return SourceRange(Begin, getNameInfo().getEndLoc());
 | |
| }
 | |
| 
 | |
| void UnresolvedUsingTypenameDecl::anchor() { }
 | |
| 
 | |
| UnresolvedUsingTypenameDecl *
 | |
| UnresolvedUsingTypenameDecl::Create(ASTContext &C, DeclContext *DC,
 | |
|                                     SourceLocation UsingLoc,
 | |
|                                     SourceLocation TypenameLoc,
 | |
|                                     NestedNameSpecifierLoc QualifierLoc,
 | |
|                                     SourceLocation TargetNameLoc,
 | |
|                                     DeclarationName TargetName) {
 | |
|   return new (C) UnresolvedUsingTypenameDecl(DC, UsingLoc, TypenameLoc,
 | |
|                                              QualifierLoc, TargetNameLoc,
 | |
|                                              TargetName.getAsIdentifierInfo());
 | |
| }
 | |
| 
 | |
| UnresolvedUsingTypenameDecl *
 | |
| UnresolvedUsingTypenameDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
 | |
|   void *Mem = AllocateDeserializedDecl(C, ID, 
 | |
|                                        sizeof(UnresolvedUsingTypenameDecl));
 | |
|   return new (Mem) UnresolvedUsingTypenameDecl(0, SourceLocation(),
 | |
|                                                SourceLocation(),
 | |
|                                                NestedNameSpecifierLoc(),
 | |
|                                                SourceLocation(),
 | |
|                                                0);
 | |
| }
 | |
| 
 | |
| void StaticAssertDecl::anchor() { }
 | |
| 
 | |
| StaticAssertDecl *StaticAssertDecl::Create(ASTContext &C, DeclContext *DC,
 | |
|                                            SourceLocation StaticAssertLoc,
 | |
|                                            Expr *AssertExpr,
 | |
|                                            StringLiteral *Message,
 | |
|                                            SourceLocation RParenLoc,
 | |
|                                            bool Failed) {
 | |
|   return new (C) StaticAssertDecl(DC, StaticAssertLoc, AssertExpr, Message,
 | |
|                                   RParenLoc, Failed);
 | |
| }
 | |
| 
 | |
| StaticAssertDecl *StaticAssertDecl::CreateDeserialized(ASTContext &C, 
 | |
|                                                        unsigned ID) {
 | |
|   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(StaticAssertDecl));
 | |
|   return new (Mem) StaticAssertDecl(0, SourceLocation(), 0, 0,
 | |
|                                     SourceLocation(), false);
 | |
| }
 | |
| 
 | |
| static const char *getAccessName(AccessSpecifier AS) {
 | |
|   switch (AS) {
 | |
|     case AS_none:
 | |
|       llvm_unreachable("Invalid access specifier!");
 | |
|     case AS_public:
 | |
|       return "public";
 | |
|     case AS_private:
 | |
|       return "private";
 | |
|     case AS_protected:
 | |
|       return "protected";
 | |
|   }
 | |
|   llvm_unreachable("Invalid access specifier!");
 | |
| }
 | |
| 
 | |
| const DiagnosticBuilder &clang::operator<<(const DiagnosticBuilder &DB,
 | |
|                                            AccessSpecifier AS) {
 | |
|   return DB << getAccessName(AS);
 | |
| }
 | |
| 
 | |
| const PartialDiagnostic &clang::operator<<(const PartialDiagnostic &DB,
 | |
|                                            AccessSpecifier AS) {
 | |
|   return DB << getAccessName(AS);
 | |
| }
 | 
