4182 lines
		
	
	
		
			147 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			4182 lines
		
	
	
		
			147 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===--- Expr.cpp - Expression AST Node Implementation --------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the Expr class and subclasses.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "clang/AST/APValue.h"
 | |
| #include "clang/AST/ASTContext.h"
 | |
| #include "clang/AST/Attr.h"
 | |
| #include "clang/AST/DeclCXX.h"
 | |
| #include "clang/AST/DeclObjC.h"
 | |
| #include "clang/AST/DeclTemplate.h"
 | |
| #include "clang/AST/EvaluatedExprVisitor.h"
 | |
| #include "clang/AST/Expr.h"
 | |
| #include "clang/AST/ExprCXX.h"
 | |
| #include "clang/AST/Mangle.h"
 | |
| #include "clang/AST/RecordLayout.h"
 | |
| #include "clang/AST/StmtVisitor.h"
 | |
| #include "clang/Basic/Builtins.h"
 | |
| #include "clang/Basic/CharInfo.h"
 | |
| #include "clang/Basic/SourceManager.h"
 | |
| #include "clang/Basic/TargetInfo.h"
 | |
| #include "clang/Lex/Lexer.h"
 | |
| #include "clang/Lex/LiteralSupport.h"
 | |
| #include "clang/Sema/SemaDiagnostic.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include <algorithm>
 | |
| #include <cstring>
 | |
| using namespace clang;
 | |
| 
 | |
| const CXXRecordDecl *Expr::getBestDynamicClassType() const {
 | |
|   const Expr *E = ignoreParenBaseCasts();
 | |
| 
 | |
|   QualType DerivedType = E->getType();
 | |
|   if (const PointerType *PTy = DerivedType->getAs<PointerType>())
 | |
|     DerivedType = PTy->getPointeeType();
 | |
| 
 | |
|   if (DerivedType->isDependentType())
 | |
|     return NULL;
 | |
| 
 | |
|   const RecordType *Ty = DerivedType->castAs<RecordType>();
 | |
|   Decl *D = Ty->getDecl();
 | |
|   return cast<CXXRecordDecl>(D);
 | |
| }
 | |
| 
 | |
| const Expr *Expr::skipRValueSubobjectAdjustments(
 | |
|     SmallVectorImpl<const Expr *> &CommaLHSs,
 | |
|     SmallVectorImpl<SubobjectAdjustment> &Adjustments) const {
 | |
|   const Expr *E = this;
 | |
|   while (true) {
 | |
|     E = E->IgnoreParens();
 | |
| 
 | |
|     if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
 | |
|       if ((CE->getCastKind() == CK_DerivedToBase ||
 | |
|            CE->getCastKind() == CK_UncheckedDerivedToBase) &&
 | |
|           E->getType()->isRecordType()) {
 | |
|         E = CE->getSubExpr();
 | |
|         CXXRecordDecl *Derived
 | |
|           = cast<CXXRecordDecl>(E->getType()->getAs<RecordType>()->getDecl());
 | |
|         Adjustments.push_back(SubobjectAdjustment(CE, Derived));
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       if (CE->getCastKind() == CK_NoOp) {
 | |
|         E = CE->getSubExpr();
 | |
|         continue;
 | |
|       }
 | |
|     } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
 | |
|       if (!ME->isArrow()) {
 | |
|         assert(ME->getBase()->getType()->isRecordType());
 | |
|         if (FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
 | |
|           if (!Field->isBitField() && !Field->getType()->isReferenceType()) {
 | |
|             E = ME->getBase();
 | |
|             Adjustments.push_back(SubobjectAdjustment(Field));
 | |
|             continue;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     } else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
 | |
|       if (BO->isPtrMemOp()) {
 | |
|         assert(BO->getRHS()->isRValue());
 | |
|         E = BO->getLHS();
 | |
|         const MemberPointerType *MPT =
 | |
|           BO->getRHS()->getType()->getAs<MemberPointerType>();
 | |
|         Adjustments.push_back(SubobjectAdjustment(MPT, BO->getRHS()));
 | |
|         continue;
 | |
|       } else if (BO->getOpcode() == BO_Comma) {
 | |
|         CommaLHSs.push_back(BO->getLHS());
 | |
|         E = BO->getRHS();
 | |
|         continue;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Nothing changed.
 | |
|     break;
 | |
|   }
 | |
|   return E;
 | |
| }
 | |
| 
 | |
| const Expr *
 | |
| Expr::findMaterializedTemporary(const MaterializeTemporaryExpr *&MTE) const {
 | |
|   const Expr *E = this;
 | |
| 
 | |
|   // This might be a default initializer for a reference member. Walk over the
 | |
|   // wrapper node for that.
 | |
|   if (const CXXDefaultInitExpr *DAE = dyn_cast<CXXDefaultInitExpr>(E))
 | |
|     E = DAE->getExpr();
 | |
| 
 | |
|   // Look through single-element init lists that claim to be lvalues. They're
 | |
|   // just syntactic wrappers in this case.
 | |
|   if (const InitListExpr *ILE = dyn_cast<InitListExpr>(E)) {
 | |
|     if (ILE->getNumInits() == 1 && ILE->isGLValue()) {
 | |
|       E = ILE->getInit(0);
 | |
|       if (const CXXDefaultInitExpr *DAE = dyn_cast<CXXDefaultInitExpr>(E))
 | |
|         E = DAE->getExpr();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Look through expressions for materialized temporaries (for now).
 | |
|   if (const MaterializeTemporaryExpr *M
 | |
|       = dyn_cast<MaterializeTemporaryExpr>(E)) {
 | |
|     MTE = M;
 | |
|     E = M->GetTemporaryExpr();
 | |
|   }
 | |
| 
 | |
|   if (const CXXDefaultArgExpr *DAE = dyn_cast<CXXDefaultArgExpr>(E))
 | |
|     E = DAE->getExpr();
 | |
|   return E;
 | |
| }
 | |
| 
 | |
| /// isKnownToHaveBooleanValue - Return true if this is an integer expression
 | |
| /// that is known to return 0 or 1.  This happens for _Bool/bool expressions
 | |
| /// but also int expressions which are produced by things like comparisons in
 | |
| /// C.
 | |
| bool Expr::isKnownToHaveBooleanValue() const {
 | |
|   const Expr *E = IgnoreParens();
 | |
| 
 | |
|   // If this value has _Bool type, it is obvious 0/1.
 | |
|   if (E->getType()->isBooleanType()) return true;
 | |
|   // If this is a non-scalar-integer type, we don't care enough to try. 
 | |
|   if (!E->getType()->isIntegralOrEnumerationType()) return false;
 | |
|   
 | |
|   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
 | |
|     switch (UO->getOpcode()) {
 | |
|     case UO_Plus:
 | |
|       return UO->getSubExpr()->isKnownToHaveBooleanValue();
 | |
|     default:
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Only look through implicit casts.  If the user writes
 | |
|   // '(int) (a && b)' treat it as an arbitrary int.
 | |
|   if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E))
 | |
|     return CE->getSubExpr()->isKnownToHaveBooleanValue();
 | |
|   
 | |
|   if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
 | |
|     switch (BO->getOpcode()) {
 | |
|     default: return false;
 | |
|     case BO_LT:   // Relational operators.
 | |
|     case BO_GT:
 | |
|     case BO_LE:
 | |
|     case BO_GE:
 | |
|     case BO_EQ:   // Equality operators.
 | |
|     case BO_NE:
 | |
|     case BO_LAnd: // AND operator.
 | |
|     case BO_LOr:  // Logical OR operator.
 | |
|       return true;
 | |
|         
 | |
|     case BO_And:  // Bitwise AND operator.
 | |
|     case BO_Xor:  // Bitwise XOR operator.
 | |
|     case BO_Or:   // Bitwise OR operator.
 | |
|       // Handle things like (x==2)|(y==12).
 | |
|       return BO->getLHS()->isKnownToHaveBooleanValue() &&
 | |
|              BO->getRHS()->isKnownToHaveBooleanValue();
 | |
|         
 | |
|     case BO_Comma:
 | |
|     case BO_Assign:
 | |
|       return BO->getRHS()->isKnownToHaveBooleanValue();
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E))
 | |
|     return CO->getTrueExpr()->isKnownToHaveBooleanValue() &&
 | |
|            CO->getFalseExpr()->isKnownToHaveBooleanValue();
 | |
|   
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // Amusing macro metaprogramming hack: check whether a class provides
 | |
| // a more specific implementation of getExprLoc().
 | |
| //
 | |
| // See also Stmt.cpp:{getLocStart(),getLocEnd()}.
 | |
| namespace {
 | |
|   /// This implementation is used when a class provides a custom
 | |
|   /// implementation of getExprLoc.
 | |
|   template <class E, class T>
 | |
|   SourceLocation getExprLocImpl(const Expr *expr,
 | |
|                                 SourceLocation (T::*v)() const) {
 | |
|     return static_cast<const E*>(expr)->getExprLoc();
 | |
|   }
 | |
| 
 | |
|   /// This implementation is used when a class doesn't provide
 | |
|   /// a custom implementation of getExprLoc.  Overload resolution
 | |
|   /// should pick it over the implementation above because it's
 | |
|   /// more specialized according to function template partial ordering.
 | |
|   template <class E>
 | |
|   SourceLocation getExprLocImpl(const Expr *expr,
 | |
|                                 SourceLocation (Expr::*v)() const) {
 | |
|     return static_cast<const E*>(expr)->getLocStart();
 | |
|   }
 | |
| }
 | |
| 
 | |
| SourceLocation Expr::getExprLoc() const {
 | |
|   switch (getStmtClass()) {
 | |
|   case Stmt::NoStmtClass: llvm_unreachable("statement without class");
 | |
| #define ABSTRACT_STMT(type)
 | |
| #define STMT(type, base) \
 | |
|   case Stmt::type##Class: llvm_unreachable(#type " is not an Expr"); break;
 | |
| #define EXPR(type, base) \
 | |
|   case Stmt::type##Class: return getExprLocImpl<type>(this, &type::getExprLoc);
 | |
| #include "clang/AST/StmtNodes.inc"
 | |
|   }
 | |
|   llvm_unreachable("unknown statement kind");
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Primary Expressions.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// \brief Compute the type-, value-, and instantiation-dependence of a 
 | |
| /// declaration reference
 | |
| /// based on the declaration being referenced.
 | |
| static void computeDeclRefDependence(const ASTContext &Ctx, NamedDecl *D,
 | |
|                                      QualType T, bool &TypeDependent,
 | |
|                                      bool &ValueDependent,
 | |
|                                      bool &InstantiationDependent) {
 | |
|   TypeDependent = false;
 | |
|   ValueDependent = false;
 | |
|   InstantiationDependent = false;
 | |
| 
 | |
|   // (TD) C++ [temp.dep.expr]p3:
 | |
|   //   An id-expression is type-dependent if it contains:
 | |
|   //
 | |
|   // and 
 | |
|   //
 | |
|   // (VD) C++ [temp.dep.constexpr]p2:
 | |
|   //  An identifier is value-dependent if it is:
 | |
|   
 | |
|   //  (TD)  - an identifier that was declared with dependent type
 | |
|   //  (VD)  - a name declared with a dependent type,
 | |
|   if (T->isDependentType()) {
 | |
|     TypeDependent = true;
 | |
|     ValueDependent = true;
 | |
|     InstantiationDependent = true;
 | |
|     return;
 | |
|   } else if (T->isInstantiationDependentType()) {
 | |
|     InstantiationDependent = true;
 | |
|   }
 | |
|   
 | |
|   //  (TD)  - a conversion-function-id that specifies a dependent type
 | |
|   if (D->getDeclName().getNameKind() 
 | |
|                                 == DeclarationName::CXXConversionFunctionName) {
 | |
|     QualType T = D->getDeclName().getCXXNameType();
 | |
|     if (T->isDependentType()) {
 | |
|       TypeDependent = true;
 | |
|       ValueDependent = true;
 | |
|       InstantiationDependent = true;
 | |
|       return;
 | |
|     }
 | |
|     
 | |
|     if (T->isInstantiationDependentType())
 | |
|       InstantiationDependent = true;
 | |
|   }
 | |
|   
 | |
|   //  (VD)  - the name of a non-type template parameter,
 | |
|   if (isa<NonTypeTemplateParmDecl>(D)) {
 | |
|     ValueDependent = true;
 | |
|     InstantiationDependent = true;
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   //  (VD) - a constant with integral or enumeration type and is
 | |
|   //         initialized with an expression that is value-dependent.
 | |
|   //  (VD) - a constant with literal type and is initialized with an
 | |
|   //         expression that is value-dependent [C++11].
 | |
|   //  (VD) - FIXME: Missing from the standard:
 | |
|   //       -  an entity with reference type and is initialized with an
 | |
|   //          expression that is value-dependent [C++11]
 | |
|   if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
 | |
|     if ((Ctx.getLangOpts().CPlusPlus11 ?
 | |
|            Var->getType()->isLiteralType(Ctx) :
 | |
|            Var->getType()->isIntegralOrEnumerationType()) &&
 | |
|         (Var->getType().isConstQualified() ||
 | |
|          Var->getType()->isReferenceType())) {
 | |
|       if (const Expr *Init = Var->getAnyInitializer())
 | |
|         if (Init->isValueDependent()) {
 | |
|           ValueDependent = true;
 | |
|           InstantiationDependent = true;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // (VD) - FIXME: Missing from the standard: 
 | |
|     //      -  a member function or a static data member of the current 
 | |
|     //         instantiation
 | |
|     if (Var->isStaticDataMember() && 
 | |
|         Var->getDeclContext()->isDependentContext()) {
 | |
|       ValueDependent = true;
 | |
|       InstantiationDependent = true;
 | |
|       TypeSourceInfo *TInfo = Var->getFirstDecl()->getTypeSourceInfo();
 | |
|       if (TInfo->getType()->isIncompleteArrayType())
 | |
|         TypeDependent = true;
 | |
|     }
 | |
|     
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   // (VD) - FIXME: Missing from the standard: 
 | |
|   //      -  a member function or a static data member of the current 
 | |
|   //         instantiation
 | |
|   if (isa<CXXMethodDecl>(D) && D->getDeclContext()->isDependentContext()) {
 | |
|     ValueDependent = true;
 | |
|     InstantiationDependent = true;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void DeclRefExpr::computeDependence(const ASTContext &Ctx) {
 | |
|   bool TypeDependent = false;
 | |
|   bool ValueDependent = false;
 | |
|   bool InstantiationDependent = false;
 | |
|   computeDeclRefDependence(Ctx, getDecl(), getType(), TypeDependent,
 | |
|                            ValueDependent, InstantiationDependent);
 | |
|   
 | |
|   // (TD) C++ [temp.dep.expr]p3:
 | |
|   //   An id-expression is type-dependent if it contains:
 | |
|   //
 | |
|   // and 
 | |
|   //
 | |
|   // (VD) C++ [temp.dep.constexpr]p2:
 | |
|   //  An identifier is value-dependent if it is:
 | |
|   if (!TypeDependent && !ValueDependent &&
 | |
|       hasExplicitTemplateArgs() && 
 | |
|       TemplateSpecializationType::anyDependentTemplateArguments(
 | |
|                                                             getTemplateArgs(), 
 | |
|                                                        getNumTemplateArgs(),
 | |
|                                                       InstantiationDependent)) {
 | |
|     TypeDependent = true;
 | |
|     ValueDependent = true;
 | |
|     InstantiationDependent = true;
 | |
|   }
 | |
|   
 | |
|   ExprBits.TypeDependent = TypeDependent;
 | |
|   ExprBits.ValueDependent = ValueDependent;
 | |
|   ExprBits.InstantiationDependent = InstantiationDependent;
 | |
|   
 | |
|   // Is the declaration a parameter pack?
 | |
|   if (getDecl()->isParameterPack())
 | |
|     ExprBits.ContainsUnexpandedParameterPack = true;
 | |
| }
 | |
| 
 | |
| DeclRefExpr::DeclRefExpr(const ASTContext &Ctx,
 | |
|                          NestedNameSpecifierLoc QualifierLoc,
 | |
|                          SourceLocation TemplateKWLoc,
 | |
|                          ValueDecl *D, bool RefersToEnclosingLocal,
 | |
|                          const DeclarationNameInfo &NameInfo,
 | |
|                          NamedDecl *FoundD,
 | |
|                          const TemplateArgumentListInfo *TemplateArgs,
 | |
|                          QualType T, ExprValueKind VK)
 | |
|   : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false),
 | |
|     D(D), Loc(NameInfo.getLoc()), DNLoc(NameInfo.getInfo()) {
 | |
|   DeclRefExprBits.HasQualifier = QualifierLoc ? 1 : 0;
 | |
|   if (QualifierLoc)
 | |
|     getInternalQualifierLoc() = QualifierLoc;
 | |
|   DeclRefExprBits.HasFoundDecl = FoundD ? 1 : 0;
 | |
|   if (FoundD)
 | |
|     getInternalFoundDecl() = FoundD;
 | |
|   DeclRefExprBits.HasTemplateKWAndArgsInfo
 | |
|     = (TemplateArgs || TemplateKWLoc.isValid()) ? 1 : 0;
 | |
|   DeclRefExprBits.RefersToEnclosingLocal = RefersToEnclosingLocal;
 | |
|   if (TemplateArgs) {
 | |
|     bool Dependent = false;
 | |
|     bool InstantiationDependent = false;
 | |
|     bool ContainsUnexpandedParameterPack = false;
 | |
|     getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc, *TemplateArgs,
 | |
|                                                Dependent,
 | |
|                                                InstantiationDependent,
 | |
|                                                ContainsUnexpandedParameterPack);
 | |
|     if (InstantiationDependent)
 | |
|       setInstantiationDependent(true);
 | |
|   } else if (TemplateKWLoc.isValid()) {
 | |
|     getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc);
 | |
|   }
 | |
|   DeclRefExprBits.HadMultipleCandidates = 0;
 | |
| 
 | |
|   computeDependence(Ctx);
 | |
| }
 | |
| 
 | |
| DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context,
 | |
|                                  NestedNameSpecifierLoc QualifierLoc,
 | |
|                                  SourceLocation TemplateKWLoc,
 | |
|                                  ValueDecl *D,
 | |
|                                  bool RefersToEnclosingLocal,
 | |
|                                  SourceLocation NameLoc,
 | |
|                                  QualType T,
 | |
|                                  ExprValueKind VK,
 | |
|                                  NamedDecl *FoundD,
 | |
|                                  const TemplateArgumentListInfo *TemplateArgs) {
 | |
|   return Create(Context, QualifierLoc, TemplateKWLoc, D,
 | |
|                 RefersToEnclosingLocal,
 | |
|                 DeclarationNameInfo(D->getDeclName(), NameLoc),
 | |
|                 T, VK, FoundD, TemplateArgs);
 | |
| }
 | |
| 
 | |
| DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context,
 | |
|                                  NestedNameSpecifierLoc QualifierLoc,
 | |
|                                  SourceLocation TemplateKWLoc,
 | |
|                                  ValueDecl *D,
 | |
|                                  bool RefersToEnclosingLocal,
 | |
|                                  const DeclarationNameInfo &NameInfo,
 | |
|                                  QualType T,
 | |
|                                  ExprValueKind VK,
 | |
|                                  NamedDecl *FoundD,
 | |
|                                  const TemplateArgumentListInfo *TemplateArgs) {
 | |
|   // Filter out cases where the found Decl is the same as the value refenenced.
 | |
|   if (D == FoundD)
 | |
|     FoundD = 0;
 | |
| 
 | |
|   std::size_t Size = sizeof(DeclRefExpr);
 | |
|   if (QualifierLoc)
 | |
|     Size += sizeof(NestedNameSpecifierLoc);
 | |
|   if (FoundD)
 | |
|     Size += sizeof(NamedDecl *);
 | |
|   if (TemplateArgs)
 | |
|     Size += ASTTemplateKWAndArgsInfo::sizeFor(TemplateArgs->size());
 | |
|   else if (TemplateKWLoc.isValid())
 | |
|     Size += ASTTemplateKWAndArgsInfo::sizeFor(0);
 | |
| 
 | |
|   void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>());
 | |
|   return new (Mem) DeclRefExpr(Context, QualifierLoc, TemplateKWLoc, D,
 | |
|                                RefersToEnclosingLocal,
 | |
|                                NameInfo, FoundD, TemplateArgs, T, VK);
 | |
| }
 | |
| 
 | |
| DeclRefExpr *DeclRefExpr::CreateEmpty(const ASTContext &Context,
 | |
|                                       bool HasQualifier,
 | |
|                                       bool HasFoundDecl,
 | |
|                                       bool HasTemplateKWAndArgsInfo,
 | |
|                                       unsigned NumTemplateArgs) {
 | |
|   std::size_t Size = sizeof(DeclRefExpr);
 | |
|   if (HasQualifier)
 | |
|     Size += sizeof(NestedNameSpecifierLoc);
 | |
|   if (HasFoundDecl)
 | |
|     Size += sizeof(NamedDecl *);
 | |
|   if (HasTemplateKWAndArgsInfo)
 | |
|     Size += ASTTemplateKWAndArgsInfo::sizeFor(NumTemplateArgs);
 | |
| 
 | |
|   void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>());
 | |
|   return new (Mem) DeclRefExpr(EmptyShell());
 | |
| }
 | |
| 
 | |
| SourceLocation DeclRefExpr::getLocStart() const {
 | |
|   if (hasQualifier())
 | |
|     return getQualifierLoc().getBeginLoc();
 | |
|   return getNameInfo().getLocStart();
 | |
| }
 | |
| SourceLocation DeclRefExpr::getLocEnd() const {
 | |
|   if (hasExplicitTemplateArgs())
 | |
|     return getRAngleLoc();
 | |
|   return getNameInfo().getLocEnd();
 | |
| }
 | |
| 
 | |
| // FIXME: Maybe this should use DeclPrinter with a special "print predefined
 | |
| // expr" policy instead.
 | |
| std::string PredefinedExpr::ComputeName(IdentType IT, const Decl *CurrentDecl) {
 | |
|   ASTContext &Context = CurrentDecl->getASTContext();
 | |
| 
 | |
|   if (IT == PredefinedExpr::FuncDName) {
 | |
|     if (const NamedDecl *ND = dyn_cast<NamedDecl>(CurrentDecl)) {
 | |
|       OwningPtr<MangleContext> MC;
 | |
|       MC.reset(Context.createMangleContext());
 | |
| 
 | |
|       if (MC->shouldMangleDeclName(ND)) {
 | |
|         SmallString<256> Buffer;
 | |
|         llvm::raw_svector_ostream Out(Buffer);
 | |
|         if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(ND))
 | |
|           MC->mangleCXXCtor(CD, Ctor_Base, Out);
 | |
|         else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(ND))
 | |
|           MC->mangleCXXDtor(DD, Dtor_Base, Out);
 | |
|         else
 | |
|           MC->mangleName(ND, Out);
 | |
| 
 | |
|         Out.flush();
 | |
|         if (!Buffer.empty() && Buffer.front() == '\01')
 | |
|           return Buffer.substr(1);
 | |
|         return Buffer.str();
 | |
|       } else
 | |
|         return ND->getIdentifier()->getName();
 | |
|     }
 | |
|     return "";
 | |
|   }
 | |
|   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) {
 | |
|     if (IT != PrettyFunction && IT != PrettyFunctionNoVirtual)
 | |
|       return FD->getNameAsString();
 | |
| 
 | |
|     SmallString<256> Name;
 | |
|     llvm::raw_svector_ostream Out(Name);
 | |
| 
 | |
|     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
 | |
|       if (MD->isVirtual() && IT != PrettyFunctionNoVirtual)
 | |
|         Out << "virtual ";
 | |
|       if (MD->isStatic())
 | |
|         Out << "static ";
 | |
|     }
 | |
| 
 | |
|     PrintingPolicy Policy(Context.getLangOpts());
 | |
|     std::string Proto;
 | |
|     llvm::raw_string_ostream POut(Proto);
 | |
|     FD->printQualifiedName(POut, Policy);
 | |
| 
 | |
|     const FunctionDecl *Decl = FD;
 | |
|     if (const FunctionDecl* Pattern = FD->getTemplateInstantiationPattern())
 | |
|       Decl = Pattern;
 | |
|     const FunctionType *AFT = Decl->getType()->getAs<FunctionType>();
 | |
|     const FunctionProtoType *FT = 0;
 | |
|     if (FD->hasWrittenPrototype())
 | |
|       FT = dyn_cast<FunctionProtoType>(AFT);
 | |
| 
 | |
|     POut << "(";
 | |
|     if (FT) {
 | |
|       for (unsigned i = 0, e = Decl->getNumParams(); i != e; ++i) {
 | |
|         if (i) POut << ", ";
 | |
|         POut << Decl->getParamDecl(i)->getType().stream(Policy);
 | |
|       }
 | |
| 
 | |
|       if (FT->isVariadic()) {
 | |
|         if (FD->getNumParams()) POut << ", ";
 | |
|         POut << "...";
 | |
|       }
 | |
|     }
 | |
|     POut << ")";
 | |
| 
 | |
|     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
 | |
|       const FunctionType *FT = MD->getType()->castAs<FunctionType>();
 | |
|       if (FT->isConst())
 | |
|         POut << " const";
 | |
|       if (FT->isVolatile())
 | |
|         POut << " volatile";
 | |
|       RefQualifierKind Ref = MD->getRefQualifier();
 | |
|       if (Ref == RQ_LValue)
 | |
|         POut << " &";
 | |
|       else if (Ref == RQ_RValue)
 | |
|         POut << " &&";
 | |
|     }
 | |
| 
 | |
|     typedef SmallVector<const ClassTemplateSpecializationDecl *, 8> SpecsTy;
 | |
|     SpecsTy Specs;
 | |
|     const DeclContext *Ctx = FD->getDeclContext();
 | |
|     while (Ctx && isa<NamedDecl>(Ctx)) {
 | |
|       const ClassTemplateSpecializationDecl *Spec
 | |
|                                = dyn_cast<ClassTemplateSpecializationDecl>(Ctx);
 | |
|       if (Spec && !Spec->isExplicitSpecialization())
 | |
|         Specs.push_back(Spec);
 | |
|       Ctx = Ctx->getParent();
 | |
|     }
 | |
| 
 | |
|     std::string TemplateParams;
 | |
|     llvm::raw_string_ostream TOut(TemplateParams);
 | |
|     for (SpecsTy::reverse_iterator I = Specs.rbegin(), E = Specs.rend();
 | |
|          I != E; ++I) {
 | |
|       const TemplateParameterList *Params 
 | |
|                   = (*I)->getSpecializedTemplate()->getTemplateParameters();
 | |
|       const TemplateArgumentList &Args = (*I)->getTemplateArgs();
 | |
|       assert(Params->size() == Args.size());
 | |
|       for (unsigned i = 0, numParams = Params->size(); i != numParams; ++i) {
 | |
|         StringRef Param = Params->getParam(i)->getName();
 | |
|         if (Param.empty()) continue;
 | |
|         TOut << Param << " = ";
 | |
|         Args.get(i).print(Policy, TOut);
 | |
|         TOut << ", ";
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     FunctionTemplateSpecializationInfo *FSI 
 | |
|                                           = FD->getTemplateSpecializationInfo();
 | |
|     if (FSI && !FSI->isExplicitSpecialization()) {
 | |
|       const TemplateParameterList* Params 
 | |
|                                   = FSI->getTemplate()->getTemplateParameters();
 | |
|       const TemplateArgumentList* Args = FSI->TemplateArguments;
 | |
|       assert(Params->size() == Args->size());
 | |
|       for (unsigned i = 0, e = Params->size(); i != e; ++i) {
 | |
|         StringRef Param = Params->getParam(i)->getName();
 | |
|         if (Param.empty()) continue;
 | |
|         TOut << Param << " = ";
 | |
|         Args->get(i).print(Policy, TOut);
 | |
|         TOut << ", ";
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     TOut.flush();
 | |
|     if (!TemplateParams.empty()) {
 | |
|       // remove the trailing comma and space
 | |
|       TemplateParams.resize(TemplateParams.size() - 2);
 | |
|       POut << " [" << TemplateParams << "]";
 | |
|     }
 | |
| 
 | |
|     POut.flush();
 | |
| 
 | |
|     // Print "auto" for all deduced return types. This includes C++1y return
 | |
|     // type deduction and lambdas. For trailing return types resolve the
 | |
|     // decltype expression. Otherwise print the real type when this is
 | |
|     // not a constructor or destructor.
 | |
|     if ((isa<CXXMethodDecl>(FD) &&
 | |
|          cast<CXXMethodDecl>(FD)->getParent()->isLambda()) ||
 | |
|         (FT && FT->getResultType()->getAs<AutoType>()))
 | |
|       Proto = "auto " + Proto;
 | |
|     else if (FT && FT->getResultType()->getAs<DecltypeType>())
 | |
|       FT->getResultType()->getAs<DecltypeType>()->getUnderlyingType()
 | |
|           .getAsStringInternal(Proto, Policy);
 | |
|     else if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD))
 | |
|       AFT->getResultType().getAsStringInternal(Proto, Policy);
 | |
| 
 | |
|     Out << Proto;
 | |
| 
 | |
|     Out.flush();
 | |
|     return Name.str().str();
 | |
|   }
 | |
|   if (const CapturedDecl *CD = dyn_cast<CapturedDecl>(CurrentDecl)) {
 | |
|     for (const DeclContext *DC = CD->getParent(); DC; DC = DC->getParent())
 | |
|       // Skip to its enclosing function or method, but not its enclosing
 | |
|       // CapturedDecl.
 | |
|       if (DC->isFunctionOrMethod() && (DC->getDeclKind() != Decl::Captured)) {
 | |
|         const Decl *D = Decl::castFromDeclContext(DC);
 | |
|         return ComputeName(IT, D);
 | |
|       }
 | |
|     llvm_unreachable("CapturedDecl not inside a function or method");
 | |
|   }
 | |
|   if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) {
 | |
|     SmallString<256> Name;
 | |
|     llvm::raw_svector_ostream Out(Name);
 | |
|     Out << (MD->isInstanceMethod() ? '-' : '+');
 | |
|     Out << '[';
 | |
| 
 | |
|     // For incorrect code, there might not be an ObjCInterfaceDecl.  Do
 | |
|     // a null check to avoid a crash.
 | |
|     if (const ObjCInterfaceDecl *ID = MD->getClassInterface())
 | |
|       Out << *ID;
 | |
| 
 | |
|     if (const ObjCCategoryImplDecl *CID =
 | |
|         dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext()))
 | |
|       Out << '(' << *CID << ')';
 | |
| 
 | |
|     Out <<  ' ';
 | |
|     Out << MD->getSelector().getAsString();
 | |
|     Out <<  ']';
 | |
| 
 | |
|     Out.flush();
 | |
|     return Name.str().str();
 | |
|   }
 | |
|   if (isa<TranslationUnitDecl>(CurrentDecl) && IT == PrettyFunction) {
 | |
|     // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
 | |
|     return "top level";
 | |
|   }
 | |
|   return "";
 | |
| }
 | |
| 
 | |
| void APNumericStorage::setIntValue(const ASTContext &C,
 | |
|                                    const llvm::APInt &Val) {
 | |
|   if (hasAllocation())
 | |
|     C.Deallocate(pVal);
 | |
| 
 | |
|   BitWidth = Val.getBitWidth();
 | |
|   unsigned NumWords = Val.getNumWords();
 | |
|   const uint64_t* Words = Val.getRawData();
 | |
|   if (NumWords > 1) {
 | |
|     pVal = new (C) uint64_t[NumWords];
 | |
|     std::copy(Words, Words + NumWords, pVal);
 | |
|   } else if (NumWords == 1)
 | |
|     VAL = Words[0];
 | |
|   else
 | |
|     VAL = 0;
 | |
| }
 | |
| 
 | |
| IntegerLiteral::IntegerLiteral(const ASTContext &C, const llvm::APInt &V,
 | |
|                                QualType type, SourceLocation l)
 | |
|   : Expr(IntegerLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
 | |
|          false, false),
 | |
|     Loc(l) {
 | |
|   assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
 | |
|   assert(V.getBitWidth() == C.getIntWidth(type) &&
 | |
|          "Integer type is not the correct size for constant.");
 | |
|   setValue(C, V);
 | |
| }
 | |
| 
 | |
| IntegerLiteral *
 | |
| IntegerLiteral::Create(const ASTContext &C, const llvm::APInt &V,
 | |
|                        QualType type, SourceLocation l) {
 | |
|   return new (C) IntegerLiteral(C, V, type, l);
 | |
| }
 | |
| 
 | |
| IntegerLiteral *
 | |
| IntegerLiteral::Create(const ASTContext &C, EmptyShell Empty) {
 | |
|   return new (C) IntegerLiteral(Empty);
 | |
| }
 | |
| 
 | |
| FloatingLiteral::FloatingLiteral(const ASTContext &C, const llvm::APFloat &V,
 | |
|                                  bool isexact, QualType Type, SourceLocation L)
 | |
|   : Expr(FloatingLiteralClass, Type, VK_RValue, OK_Ordinary, false, false,
 | |
|          false, false), Loc(L) {
 | |
|   setSemantics(V.getSemantics());
 | |
|   FloatingLiteralBits.IsExact = isexact;
 | |
|   setValue(C, V);
 | |
| }
 | |
| 
 | |
| FloatingLiteral::FloatingLiteral(const ASTContext &C, EmptyShell Empty)
 | |
|   : Expr(FloatingLiteralClass, Empty) {
 | |
|   setRawSemantics(IEEEhalf);
 | |
|   FloatingLiteralBits.IsExact = false;
 | |
| }
 | |
| 
 | |
| FloatingLiteral *
 | |
| FloatingLiteral::Create(const ASTContext &C, const llvm::APFloat &V,
 | |
|                         bool isexact, QualType Type, SourceLocation L) {
 | |
|   return new (C) FloatingLiteral(C, V, isexact, Type, L);
 | |
| }
 | |
| 
 | |
| FloatingLiteral *
 | |
| FloatingLiteral::Create(const ASTContext &C, EmptyShell Empty) {
 | |
|   return new (C) FloatingLiteral(C, Empty);
 | |
| }
 | |
| 
 | |
| const llvm::fltSemantics &FloatingLiteral::getSemantics() const {
 | |
|   switch(FloatingLiteralBits.Semantics) {
 | |
|   case IEEEhalf:
 | |
|     return llvm::APFloat::IEEEhalf;
 | |
|   case IEEEsingle:
 | |
|     return llvm::APFloat::IEEEsingle;
 | |
|   case IEEEdouble:
 | |
|     return llvm::APFloat::IEEEdouble;
 | |
|   case x87DoubleExtended:
 | |
|     return llvm::APFloat::x87DoubleExtended;
 | |
|   case IEEEquad:
 | |
|     return llvm::APFloat::IEEEquad;
 | |
|   case PPCDoubleDouble:
 | |
|     return llvm::APFloat::PPCDoubleDouble;
 | |
|   }
 | |
|   llvm_unreachable("Unrecognised floating semantics");
 | |
| }
 | |
| 
 | |
| void FloatingLiteral::setSemantics(const llvm::fltSemantics &Sem) {
 | |
|   if (&Sem == &llvm::APFloat::IEEEhalf)
 | |
|     FloatingLiteralBits.Semantics = IEEEhalf;
 | |
|   else if (&Sem == &llvm::APFloat::IEEEsingle)
 | |
|     FloatingLiteralBits.Semantics = IEEEsingle;
 | |
|   else if (&Sem == &llvm::APFloat::IEEEdouble)
 | |
|     FloatingLiteralBits.Semantics = IEEEdouble;
 | |
|   else if (&Sem == &llvm::APFloat::x87DoubleExtended)
 | |
|     FloatingLiteralBits.Semantics = x87DoubleExtended;
 | |
|   else if (&Sem == &llvm::APFloat::IEEEquad)
 | |
|     FloatingLiteralBits.Semantics = IEEEquad;
 | |
|   else if (&Sem == &llvm::APFloat::PPCDoubleDouble)
 | |
|     FloatingLiteralBits.Semantics = PPCDoubleDouble;
 | |
|   else
 | |
|     llvm_unreachable("Unknown floating semantics");
 | |
| }
 | |
| 
 | |
| /// getValueAsApproximateDouble - This returns the value as an inaccurate
 | |
| /// double.  Note that this may cause loss of precision, but is useful for
 | |
| /// debugging dumps, etc.
 | |
| double FloatingLiteral::getValueAsApproximateDouble() const {
 | |
|   llvm::APFloat V = getValue();
 | |
|   bool ignored;
 | |
|   V.convert(llvm::APFloat::IEEEdouble, llvm::APFloat::rmNearestTiesToEven,
 | |
|             &ignored);
 | |
|   return V.convertToDouble();
 | |
| }
 | |
| 
 | |
| int StringLiteral::mapCharByteWidth(TargetInfo const &target,StringKind k) {
 | |
|   int CharByteWidth = 0;
 | |
|   switch(k) {
 | |
|     case Ascii:
 | |
|     case UTF8:
 | |
|       CharByteWidth = target.getCharWidth();
 | |
|       break;
 | |
|     case Wide:
 | |
|       CharByteWidth = target.getWCharWidth();
 | |
|       break;
 | |
|     case UTF16:
 | |
|       CharByteWidth = target.getChar16Width();
 | |
|       break;
 | |
|     case UTF32:
 | |
|       CharByteWidth = target.getChar32Width();
 | |
|       break;
 | |
|   }
 | |
|   assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple");
 | |
|   CharByteWidth /= 8;
 | |
|   assert((CharByteWidth==1 || CharByteWidth==2 || CharByteWidth==4)
 | |
|          && "character byte widths supported are 1, 2, and 4 only");
 | |
|   return CharByteWidth;
 | |
| }
 | |
| 
 | |
| StringLiteral *StringLiteral::Create(const ASTContext &C, StringRef Str,
 | |
|                                      StringKind Kind, bool Pascal, QualType Ty,
 | |
|                                      const SourceLocation *Loc,
 | |
|                                      unsigned NumStrs) {
 | |
|   // Allocate enough space for the StringLiteral plus an array of locations for
 | |
|   // any concatenated string tokens.
 | |
|   void *Mem = C.Allocate(sizeof(StringLiteral)+
 | |
|                          sizeof(SourceLocation)*(NumStrs-1),
 | |
|                          llvm::alignOf<StringLiteral>());
 | |
|   StringLiteral *SL = new (Mem) StringLiteral(Ty);
 | |
| 
 | |
|   // OPTIMIZE: could allocate this appended to the StringLiteral.
 | |
|   SL->setString(C,Str,Kind,Pascal);
 | |
| 
 | |
|   SL->TokLocs[0] = Loc[0];
 | |
|   SL->NumConcatenated = NumStrs;
 | |
| 
 | |
|   if (NumStrs != 1)
 | |
|     memcpy(&SL->TokLocs[1], Loc+1, sizeof(SourceLocation)*(NumStrs-1));
 | |
|   return SL;
 | |
| }
 | |
| 
 | |
| StringLiteral *StringLiteral::CreateEmpty(const ASTContext &C,
 | |
|                                           unsigned NumStrs) {
 | |
|   void *Mem = C.Allocate(sizeof(StringLiteral)+
 | |
|                          sizeof(SourceLocation)*(NumStrs-1),
 | |
|                          llvm::alignOf<StringLiteral>());
 | |
|   StringLiteral *SL = new (Mem) StringLiteral(QualType());
 | |
|   SL->CharByteWidth = 0;
 | |
|   SL->Length = 0;
 | |
|   SL->NumConcatenated = NumStrs;
 | |
|   return SL;
 | |
| }
 | |
| 
 | |
| void StringLiteral::outputString(raw_ostream &OS) const {
 | |
|   switch (getKind()) {
 | |
|   case Ascii: break; // no prefix.
 | |
|   case Wide:  OS << 'L'; break;
 | |
|   case UTF8:  OS << "u8"; break;
 | |
|   case UTF16: OS << 'u'; break;
 | |
|   case UTF32: OS << 'U'; break;
 | |
|   }
 | |
|   OS << '"';
 | |
|   static const char Hex[] = "0123456789ABCDEF";
 | |
| 
 | |
|   unsigned LastSlashX = getLength();
 | |
|   for (unsigned I = 0, N = getLength(); I != N; ++I) {
 | |
|     switch (uint32_t Char = getCodeUnit(I)) {
 | |
|     default:
 | |
|       // FIXME: Convert UTF-8 back to codepoints before rendering.
 | |
| 
 | |
|       // Convert UTF-16 surrogate pairs back to codepoints before rendering.
 | |
|       // Leave invalid surrogates alone; we'll use \x for those.
 | |
|       if (getKind() == UTF16 && I != N - 1 && Char >= 0xd800 && 
 | |
|           Char <= 0xdbff) {
 | |
|         uint32_t Trail = getCodeUnit(I + 1);
 | |
|         if (Trail >= 0xdc00 && Trail <= 0xdfff) {
 | |
|           Char = 0x10000 + ((Char - 0xd800) << 10) + (Trail - 0xdc00);
 | |
|           ++I;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if (Char > 0xff) {
 | |
|         // If this is a wide string, output characters over 0xff using \x
 | |
|         // escapes. Otherwise, this is a UTF-16 or UTF-32 string, and Char is a
 | |
|         // codepoint: use \x escapes for invalid codepoints.
 | |
|         if (getKind() == Wide ||
 | |
|             (Char >= 0xd800 && Char <= 0xdfff) || Char >= 0x110000) {
 | |
|           // FIXME: Is this the best way to print wchar_t?
 | |
|           OS << "\\x";
 | |
|           int Shift = 28;
 | |
|           while ((Char >> Shift) == 0)
 | |
|             Shift -= 4;
 | |
|           for (/**/; Shift >= 0; Shift -= 4)
 | |
|             OS << Hex[(Char >> Shift) & 15];
 | |
|           LastSlashX = I;
 | |
|           break;
 | |
|         }
 | |
| 
 | |
|         if (Char > 0xffff)
 | |
|           OS << "\\U00"
 | |
|              << Hex[(Char >> 20) & 15]
 | |
|              << Hex[(Char >> 16) & 15];
 | |
|         else
 | |
|           OS << "\\u";
 | |
|         OS << Hex[(Char >> 12) & 15]
 | |
|            << Hex[(Char >>  8) & 15]
 | |
|            << Hex[(Char >>  4) & 15]
 | |
|            << Hex[(Char >>  0) & 15];
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       // If we used \x... for the previous character, and this character is a
 | |
|       // hexadecimal digit, prevent it being slurped as part of the \x.
 | |
|       if (LastSlashX + 1 == I) {
 | |
|         switch (Char) {
 | |
|           case '0': case '1': case '2': case '3': case '4':
 | |
|           case '5': case '6': case '7': case '8': case '9':
 | |
|           case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
 | |
|           case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
 | |
|             OS << "\"\"";
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       assert(Char <= 0xff &&
 | |
|              "Characters above 0xff should already have been handled.");
 | |
| 
 | |
|       if (isPrintable(Char))
 | |
|         OS << (char)Char;
 | |
|       else  // Output anything hard as an octal escape.
 | |
|         OS << '\\'
 | |
|            << (char)('0' + ((Char >> 6) & 7))
 | |
|            << (char)('0' + ((Char >> 3) & 7))
 | |
|            << (char)('0' + ((Char >> 0) & 7));
 | |
|       break;
 | |
|     // Handle some common non-printable cases to make dumps prettier.
 | |
|     case '\\': OS << "\\\\"; break;
 | |
|     case '"': OS << "\\\""; break;
 | |
|     case '\n': OS << "\\n"; break;
 | |
|     case '\t': OS << "\\t"; break;
 | |
|     case '\a': OS << "\\a"; break;
 | |
|     case '\b': OS << "\\b"; break;
 | |
|     }
 | |
|   }
 | |
|   OS << '"';
 | |
| }
 | |
| 
 | |
| void StringLiteral::setString(const ASTContext &C, StringRef Str,
 | |
|                               StringKind Kind, bool IsPascal) {
 | |
|   //FIXME: we assume that the string data comes from a target that uses the same
 | |
|   // code unit size and endianess for the type of string.
 | |
|   this->Kind = Kind;
 | |
|   this->IsPascal = IsPascal;
 | |
|   
 | |
|   CharByteWidth = mapCharByteWidth(C.getTargetInfo(),Kind);
 | |
|   assert((Str.size()%CharByteWidth == 0)
 | |
|          && "size of data must be multiple of CharByteWidth");
 | |
|   Length = Str.size()/CharByteWidth;
 | |
| 
 | |
|   switch(CharByteWidth) {
 | |
|     case 1: {
 | |
|       char *AStrData = new (C) char[Length];
 | |
|       std::memcpy(AStrData,Str.data(),Length*sizeof(*AStrData));
 | |
|       StrData.asChar = AStrData;
 | |
|       break;
 | |
|     }
 | |
|     case 2: {
 | |
|       uint16_t *AStrData = new (C) uint16_t[Length];
 | |
|       std::memcpy(AStrData,Str.data(),Length*sizeof(*AStrData));
 | |
|       StrData.asUInt16 = AStrData;
 | |
|       break;
 | |
|     }
 | |
|     case 4: {
 | |
|       uint32_t *AStrData = new (C) uint32_t[Length];
 | |
|       std::memcpy(AStrData,Str.data(),Length*sizeof(*AStrData));
 | |
|       StrData.asUInt32 = AStrData;
 | |
|       break;
 | |
|     }
 | |
|     default:
 | |
|       assert(false && "unsupported CharByteWidth");
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// getLocationOfByte - Return a source location that points to the specified
 | |
| /// byte of this string literal.
 | |
| ///
 | |
| /// Strings are amazingly complex.  They can be formed from multiple tokens and
 | |
| /// can have escape sequences in them in addition to the usual trigraph and
 | |
| /// escaped newline business.  This routine handles this complexity.
 | |
| ///
 | |
| SourceLocation StringLiteral::
 | |
| getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
 | |
|                   const LangOptions &Features, const TargetInfo &Target) const {
 | |
|   assert((Kind == StringLiteral::Ascii || Kind == StringLiteral::UTF8) &&
 | |
|          "Only narrow string literals are currently supported");
 | |
| 
 | |
|   // Loop over all of the tokens in this string until we find the one that
 | |
|   // contains the byte we're looking for.
 | |
|   unsigned TokNo = 0;
 | |
|   while (1) {
 | |
|     assert(TokNo < getNumConcatenated() && "Invalid byte number!");
 | |
|     SourceLocation StrTokLoc = getStrTokenLoc(TokNo);
 | |
|     
 | |
|     // Get the spelling of the string so that we can get the data that makes up
 | |
|     // the string literal, not the identifier for the macro it is potentially
 | |
|     // expanded through.
 | |
|     SourceLocation StrTokSpellingLoc = SM.getSpellingLoc(StrTokLoc);
 | |
|     
 | |
|     // Re-lex the token to get its length and original spelling.
 | |
|     std::pair<FileID, unsigned> LocInfo =SM.getDecomposedLoc(StrTokSpellingLoc);
 | |
|     bool Invalid = false;
 | |
|     StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid);
 | |
|     if (Invalid)
 | |
|       return StrTokSpellingLoc;
 | |
|     
 | |
|     const char *StrData = Buffer.data()+LocInfo.second;
 | |
|     
 | |
|     // Create a lexer starting at the beginning of this token.
 | |
|     Lexer TheLexer(SM.getLocForStartOfFile(LocInfo.first), Features,
 | |
|                    Buffer.begin(), StrData, Buffer.end());
 | |
|     Token TheTok;
 | |
|     TheLexer.LexFromRawLexer(TheTok);
 | |
|     
 | |
|     // Use the StringLiteralParser to compute the length of the string in bytes.
 | |
|     StringLiteralParser SLP(&TheTok, 1, SM, Features, Target);
 | |
|     unsigned TokNumBytes = SLP.GetStringLength();
 | |
|     
 | |
|     // If the byte is in this token, return the location of the byte.
 | |
|     if (ByteNo < TokNumBytes ||
 | |
|         (ByteNo == TokNumBytes && TokNo == getNumConcatenated() - 1)) {
 | |
|       unsigned Offset = SLP.getOffsetOfStringByte(TheTok, ByteNo); 
 | |
|       
 | |
|       // Now that we know the offset of the token in the spelling, use the
 | |
|       // preprocessor to get the offset in the original source.
 | |
|       return Lexer::AdvanceToTokenCharacter(StrTokLoc, Offset, SM, Features);
 | |
|     }
 | |
|     
 | |
|     // Move to the next string token.
 | |
|     ++TokNo;
 | |
|     ByteNo -= TokNumBytes;
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
 | |
| /// corresponds to, e.g. "sizeof" or "[pre]++".
 | |
| StringRef UnaryOperator::getOpcodeStr(Opcode Op) {
 | |
|   switch (Op) {
 | |
|   case UO_PostInc: return "++";
 | |
|   case UO_PostDec: return "--";
 | |
|   case UO_PreInc:  return "++";
 | |
|   case UO_PreDec:  return "--";
 | |
|   case UO_AddrOf:  return "&";
 | |
|   case UO_Deref:   return "*";
 | |
|   case UO_Plus:    return "+";
 | |
|   case UO_Minus:   return "-";
 | |
|   case UO_Not:     return "~";
 | |
|   case UO_LNot:    return "!";
 | |
|   case UO_Real:    return "__real";
 | |
|   case UO_Imag:    return "__imag";
 | |
|   case UO_Extension: return "__extension__";
 | |
|   }
 | |
|   llvm_unreachable("Unknown unary operator");
 | |
| }
 | |
| 
 | |
| UnaryOperatorKind
 | |
| UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) {
 | |
|   switch (OO) {
 | |
|   default: llvm_unreachable("No unary operator for overloaded function");
 | |
|   case OO_PlusPlus:   return Postfix ? UO_PostInc : UO_PreInc;
 | |
|   case OO_MinusMinus: return Postfix ? UO_PostDec : UO_PreDec;
 | |
|   case OO_Amp:        return UO_AddrOf;
 | |
|   case OO_Star:       return UO_Deref;
 | |
|   case OO_Plus:       return UO_Plus;
 | |
|   case OO_Minus:      return UO_Minus;
 | |
|   case OO_Tilde:      return UO_Not;
 | |
|   case OO_Exclaim:    return UO_LNot;
 | |
|   }
 | |
| }
 | |
| 
 | |
| OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) {
 | |
|   switch (Opc) {
 | |
|   case UO_PostInc: case UO_PreInc: return OO_PlusPlus;
 | |
|   case UO_PostDec: case UO_PreDec: return OO_MinusMinus;
 | |
|   case UO_AddrOf: return OO_Amp;
 | |
|   case UO_Deref: return OO_Star;
 | |
|   case UO_Plus: return OO_Plus;
 | |
|   case UO_Minus: return OO_Minus;
 | |
|   case UO_Not: return OO_Tilde;
 | |
|   case UO_LNot: return OO_Exclaim;
 | |
|   default: return OO_None;
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Postfix Operators.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| CallExpr::CallExpr(const ASTContext& C, StmtClass SC, Expr *fn,
 | |
|                    unsigned NumPreArgs, ArrayRef<Expr*> args, QualType t,
 | |
|                    ExprValueKind VK, SourceLocation rparenloc)
 | |
|   : Expr(SC, t, VK, OK_Ordinary,
 | |
|          fn->isTypeDependent(),
 | |
|          fn->isValueDependent(),
 | |
|          fn->isInstantiationDependent(),
 | |
|          fn->containsUnexpandedParameterPack()),
 | |
|     NumArgs(args.size()) {
 | |
| 
 | |
|   SubExprs = new (C) Stmt*[args.size()+PREARGS_START+NumPreArgs];
 | |
|   SubExprs[FN] = fn;
 | |
|   for (unsigned i = 0; i != args.size(); ++i) {
 | |
|     if (args[i]->isTypeDependent())
 | |
|       ExprBits.TypeDependent = true;
 | |
|     if (args[i]->isValueDependent())
 | |
|       ExprBits.ValueDependent = true;
 | |
|     if (args[i]->isInstantiationDependent())
 | |
|       ExprBits.InstantiationDependent = true;
 | |
|     if (args[i]->containsUnexpandedParameterPack())
 | |
|       ExprBits.ContainsUnexpandedParameterPack = true;
 | |
| 
 | |
|     SubExprs[i+PREARGS_START+NumPreArgs] = args[i];
 | |
|   }
 | |
| 
 | |
|   CallExprBits.NumPreArgs = NumPreArgs;
 | |
|   RParenLoc = rparenloc;
 | |
| }
 | |
| 
 | |
| CallExpr::CallExpr(const ASTContext& C, Expr *fn, ArrayRef<Expr*> args,
 | |
|                    QualType t, ExprValueKind VK, SourceLocation rparenloc)
 | |
|   : Expr(CallExprClass, t, VK, OK_Ordinary,
 | |
|          fn->isTypeDependent(),
 | |
|          fn->isValueDependent(),
 | |
|          fn->isInstantiationDependent(),
 | |
|          fn->containsUnexpandedParameterPack()),
 | |
|     NumArgs(args.size()) {
 | |
| 
 | |
|   SubExprs = new (C) Stmt*[args.size()+PREARGS_START];
 | |
|   SubExprs[FN] = fn;
 | |
|   for (unsigned i = 0; i != args.size(); ++i) {
 | |
|     if (args[i]->isTypeDependent())
 | |
|       ExprBits.TypeDependent = true;
 | |
|     if (args[i]->isValueDependent())
 | |
|       ExprBits.ValueDependent = true;
 | |
|     if (args[i]->isInstantiationDependent())
 | |
|       ExprBits.InstantiationDependent = true;
 | |
|     if (args[i]->containsUnexpandedParameterPack())
 | |
|       ExprBits.ContainsUnexpandedParameterPack = true;
 | |
| 
 | |
|     SubExprs[i+PREARGS_START] = args[i];
 | |
|   }
 | |
| 
 | |
|   CallExprBits.NumPreArgs = 0;
 | |
|   RParenLoc = rparenloc;
 | |
| }
 | |
| 
 | |
| CallExpr::CallExpr(const ASTContext &C, StmtClass SC, EmptyShell Empty)
 | |
|   : Expr(SC, Empty), SubExprs(0), NumArgs(0) {
 | |
|   // FIXME: Why do we allocate this?
 | |
|   SubExprs = new (C) Stmt*[PREARGS_START];
 | |
|   CallExprBits.NumPreArgs = 0;
 | |
| }
 | |
| 
 | |
| CallExpr::CallExpr(const ASTContext &C, StmtClass SC, unsigned NumPreArgs,
 | |
|                    EmptyShell Empty)
 | |
|   : Expr(SC, Empty), SubExprs(0), NumArgs(0) {
 | |
|   // FIXME: Why do we allocate this?
 | |
|   SubExprs = new (C) Stmt*[PREARGS_START+NumPreArgs];
 | |
|   CallExprBits.NumPreArgs = NumPreArgs;
 | |
| }
 | |
| 
 | |
| Decl *CallExpr::getCalleeDecl() {
 | |
|   Expr *CEE = getCallee()->IgnoreParenImpCasts();
 | |
|     
 | |
|   while (SubstNonTypeTemplateParmExpr *NTTP
 | |
|                                 = dyn_cast<SubstNonTypeTemplateParmExpr>(CEE)) {
 | |
|     CEE = NTTP->getReplacement()->IgnoreParenCasts();
 | |
|   }
 | |
|   
 | |
|   // If we're calling a dereference, look at the pointer instead.
 | |
|   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CEE)) {
 | |
|     if (BO->isPtrMemOp())
 | |
|       CEE = BO->getRHS()->IgnoreParenCasts();
 | |
|   } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(CEE)) {
 | |
|     if (UO->getOpcode() == UO_Deref)
 | |
|       CEE = UO->getSubExpr()->IgnoreParenCasts();
 | |
|   }
 | |
|   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE))
 | |
|     return DRE->getDecl();
 | |
|   if (MemberExpr *ME = dyn_cast<MemberExpr>(CEE))
 | |
|     return ME->getMemberDecl();
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| FunctionDecl *CallExpr::getDirectCallee() {
 | |
|   return dyn_cast_or_null<FunctionDecl>(getCalleeDecl());
 | |
| }
 | |
| 
 | |
| /// setNumArgs - This changes the number of arguments present in this call.
 | |
| /// Any orphaned expressions are deleted by this, and any new operands are set
 | |
| /// to null.
 | |
| void CallExpr::setNumArgs(const ASTContext& C, unsigned NumArgs) {
 | |
|   // No change, just return.
 | |
|   if (NumArgs == getNumArgs()) return;
 | |
| 
 | |
|   // If shrinking # arguments, just delete the extras and forgot them.
 | |
|   if (NumArgs < getNumArgs()) {
 | |
|     this->NumArgs = NumArgs;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, we are growing the # arguments.  New an bigger argument array.
 | |
|   unsigned NumPreArgs = getNumPreArgs();
 | |
|   Stmt **NewSubExprs = new (C) Stmt*[NumArgs+PREARGS_START+NumPreArgs];
 | |
|   // Copy over args.
 | |
|   for (unsigned i = 0; i != getNumArgs()+PREARGS_START+NumPreArgs; ++i)
 | |
|     NewSubExprs[i] = SubExprs[i];
 | |
|   // Null out new args.
 | |
|   for (unsigned i = getNumArgs()+PREARGS_START+NumPreArgs;
 | |
|        i != NumArgs+PREARGS_START+NumPreArgs; ++i)
 | |
|     NewSubExprs[i] = 0;
 | |
| 
 | |
|   if (SubExprs) C.Deallocate(SubExprs);
 | |
|   SubExprs = NewSubExprs;
 | |
|   this->NumArgs = NumArgs;
 | |
| }
 | |
| 
 | |
| /// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
 | |
| /// not, return 0.
 | |
| unsigned CallExpr::isBuiltinCall() const {
 | |
|   // All simple function calls (e.g. func()) are implicitly cast to pointer to
 | |
|   // function. As a result, we try and obtain the DeclRefExpr from the
 | |
|   // ImplicitCastExpr.
 | |
|   const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee());
 | |
|   if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()).
 | |
|     return 0;
 | |
| 
 | |
|   const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr());
 | |
|   if (!DRE)
 | |
|     return 0;
 | |
| 
 | |
|   const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl());
 | |
|   if (!FDecl)
 | |
|     return 0;
 | |
| 
 | |
|   if (!FDecl->getIdentifier())
 | |
|     return 0;
 | |
| 
 | |
|   return FDecl->getBuiltinID();
 | |
| }
 | |
| 
 | |
| bool CallExpr::isUnevaluatedBuiltinCall(ASTContext &Ctx) const {
 | |
|   if (unsigned BI = isBuiltinCall())
 | |
|     return Ctx.BuiltinInfo.isUnevaluated(BI);
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| QualType CallExpr::getCallReturnType() const {
 | |
|   QualType CalleeType = getCallee()->getType();
 | |
|   if (const PointerType *FnTypePtr = CalleeType->getAs<PointerType>())
 | |
|     CalleeType = FnTypePtr->getPointeeType();
 | |
|   else if (const BlockPointerType *BPT = CalleeType->getAs<BlockPointerType>())
 | |
|     CalleeType = BPT->getPointeeType();
 | |
|   else if (CalleeType->isSpecificPlaceholderType(BuiltinType::BoundMember))
 | |
|     // This should never be overloaded and so should never return null.
 | |
|     CalleeType = Expr::findBoundMemberType(getCallee());
 | |
|     
 | |
|   const FunctionType *FnType = CalleeType->castAs<FunctionType>();
 | |
|   return FnType->getResultType();
 | |
| }
 | |
| 
 | |
| SourceLocation CallExpr::getLocStart() const {
 | |
|   if (isa<CXXOperatorCallExpr>(this))
 | |
|     return cast<CXXOperatorCallExpr>(this)->getLocStart();
 | |
| 
 | |
|   SourceLocation begin = getCallee()->getLocStart();
 | |
|   if (begin.isInvalid() && getNumArgs() > 0)
 | |
|     begin = getArg(0)->getLocStart();
 | |
|   return begin;
 | |
| }
 | |
| SourceLocation CallExpr::getLocEnd() const {
 | |
|   if (isa<CXXOperatorCallExpr>(this))
 | |
|     return cast<CXXOperatorCallExpr>(this)->getLocEnd();
 | |
| 
 | |
|   SourceLocation end = getRParenLoc();
 | |
|   if (end.isInvalid() && getNumArgs() > 0)
 | |
|     end = getArg(getNumArgs() - 1)->getLocEnd();
 | |
|   return end;
 | |
| }
 | |
| 
 | |
| OffsetOfExpr *OffsetOfExpr::Create(const ASTContext &C, QualType type,
 | |
|                                    SourceLocation OperatorLoc,
 | |
|                                    TypeSourceInfo *tsi, 
 | |
|                                    ArrayRef<OffsetOfNode> comps,
 | |
|                                    ArrayRef<Expr*> exprs,
 | |
|                                    SourceLocation RParenLoc) {
 | |
|   void *Mem = C.Allocate(sizeof(OffsetOfExpr) +
 | |
|                          sizeof(OffsetOfNode) * comps.size() +
 | |
|                          sizeof(Expr*) * exprs.size());
 | |
| 
 | |
|   return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, comps, exprs,
 | |
|                                 RParenLoc);
 | |
| }
 | |
| 
 | |
| OffsetOfExpr *OffsetOfExpr::CreateEmpty(const ASTContext &C,
 | |
|                                         unsigned numComps, unsigned numExprs) {
 | |
|   void *Mem = C.Allocate(sizeof(OffsetOfExpr) +
 | |
|                          sizeof(OffsetOfNode) * numComps +
 | |
|                          sizeof(Expr*) * numExprs);
 | |
|   return new (Mem) OffsetOfExpr(numComps, numExprs);
 | |
| }
 | |
| 
 | |
| OffsetOfExpr::OffsetOfExpr(const ASTContext &C, QualType type,
 | |
|                            SourceLocation OperatorLoc, TypeSourceInfo *tsi,
 | |
|                            ArrayRef<OffsetOfNode> comps, ArrayRef<Expr*> exprs,
 | |
|                            SourceLocation RParenLoc)
 | |
|   : Expr(OffsetOfExprClass, type, VK_RValue, OK_Ordinary,
 | |
|          /*TypeDependent=*/false, 
 | |
|          /*ValueDependent=*/tsi->getType()->isDependentType(),
 | |
|          tsi->getType()->isInstantiationDependentType(),
 | |
|          tsi->getType()->containsUnexpandedParameterPack()),
 | |
|     OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi), 
 | |
|     NumComps(comps.size()), NumExprs(exprs.size())
 | |
| {
 | |
|   for (unsigned i = 0; i != comps.size(); ++i) {
 | |
|     setComponent(i, comps[i]);
 | |
|   }
 | |
|   
 | |
|   for (unsigned i = 0; i != exprs.size(); ++i) {
 | |
|     if (exprs[i]->isTypeDependent() || exprs[i]->isValueDependent())
 | |
|       ExprBits.ValueDependent = true;
 | |
|     if (exprs[i]->containsUnexpandedParameterPack())
 | |
|       ExprBits.ContainsUnexpandedParameterPack = true;
 | |
| 
 | |
|     setIndexExpr(i, exprs[i]);
 | |
|   }
 | |
| }
 | |
| 
 | |
| IdentifierInfo *OffsetOfExpr::OffsetOfNode::getFieldName() const {
 | |
|   assert(getKind() == Field || getKind() == Identifier);
 | |
|   if (getKind() == Field)
 | |
|     return getField()->getIdentifier();
 | |
|   
 | |
|   return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask);
 | |
| }
 | |
| 
 | |
| MemberExpr *MemberExpr::Create(const ASTContext &C, Expr *base, bool isarrow,
 | |
|                                NestedNameSpecifierLoc QualifierLoc,
 | |
|                                SourceLocation TemplateKWLoc,
 | |
|                                ValueDecl *memberdecl,
 | |
|                                DeclAccessPair founddecl,
 | |
|                                DeclarationNameInfo nameinfo,
 | |
|                                const TemplateArgumentListInfo *targs,
 | |
|                                QualType ty,
 | |
|                                ExprValueKind vk,
 | |
|                                ExprObjectKind ok) {
 | |
|   std::size_t Size = sizeof(MemberExpr);
 | |
| 
 | |
|   bool hasQualOrFound = (QualifierLoc ||
 | |
|                          founddecl.getDecl() != memberdecl ||
 | |
|                          founddecl.getAccess() != memberdecl->getAccess());
 | |
|   if (hasQualOrFound)
 | |
|     Size += sizeof(MemberNameQualifier);
 | |
| 
 | |
|   if (targs)
 | |
|     Size += ASTTemplateKWAndArgsInfo::sizeFor(targs->size());
 | |
|   else if (TemplateKWLoc.isValid())
 | |
|     Size += ASTTemplateKWAndArgsInfo::sizeFor(0);
 | |
| 
 | |
|   void *Mem = C.Allocate(Size, llvm::alignOf<MemberExpr>());
 | |
|   MemberExpr *E = new (Mem) MemberExpr(base, isarrow, memberdecl, nameinfo,
 | |
|                                        ty, vk, ok);
 | |
| 
 | |
|   if (hasQualOrFound) {
 | |
|     // FIXME: Wrong. We should be looking at the member declaration we found.
 | |
|     if (QualifierLoc && QualifierLoc.getNestedNameSpecifier()->isDependent()) {
 | |
|       E->setValueDependent(true);
 | |
|       E->setTypeDependent(true);
 | |
|       E->setInstantiationDependent(true);
 | |
|     } 
 | |
|     else if (QualifierLoc && 
 | |
|              QualifierLoc.getNestedNameSpecifier()->isInstantiationDependent()) 
 | |
|       E->setInstantiationDependent(true);
 | |
|     
 | |
|     E->HasQualifierOrFoundDecl = true;
 | |
| 
 | |
|     MemberNameQualifier *NQ = E->getMemberQualifier();
 | |
|     NQ->QualifierLoc = QualifierLoc;
 | |
|     NQ->FoundDecl = founddecl;
 | |
|   }
 | |
| 
 | |
|   E->HasTemplateKWAndArgsInfo = (targs || TemplateKWLoc.isValid());
 | |
| 
 | |
|   if (targs) {
 | |
|     bool Dependent = false;
 | |
|     bool InstantiationDependent = false;
 | |
|     bool ContainsUnexpandedParameterPack = false;
 | |
|     E->getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc, *targs,
 | |
|                                                   Dependent,
 | |
|                                                   InstantiationDependent,
 | |
|                                              ContainsUnexpandedParameterPack);
 | |
|     if (InstantiationDependent)
 | |
|       E->setInstantiationDependent(true);
 | |
|   } else if (TemplateKWLoc.isValid()) {
 | |
|     E->getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc);
 | |
|   }
 | |
| 
 | |
|   return E;
 | |
| }
 | |
| 
 | |
| SourceLocation MemberExpr::getLocStart() const {
 | |
|   if (isImplicitAccess()) {
 | |
|     if (hasQualifier())
 | |
|       return getQualifierLoc().getBeginLoc();
 | |
|     return MemberLoc;
 | |
|   }
 | |
| 
 | |
|   // FIXME: We don't want this to happen. Rather, we should be able to
 | |
|   // detect all kinds of implicit accesses more cleanly.
 | |
|   SourceLocation BaseStartLoc = getBase()->getLocStart();
 | |
|   if (BaseStartLoc.isValid())
 | |
|     return BaseStartLoc;
 | |
|   return MemberLoc;
 | |
| }
 | |
| SourceLocation MemberExpr::getLocEnd() const {
 | |
|   SourceLocation EndLoc = getMemberNameInfo().getEndLoc();
 | |
|   if (hasExplicitTemplateArgs())
 | |
|     EndLoc = getRAngleLoc();
 | |
|   else if (EndLoc.isInvalid())
 | |
|     EndLoc = getBase()->getLocEnd();
 | |
|   return EndLoc;
 | |
| }
 | |
| 
 | |
| void CastExpr::CheckCastConsistency() const {
 | |
|   switch (getCastKind()) {
 | |
|   case CK_DerivedToBase:
 | |
|   case CK_UncheckedDerivedToBase:
 | |
|   case CK_DerivedToBaseMemberPointer:
 | |
|   case CK_BaseToDerived:
 | |
|   case CK_BaseToDerivedMemberPointer:
 | |
|     assert(!path_empty() && "Cast kind should have a base path!");
 | |
|     break;
 | |
| 
 | |
|   case CK_CPointerToObjCPointerCast:
 | |
|     assert(getType()->isObjCObjectPointerType());
 | |
|     assert(getSubExpr()->getType()->isPointerType());
 | |
|     goto CheckNoBasePath;
 | |
| 
 | |
|   case CK_BlockPointerToObjCPointerCast:
 | |
|     assert(getType()->isObjCObjectPointerType());
 | |
|     assert(getSubExpr()->getType()->isBlockPointerType());
 | |
|     goto CheckNoBasePath;
 | |
| 
 | |
|   case CK_ReinterpretMemberPointer:
 | |
|     assert(getType()->isMemberPointerType());
 | |
|     assert(getSubExpr()->getType()->isMemberPointerType());
 | |
|     goto CheckNoBasePath;
 | |
| 
 | |
|   case CK_BitCast:
 | |
|     // Arbitrary casts to C pointer types count as bitcasts.
 | |
|     // Otherwise, we should only have block and ObjC pointer casts
 | |
|     // here if they stay within the type kind.
 | |
|     if (!getType()->isPointerType()) {
 | |
|       assert(getType()->isObjCObjectPointerType() == 
 | |
|              getSubExpr()->getType()->isObjCObjectPointerType());
 | |
|       assert(getType()->isBlockPointerType() == 
 | |
|              getSubExpr()->getType()->isBlockPointerType());
 | |
|     }
 | |
|     goto CheckNoBasePath;
 | |
| 
 | |
|   case CK_AnyPointerToBlockPointerCast:
 | |
|     assert(getType()->isBlockPointerType());
 | |
|     assert(getSubExpr()->getType()->isAnyPointerType() &&
 | |
|            !getSubExpr()->getType()->isBlockPointerType());
 | |
|     goto CheckNoBasePath;
 | |
| 
 | |
|   case CK_CopyAndAutoreleaseBlockObject:
 | |
|     assert(getType()->isBlockPointerType());
 | |
|     assert(getSubExpr()->getType()->isBlockPointerType());
 | |
|     goto CheckNoBasePath;
 | |
| 
 | |
|   case CK_FunctionToPointerDecay:
 | |
|     assert(getType()->isPointerType());
 | |
|     assert(getSubExpr()->getType()->isFunctionType());
 | |
|     goto CheckNoBasePath;
 | |
| 
 | |
|   // These should not have an inheritance path.
 | |
|   case CK_Dynamic:
 | |
|   case CK_ToUnion:
 | |
|   case CK_ArrayToPointerDecay:
 | |
|   case CK_NullToMemberPointer:
 | |
|   case CK_NullToPointer:
 | |
|   case CK_ConstructorConversion:
 | |
|   case CK_IntegralToPointer:
 | |
|   case CK_PointerToIntegral:
 | |
|   case CK_ToVoid:
 | |
|   case CK_VectorSplat:
 | |
|   case CK_IntegralCast:
 | |
|   case CK_IntegralToFloating:
 | |
|   case CK_FloatingToIntegral:
 | |
|   case CK_FloatingCast:
 | |
|   case CK_ObjCObjectLValueCast:
 | |
|   case CK_FloatingRealToComplex:
 | |
|   case CK_FloatingComplexToReal:
 | |
|   case CK_FloatingComplexCast:
 | |
|   case CK_FloatingComplexToIntegralComplex:
 | |
|   case CK_IntegralRealToComplex:
 | |
|   case CK_IntegralComplexToReal:
 | |
|   case CK_IntegralComplexCast:
 | |
|   case CK_IntegralComplexToFloatingComplex:
 | |
|   case CK_ARCProduceObject:
 | |
|   case CK_ARCConsumeObject:
 | |
|   case CK_ARCReclaimReturnedObject:
 | |
|   case CK_ARCExtendBlockObject:
 | |
|   case CK_ZeroToOCLEvent:
 | |
|     assert(!getType()->isBooleanType() && "unheralded conversion to bool");
 | |
|     goto CheckNoBasePath;
 | |
| 
 | |
|   case CK_Dependent:
 | |
|   case CK_LValueToRValue:
 | |
|   case CK_NoOp:
 | |
|   case CK_AtomicToNonAtomic:
 | |
|   case CK_NonAtomicToAtomic:
 | |
|   case CK_PointerToBoolean:
 | |
|   case CK_IntegralToBoolean:
 | |
|   case CK_FloatingToBoolean:
 | |
|   case CK_MemberPointerToBoolean:
 | |
|   case CK_FloatingComplexToBoolean:
 | |
|   case CK_IntegralComplexToBoolean:
 | |
|   case CK_LValueBitCast:            // -> bool&
 | |
|   case CK_UserDefinedConversion:    // operator bool()
 | |
|   case CK_BuiltinFnToFnPtr:
 | |
|   CheckNoBasePath:
 | |
|     assert(path_empty() && "Cast kind should not have a base path!");
 | |
|     break;
 | |
|   }
 | |
| }
 | |
| 
 | |
| const char *CastExpr::getCastKindName() const {
 | |
|   switch (getCastKind()) {
 | |
|   case CK_Dependent:
 | |
|     return "Dependent";
 | |
|   case CK_BitCast:
 | |
|     return "BitCast";
 | |
|   case CK_LValueBitCast:
 | |
|     return "LValueBitCast";
 | |
|   case CK_LValueToRValue:
 | |
|     return "LValueToRValue";
 | |
|   case CK_NoOp:
 | |
|     return "NoOp";
 | |
|   case CK_BaseToDerived:
 | |
|     return "BaseToDerived";
 | |
|   case CK_DerivedToBase:
 | |
|     return "DerivedToBase";
 | |
|   case CK_UncheckedDerivedToBase:
 | |
|     return "UncheckedDerivedToBase";
 | |
|   case CK_Dynamic:
 | |
|     return "Dynamic";
 | |
|   case CK_ToUnion:
 | |
|     return "ToUnion";
 | |
|   case CK_ArrayToPointerDecay:
 | |
|     return "ArrayToPointerDecay";
 | |
|   case CK_FunctionToPointerDecay:
 | |
|     return "FunctionToPointerDecay";
 | |
|   case CK_NullToMemberPointer:
 | |
|     return "NullToMemberPointer";
 | |
|   case CK_NullToPointer:
 | |
|     return "NullToPointer";
 | |
|   case CK_BaseToDerivedMemberPointer:
 | |
|     return "BaseToDerivedMemberPointer";
 | |
|   case CK_DerivedToBaseMemberPointer:
 | |
|     return "DerivedToBaseMemberPointer";
 | |
|   case CK_ReinterpretMemberPointer:
 | |
|     return "ReinterpretMemberPointer";
 | |
|   case CK_UserDefinedConversion:
 | |
|     return "UserDefinedConversion";
 | |
|   case CK_ConstructorConversion:
 | |
|     return "ConstructorConversion";
 | |
|   case CK_IntegralToPointer:
 | |
|     return "IntegralToPointer";
 | |
|   case CK_PointerToIntegral:
 | |
|     return "PointerToIntegral";
 | |
|   case CK_PointerToBoolean:
 | |
|     return "PointerToBoolean";
 | |
|   case CK_ToVoid:
 | |
|     return "ToVoid";
 | |
|   case CK_VectorSplat:
 | |
|     return "VectorSplat";
 | |
|   case CK_IntegralCast:
 | |
|     return "IntegralCast";
 | |
|   case CK_IntegralToBoolean:
 | |
|     return "IntegralToBoolean";
 | |
|   case CK_IntegralToFloating:
 | |
|     return "IntegralToFloating";
 | |
|   case CK_FloatingToIntegral:
 | |
|     return "FloatingToIntegral";
 | |
|   case CK_FloatingCast:
 | |
|     return "FloatingCast";
 | |
|   case CK_FloatingToBoolean:
 | |
|     return "FloatingToBoolean";
 | |
|   case CK_MemberPointerToBoolean:
 | |
|     return "MemberPointerToBoolean";
 | |
|   case CK_CPointerToObjCPointerCast:
 | |
|     return "CPointerToObjCPointerCast";
 | |
|   case CK_BlockPointerToObjCPointerCast:
 | |
|     return "BlockPointerToObjCPointerCast";
 | |
|   case CK_AnyPointerToBlockPointerCast:
 | |
|     return "AnyPointerToBlockPointerCast";
 | |
|   case CK_ObjCObjectLValueCast:
 | |
|     return "ObjCObjectLValueCast";
 | |
|   case CK_FloatingRealToComplex:
 | |
|     return "FloatingRealToComplex";
 | |
|   case CK_FloatingComplexToReal:
 | |
|     return "FloatingComplexToReal";
 | |
|   case CK_FloatingComplexToBoolean:
 | |
|     return "FloatingComplexToBoolean";
 | |
|   case CK_FloatingComplexCast:
 | |
|     return "FloatingComplexCast";
 | |
|   case CK_FloatingComplexToIntegralComplex:
 | |
|     return "FloatingComplexToIntegralComplex";
 | |
|   case CK_IntegralRealToComplex:
 | |
|     return "IntegralRealToComplex";
 | |
|   case CK_IntegralComplexToReal:
 | |
|     return "IntegralComplexToReal";
 | |
|   case CK_IntegralComplexToBoolean:
 | |
|     return "IntegralComplexToBoolean";
 | |
|   case CK_IntegralComplexCast:
 | |
|     return "IntegralComplexCast";
 | |
|   case CK_IntegralComplexToFloatingComplex:
 | |
|     return "IntegralComplexToFloatingComplex";
 | |
|   case CK_ARCConsumeObject:
 | |
|     return "ARCConsumeObject";
 | |
|   case CK_ARCProduceObject:
 | |
|     return "ARCProduceObject";
 | |
|   case CK_ARCReclaimReturnedObject:
 | |
|     return "ARCReclaimReturnedObject";
 | |
|   case CK_ARCExtendBlockObject:
 | |
|     return "ARCCExtendBlockObject";
 | |
|   case CK_AtomicToNonAtomic:
 | |
|     return "AtomicToNonAtomic";
 | |
|   case CK_NonAtomicToAtomic:
 | |
|     return "NonAtomicToAtomic";
 | |
|   case CK_CopyAndAutoreleaseBlockObject:
 | |
|     return "CopyAndAutoreleaseBlockObject";
 | |
|   case CK_BuiltinFnToFnPtr:
 | |
|     return "BuiltinFnToFnPtr";
 | |
|   case CK_ZeroToOCLEvent:
 | |
|     return "ZeroToOCLEvent";
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("Unhandled cast kind!");
 | |
| }
 | |
| 
 | |
| Expr *CastExpr::getSubExprAsWritten() {
 | |
|   Expr *SubExpr = 0;
 | |
|   CastExpr *E = this;
 | |
|   do {
 | |
|     SubExpr = E->getSubExpr();
 | |
| 
 | |
|     // Skip through reference binding to temporary.
 | |
|     if (MaterializeTemporaryExpr *Materialize 
 | |
|                                   = dyn_cast<MaterializeTemporaryExpr>(SubExpr))
 | |
|       SubExpr = Materialize->GetTemporaryExpr();
 | |
|         
 | |
|     // Skip any temporary bindings; they're implicit.
 | |
|     if (CXXBindTemporaryExpr *Binder = dyn_cast<CXXBindTemporaryExpr>(SubExpr))
 | |
|       SubExpr = Binder->getSubExpr();
 | |
|     
 | |
|     // Conversions by constructor and conversion functions have a
 | |
|     // subexpression describing the call; strip it off.
 | |
|     if (E->getCastKind() == CK_ConstructorConversion)
 | |
|       SubExpr = cast<CXXConstructExpr>(SubExpr)->getArg(0);
 | |
|     else if (E->getCastKind() == CK_UserDefinedConversion)
 | |
|       SubExpr = cast<CXXMemberCallExpr>(SubExpr)->getImplicitObjectArgument();
 | |
|     
 | |
|     // If the subexpression we're left with is an implicit cast, look
 | |
|     // through that, too.
 | |
|   } while ((E = dyn_cast<ImplicitCastExpr>(SubExpr)));  
 | |
|   
 | |
|   return SubExpr;
 | |
| }
 | |
| 
 | |
| CXXBaseSpecifier **CastExpr::path_buffer() {
 | |
|   switch (getStmtClass()) {
 | |
| #define ABSTRACT_STMT(x)
 | |
| #define CASTEXPR(Type, Base) \
 | |
|   case Stmt::Type##Class: \
 | |
|     return reinterpret_cast<CXXBaseSpecifier**>(static_cast<Type*>(this)+1);
 | |
| #define STMT(Type, Base)
 | |
| #include "clang/AST/StmtNodes.inc"
 | |
|   default:
 | |
|     llvm_unreachable("non-cast expressions not possible here");
 | |
|   }
 | |
| }
 | |
| 
 | |
| void CastExpr::setCastPath(const CXXCastPath &Path) {
 | |
|   assert(Path.size() == path_size());
 | |
|   memcpy(path_buffer(), Path.data(), Path.size() * sizeof(CXXBaseSpecifier*));
 | |
| }
 | |
| 
 | |
| ImplicitCastExpr *ImplicitCastExpr::Create(const ASTContext &C, QualType T,
 | |
|                                            CastKind Kind, Expr *Operand,
 | |
|                                            const CXXCastPath *BasePath,
 | |
|                                            ExprValueKind VK) {
 | |
|   unsigned PathSize = (BasePath ? BasePath->size() : 0);
 | |
|   void *Buffer =
 | |
|     C.Allocate(sizeof(ImplicitCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
 | |
|   ImplicitCastExpr *E =
 | |
|     new (Buffer) ImplicitCastExpr(T, Kind, Operand, PathSize, VK);
 | |
|   if (PathSize) E->setCastPath(*BasePath);
 | |
|   return E;
 | |
| }
 | |
| 
 | |
| ImplicitCastExpr *ImplicitCastExpr::CreateEmpty(const ASTContext &C,
 | |
|                                                 unsigned PathSize) {
 | |
|   void *Buffer =
 | |
|     C.Allocate(sizeof(ImplicitCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
 | |
|   return new (Buffer) ImplicitCastExpr(EmptyShell(), PathSize);
 | |
| }
 | |
| 
 | |
| 
 | |
| CStyleCastExpr *CStyleCastExpr::Create(const ASTContext &C, QualType T,
 | |
|                                        ExprValueKind VK, CastKind K, Expr *Op,
 | |
|                                        const CXXCastPath *BasePath,
 | |
|                                        TypeSourceInfo *WrittenTy,
 | |
|                                        SourceLocation L, SourceLocation R) {
 | |
|   unsigned PathSize = (BasePath ? BasePath->size() : 0);
 | |
|   void *Buffer =
 | |
|     C.Allocate(sizeof(CStyleCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
 | |
|   CStyleCastExpr *E =
 | |
|     new (Buffer) CStyleCastExpr(T, VK, K, Op, PathSize, WrittenTy, L, R);
 | |
|   if (PathSize) E->setCastPath(*BasePath);
 | |
|   return E;
 | |
| }
 | |
| 
 | |
| CStyleCastExpr *CStyleCastExpr::CreateEmpty(const ASTContext &C,
 | |
|                                             unsigned PathSize) {
 | |
|   void *Buffer =
 | |
|     C.Allocate(sizeof(CStyleCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
 | |
|   return new (Buffer) CStyleCastExpr(EmptyShell(), PathSize);
 | |
| }
 | |
| 
 | |
| /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
 | |
| /// corresponds to, e.g. "<<=".
 | |
| StringRef BinaryOperator::getOpcodeStr(Opcode Op) {
 | |
|   switch (Op) {
 | |
|   case BO_PtrMemD:   return ".*";
 | |
|   case BO_PtrMemI:   return "->*";
 | |
|   case BO_Mul:       return "*";
 | |
|   case BO_Div:       return "/";
 | |
|   case BO_Rem:       return "%";
 | |
|   case BO_Add:       return "+";
 | |
|   case BO_Sub:       return "-";
 | |
|   case BO_Shl:       return "<<";
 | |
|   case BO_Shr:       return ">>";
 | |
|   case BO_LT:        return "<";
 | |
|   case BO_GT:        return ">";
 | |
|   case BO_LE:        return "<=";
 | |
|   case BO_GE:        return ">=";
 | |
|   case BO_EQ:        return "==";
 | |
|   case BO_NE:        return "!=";
 | |
|   case BO_And:       return "&";
 | |
|   case BO_Xor:       return "^";
 | |
|   case BO_Or:        return "|";
 | |
|   case BO_LAnd:      return "&&";
 | |
|   case BO_LOr:       return "||";
 | |
|   case BO_Assign:    return "=";
 | |
|   case BO_MulAssign: return "*=";
 | |
|   case BO_DivAssign: return "/=";
 | |
|   case BO_RemAssign: return "%=";
 | |
|   case BO_AddAssign: return "+=";
 | |
|   case BO_SubAssign: return "-=";
 | |
|   case BO_ShlAssign: return "<<=";
 | |
|   case BO_ShrAssign: return ">>=";
 | |
|   case BO_AndAssign: return "&=";
 | |
|   case BO_XorAssign: return "^=";
 | |
|   case BO_OrAssign:  return "|=";
 | |
|   case BO_Comma:     return ",";
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("Invalid OpCode!");
 | |
| }
 | |
| 
 | |
| BinaryOperatorKind
 | |
| BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) {
 | |
|   switch (OO) {
 | |
|   default: llvm_unreachable("Not an overloadable binary operator");
 | |
|   case OO_Plus: return BO_Add;
 | |
|   case OO_Minus: return BO_Sub;
 | |
|   case OO_Star: return BO_Mul;
 | |
|   case OO_Slash: return BO_Div;
 | |
|   case OO_Percent: return BO_Rem;
 | |
|   case OO_Caret: return BO_Xor;
 | |
|   case OO_Amp: return BO_And;
 | |
|   case OO_Pipe: return BO_Or;
 | |
|   case OO_Equal: return BO_Assign;
 | |
|   case OO_Less: return BO_LT;
 | |
|   case OO_Greater: return BO_GT;
 | |
|   case OO_PlusEqual: return BO_AddAssign;
 | |
|   case OO_MinusEqual: return BO_SubAssign;
 | |
|   case OO_StarEqual: return BO_MulAssign;
 | |
|   case OO_SlashEqual: return BO_DivAssign;
 | |
|   case OO_PercentEqual: return BO_RemAssign;
 | |
|   case OO_CaretEqual: return BO_XorAssign;
 | |
|   case OO_AmpEqual: return BO_AndAssign;
 | |
|   case OO_PipeEqual: return BO_OrAssign;
 | |
|   case OO_LessLess: return BO_Shl;
 | |
|   case OO_GreaterGreater: return BO_Shr;
 | |
|   case OO_LessLessEqual: return BO_ShlAssign;
 | |
|   case OO_GreaterGreaterEqual: return BO_ShrAssign;
 | |
|   case OO_EqualEqual: return BO_EQ;
 | |
|   case OO_ExclaimEqual: return BO_NE;
 | |
|   case OO_LessEqual: return BO_LE;
 | |
|   case OO_GreaterEqual: return BO_GE;
 | |
|   case OO_AmpAmp: return BO_LAnd;
 | |
|   case OO_PipePipe: return BO_LOr;
 | |
|   case OO_Comma: return BO_Comma;
 | |
|   case OO_ArrowStar: return BO_PtrMemI;
 | |
|   }
 | |
| }
 | |
| 
 | |
| OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) {
 | |
|   static const OverloadedOperatorKind OverOps[] = {
 | |
|     /* .* Cannot be overloaded */OO_None, OO_ArrowStar,
 | |
|     OO_Star, OO_Slash, OO_Percent,
 | |
|     OO_Plus, OO_Minus,
 | |
|     OO_LessLess, OO_GreaterGreater,
 | |
|     OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
 | |
|     OO_EqualEqual, OO_ExclaimEqual,
 | |
|     OO_Amp,
 | |
|     OO_Caret,
 | |
|     OO_Pipe,
 | |
|     OO_AmpAmp,
 | |
|     OO_PipePipe,
 | |
|     OO_Equal, OO_StarEqual,
 | |
|     OO_SlashEqual, OO_PercentEqual,
 | |
|     OO_PlusEqual, OO_MinusEqual,
 | |
|     OO_LessLessEqual, OO_GreaterGreaterEqual,
 | |
|     OO_AmpEqual, OO_CaretEqual,
 | |
|     OO_PipeEqual,
 | |
|     OO_Comma
 | |
|   };
 | |
|   return OverOps[Opc];
 | |
| }
 | |
| 
 | |
| InitListExpr::InitListExpr(const ASTContext &C, SourceLocation lbraceloc,
 | |
|                            ArrayRef<Expr*> initExprs, SourceLocation rbraceloc)
 | |
|   : Expr(InitListExprClass, QualType(), VK_RValue, OK_Ordinary, false, false,
 | |
|          false, false),
 | |
|     InitExprs(C, initExprs.size()),
 | |
|     LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), AltForm(0, true)
 | |
| {
 | |
|   sawArrayRangeDesignator(false);
 | |
|   for (unsigned I = 0; I != initExprs.size(); ++I) {
 | |
|     if (initExprs[I]->isTypeDependent())
 | |
|       ExprBits.TypeDependent = true;
 | |
|     if (initExprs[I]->isValueDependent())
 | |
|       ExprBits.ValueDependent = true;
 | |
|     if (initExprs[I]->isInstantiationDependent())
 | |
|       ExprBits.InstantiationDependent = true;
 | |
|     if (initExprs[I]->containsUnexpandedParameterPack())
 | |
|       ExprBits.ContainsUnexpandedParameterPack = true;
 | |
|   }
 | |
|       
 | |
|   InitExprs.insert(C, InitExprs.end(), initExprs.begin(), initExprs.end());
 | |
| }
 | |
| 
 | |
| void InitListExpr::reserveInits(const ASTContext &C, unsigned NumInits) {
 | |
|   if (NumInits > InitExprs.size())
 | |
|     InitExprs.reserve(C, NumInits);
 | |
| }
 | |
| 
 | |
| void InitListExpr::resizeInits(const ASTContext &C, unsigned NumInits) {
 | |
|   InitExprs.resize(C, NumInits, 0);
 | |
| }
 | |
| 
 | |
| Expr *InitListExpr::updateInit(const ASTContext &C, unsigned Init, Expr *expr) {
 | |
|   if (Init >= InitExprs.size()) {
 | |
|     InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, 0);
 | |
|     InitExprs.back() = expr;
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   Expr *Result = cast_or_null<Expr>(InitExprs[Init]);
 | |
|   InitExprs[Init] = expr;
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| void InitListExpr::setArrayFiller(Expr *filler) {
 | |
|   assert(!hasArrayFiller() && "Filler already set!");
 | |
|   ArrayFillerOrUnionFieldInit = filler;
 | |
|   // Fill out any "holes" in the array due to designated initializers.
 | |
|   Expr **inits = getInits();
 | |
|   for (unsigned i = 0, e = getNumInits(); i != e; ++i)
 | |
|     if (inits[i] == 0)
 | |
|       inits[i] = filler;
 | |
| }
 | |
| 
 | |
| bool InitListExpr::isStringLiteralInit() const {
 | |
|   if (getNumInits() != 1)
 | |
|     return false;
 | |
|   const ArrayType *AT = getType()->getAsArrayTypeUnsafe();
 | |
|   if (!AT || !AT->getElementType()->isIntegerType())
 | |
|     return false;
 | |
|   const Expr *Init = getInit(0)->IgnoreParens();
 | |
|   return isa<StringLiteral>(Init) || isa<ObjCEncodeExpr>(Init);
 | |
| }
 | |
| 
 | |
| SourceLocation InitListExpr::getLocStart() const {
 | |
|   if (InitListExpr *SyntacticForm = getSyntacticForm())
 | |
|     return SyntacticForm->getLocStart();
 | |
|   SourceLocation Beg = LBraceLoc;
 | |
|   if (Beg.isInvalid()) {
 | |
|     // Find the first non-null initializer.
 | |
|     for (InitExprsTy::const_iterator I = InitExprs.begin(),
 | |
|                                      E = InitExprs.end(); 
 | |
|       I != E; ++I) {
 | |
|       if (Stmt *S = *I) {
 | |
|         Beg = S->getLocStart();
 | |
|         break;
 | |
|       }  
 | |
|     }
 | |
|   }
 | |
|   return Beg;
 | |
| }
 | |
| 
 | |
| SourceLocation InitListExpr::getLocEnd() const {
 | |
|   if (InitListExpr *SyntacticForm = getSyntacticForm())
 | |
|     return SyntacticForm->getLocEnd();
 | |
|   SourceLocation End = RBraceLoc;
 | |
|   if (End.isInvalid()) {
 | |
|     // Find the first non-null initializer from the end.
 | |
|     for (InitExprsTy::const_reverse_iterator I = InitExprs.rbegin(),
 | |
|          E = InitExprs.rend();
 | |
|          I != E; ++I) {
 | |
|       if (Stmt *S = *I) {
 | |
|         End = S->getLocEnd();
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return End;
 | |
| }
 | |
| 
 | |
| /// getFunctionType - Return the underlying function type for this block.
 | |
| ///
 | |
| const FunctionProtoType *BlockExpr::getFunctionType() const {
 | |
|   // The block pointer is never sugared, but the function type might be.
 | |
|   return cast<BlockPointerType>(getType())
 | |
|            ->getPointeeType()->castAs<FunctionProtoType>();
 | |
| }
 | |
| 
 | |
| SourceLocation BlockExpr::getCaretLocation() const {
 | |
|   return TheBlock->getCaretLocation();
 | |
| }
 | |
| const Stmt *BlockExpr::getBody() const {
 | |
|   return TheBlock->getBody();
 | |
| }
 | |
| Stmt *BlockExpr::getBody() {
 | |
|   return TheBlock->getBody();
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Generic Expression Routines
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// isUnusedResultAWarning - Return true if this immediate expression should
 | |
| /// be warned about if the result is unused.  If so, fill in Loc and Ranges
 | |
| /// with location to warn on and the source range[s] to report with the
 | |
| /// warning.
 | |
| bool Expr::isUnusedResultAWarning(const Expr *&WarnE, SourceLocation &Loc, 
 | |
|                                   SourceRange &R1, SourceRange &R2,
 | |
|                                   ASTContext &Ctx) const {
 | |
|   // Don't warn if the expr is type dependent. The type could end up
 | |
|   // instantiating to void.
 | |
|   if (isTypeDependent())
 | |
|     return false;
 | |
| 
 | |
|   switch (getStmtClass()) {
 | |
|   default:
 | |
|     if (getType()->isVoidType())
 | |
|       return false;
 | |
|     WarnE = this;
 | |
|     Loc = getExprLoc();
 | |
|     R1 = getSourceRange();
 | |
|     return true;
 | |
|   case ParenExprClass:
 | |
|     return cast<ParenExpr>(this)->getSubExpr()->
 | |
|       isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
 | |
|   case GenericSelectionExprClass:
 | |
|     return cast<GenericSelectionExpr>(this)->getResultExpr()->
 | |
|       isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
 | |
|   case ChooseExprClass:
 | |
|     return cast<ChooseExpr>(this)->getChosenSubExpr()->
 | |
|       isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
 | |
|   case UnaryOperatorClass: {
 | |
|     const UnaryOperator *UO = cast<UnaryOperator>(this);
 | |
| 
 | |
|     switch (UO->getOpcode()) {
 | |
|     case UO_Plus:
 | |
|     case UO_Minus:
 | |
|     case UO_AddrOf:
 | |
|     case UO_Not:
 | |
|     case UO_LNot:
 | |
|     case UO_Deref:
 | |
|       break;
 | |
|     case UO_PostInc:
 | |
|     case UO_PostDec:
 | |
|     case UO_PreInc:
 | |
|     case UO_PreDec:                 // ++/--
 | |
|       return false;  // Not a warning.
 | |
|     case UO_Real:
 | |
|     case UO_Imag:
 | |
|       // accessing a piece of a volatile complex is a side-effect.
 | |
|       if (Ctx.getCanonicalType(UO->getSubExpr()->getType())
 | |
|           .isVolatileQualified())
 | |
|         return false;
 | |
|       break;
 | |
|     case UO_Extension:
 | |
|       return UO->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
 | |
|     }
 | |
|     WarnE = this;
 | |
|     Loc = UO->getOperatorLoc();
 | |
|     R1 = UO->getSubExpr()->getSourceRange();
 | |
|     return true;
 | |
|   }
 | |
|   case BinaryOperatorClass: {
 | |
|     const BinaryOperator *BO = cast<BinaryOperator>(this);
 | |
|     switch (BO->getOpcode()) {
 | |
|       default:
 | |
|         break;
 | |
|       // Consider the RHS of comma for side effects. LHS was checked by
 | |
|       // Sema::CheckCommaOperands.
 | |
|       case BO_Comma:
 | |
|         // ((foo = <blah>), 0) is an idiom for hiding the result (and
 | |
|         // lvalue-ness) of an assignment written in a macro.
 | |
|         if (IntegerLiteral *IE =
 | |
|               dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens()))
 | |
|           if (IE->getValue() == 0)
 | |
|             return false;
 | |
|         return BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
 | |
|       // Consider '||', '&&' to have side effects if the LHS or RHS does.
 | |
|       case BO_LAnd:
 | |
|       case BO_LOr:
 | |
|         if (!BO->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) ||
 | |
|             !BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx))
 | |
|           return false;
 | |
|         break;
 | |
|     }
 | |
|     if (BO->isAssignmentOp())
 | |
|       return false;
 | |
|     WarnE = this;
 | |
|     Loc = BO->getOperatorLoc();
 | |
|     R1 = BO->getLHS()->getSourceRange();
 | |
|     R2 = BO->getRHS()->getSourceRange();
 | |
|     return true;
 | |
|   }
 | |
|   case CompoundAssignOperatorClass:
 | |
|   case VAArgExprClass:
 | |
|   case AtomicExprClass:
 | |
|     return false;
 | |
| 
 | |
|   case ConditionalOperatorClass: {
 | |
|     // If only one of the LHS or RHS is a warning, the operator might
 | |
|     // be being used for control flow. Only warn if both the LHS and
 | |
|     // RHS are warnings.
 | |
|     const ConditionalOperator *Exp = cast<ConditionalOperator>(this);
 | |
|     if (!Exp->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx))
 | |
|       return false;
 | |
|     if (!Exp->getLHS())
 | |
|       return true;
 | |
|     return Exp->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
 | |
|   }
 | |
| 
 | |
|   case MemberExprClass:
 | |
|     WarnE = this;
 | |
|     Loc = cast<MemberExpr>(this)->getMemberLoc();
 | |
|     R1 = SourceRange(Loc, Loc);
 | |
|     R2 = cast<MemberExpr>(this)->getBase()->getSourceRange();
 | |
|     return true;
 | |
| 
 | |
|   case ArraySubscriptExprClass:
 | |
|     WarnE = this;
 | |
|     Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc();
 | |
|     R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange();
 | |
|     R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange();
 | |
|     return true;
 | |
| 
 | |
|   case CXXOperatorCallExprClass: {
 | |
|     // We warn about operator== and operator!= even when user-defined operator
 | |
|     // overloads as there is no reasonable way to define these such that they
 | |
|     // have non-trivial, desirable side-effects. See the -Wunused-comparison
 | |
|     // warning: these operators are commonly typo'ed, and so warning on them
 | |
|     // provides additional value as well. If this list is updated,
 | |
|     // DiagnoseUnusedComparison should be as well.
 | |
|     const CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(this);
 | |
|     if (Op->getOperator() == OO_EqualEqual ||
 | |
|         Op->getOperator() == OO_ExclaimEqual) {
 | |
|       WarnE = this;
 | |
|       Loc = Op->getOperatorLoc();
 | |
|       R1 = Op->getSourceRange();
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     // Fallthrough for generic call handling.
 | |
|   }
 | |
|   case CallExprClass:
 | |
|   case CXXMemberCallExprClass:
 | |
|   case UserDefinedLiteralClass: {
 | |
|     // If this is a direct call, get the callee.
 | |
|     const CallExpr *CE = cast<CallExpr>(this);
 | |
|     if (const Decl *FD = CE->getCalleeDecl()) {
 | |
|       // If the callee has attribute pure, const, or warn_unused_result, warn
 | |
|       // about it. void foo() { strlen("bar"); } should warn.
 | |
|       //
 | |
|       // Note: If new cases are added here, DiagnoseUnusedExprResult should be
 | |
|       // updated to match for QoI.
 | |
|       if (FD->getAttr<WarnUnusedResultAttr>() ||
 | |
|           FD->getAttr<PureAttr>() || FD->getAttr<ConstAttr>()) {
 | |
|         WarnE = this;
 | |
|         Loc = CE->getCallee()->getLocStart();
 | |
|         R1 = CE->getCallee()->getSourceRange();
 | |
| 
 | |
|         if (unsigned NumArgs = CE->getNumArgs())
 | |
|           R2 = SourceRange(CE->getArg(0)->getLocStart(),
 | |
|                            CE->getArg(NumArgs-1)->getLocEnd());
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // If we don't know precisely what we're looking at, let's not warn.
 | |
|   case UnresolvedLookupExprClass:
 | |
|   case CXXUnresolvedConstructExprClass:
 | |
|     return false;
 | |
| 
 | |
|   case CXXTemporaryObjectExprClass:
 | |
|   case CXXConstructExprClass: {
 | |
|     if (const CXXRecordDecl *Type = getType()->getAsCXXRecordDecl()) {
 | |
|       if (Type->hasAttr<WarnUnusedAttr>()) {
 | |
|         WarnE = this;
 | |
|         Loc = getLocStart();
 | |
|         R1 = getSourceRange();
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   case ObjCMessageExprClass: {
 | |
|     const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this);
 | |
|     if (Ctx.getLangOpts().ObjCAutoRefCount &&
 | |
|         ME->isInstanceMessage() &&
 | |
|         !ME->getType()->isVoidType() &&
 | |
|         ME->getMethodFamily() == OMF_init) {
 | |
|       WarnE = this;
 | |
|       Loc = getExprLoc();
 | |
|       R1 = ME->getSourceRange();
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     const ObjCMethodDecl *MD = ME->getMethodDecl();
 | |
|     if (MD && MD->getAttr<WarnUnusedResultAttr>()) {
 | |
|       WarnE = this;
 | |
|       Loc = getExprLoc();
 | |
|       return true;
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   case ObjCPropertyRefExprClass:
 | |
|     WarnE = this;
 | |
|     Loc = getExprLoc();
 | |
|     R1 = getSourceRange();
 | |
|     return true;
 | |
| 
 | |
|   case PseudoObjectExprClass: {
 | |
|     const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
 | |
| 
 | |
|     // Only complain about things that have the form of a getter.
 | |
|     if (isa<UnaryOperator>(PO->getSyntacticForm()) ||
 | |
|         isa<BinaryOperator>(PO->getSyntacticForm()))
 | |
|       return false;
 | |
| 
 | |
|     WarnE = this;
 | |
|     Loc = getExprLoc();
 | |
|     R1 = getSourceRange();
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   case StmtExprClass: {
 | |
|     // Statement exprs don't logically have side effects themselves, but are
 | |
|     // sometimes used in macros in ways that give them a type that is unused.
 | |
|     // For example ({ blah; foo(); }) will end up with a type if foo has a type.
 | |
|     // however, if the result of the stmt expr is dead, we don't want to emit a
 | |
|     // warning.
 | |
|     const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt();
 | |
|     if (!CS->body_empty()) {
 | |
|       if (const Expr *E = dyn_cast<Expr>(CS->body_back()))
 | |
|         return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
 | |
|       if (const LabelStmt *Label = dyn_cast<LabelStmt>(CS->body_back()))
 | |
|         if (const Expr *E = dyn_cast<Expr>(Label->getSubStmt()))
 | |
|           return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
 | |
|     }
 | |
| 
 | |
|     if (getType()->isVoidType())
 | |
|       return false;
 | |
|     WarnE = this;
 | |
|     Loc = cast<StmtExpr>(this)->getLParenLoc();
 | |
|     R1 = getSourceRange();
 | |
|     return true;
 | |
|   }
 | |
|   case CXXFunctionalCastExprClass:
 | |
|   case CStyleCastExprClass: {
 | |
|     // Ignore an explicit cast to void unless the operand is a non-trivial
 | |
|     // volatile lvalue.
 | |
|     const CastExpr *CE = cast<CastExpr>(this);
 | |
|     if (CE->getCastKind() == CK_ToVoid) {
 | |
|       if (CE->getSubExpr()->isGLValue() &&
 | |
|           CE->getSubExpr()->getType().isVolatileQualified()) {
 | |
|         const DeclRefExpr *DRE =
 | |
|             dyn_cast<DeclRefExpr>(CE->getSubExpr()->IgnoreParens());
 | |
|         if (!(DRE && isa<VarDecl>(DRE->getDecl()) &&
 | |
|               cast<VarDecl>(DRE->getDecl())->hasLocalStorage())) {
 | |
|           return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc,
 | |
|                                                           R1, R2, Ctx);
 | |
|         }
 | |
|       }
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     // If this is a cast to a constructor conversion, check the operand.
 | |
|     // Otherwise, the result of the cast is unused.
 | |
|     if (CE->getCastKind() == CK_ConstructorConversion)
 | |
|       return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
 | |
| 
 | |
|     WarnE = this;
 | |
|     if (const CXXFunctionalCastExpr *CXXCE =
 | |
|             dyn_cast<CXXFunctionalCastExpr>(this)) {
 | |
|       Loc = CXXCE->getLocStart();
 | |
|       R1 = CXXCE->getSubExpr()->getSourceRange();
 | |
|     } else {
 | |
|       const CStyleCastExpr *CStyleCE = cast<CStyleCastExpr>(this);
 | |
|       Loc = CStyleCE->getLParenLoc();
 | |
|       R1 = CStyleCE->getSubExpr()->getSourceRange();
 | |
|     }
 | |
|     return true;
 | |
|   }
 | |
|   case ImplicitCastExprClass: {
 | |
|     const CastExpr *ICE = cast<ImplicitCastExpr>(this);
 | |
| 
 | |
|     // lvalue-to-rvalue conversion on a volatile lvalue is a side-effect.
 | |
|     if (ICE->getCastKind() == CK_LValueToRValue &&
 | |
|         ICE->getSubExpr()->getType().isVolatileQualified())
 | |
|       return false;
 | |
| 
 | |
|     return ICE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
 | |
|   }
 | |
|   case CXXDefaultArgExprClass:
 | |
|     return (cast<CXXDefaultArgExpr>(this)
 | |
|             ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
 | |
|   case CXXDefaultInitExprClass:
 | |
|     return (cast<CXXDefaultInitExpr>(this)
 | |
|             ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
 | |
| 
 | |
|   case CXXNewExprClass:
 | |
|     // FIXME: In theory, there might be new expressions that don't have side
 | |
|     // effects (e.g. a placement new with an uninitialized POD).
 | |
|   case CXXDeleteExprClass:
 | |
|     return false;
 | |
|   case CXXBindTemporaryExprClass:
 | |
|     return (cast<CXXBindTemporaryExpr>(this)
 | |
|             ->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
 | |
|   case ExprWithCleanupsClass:
 | |
|     return (cast<ExprWithCleanups>(this)
 | |
|             ->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// isOBJCGCCandidate - Check if an expression is objc gc'able.
 | |
| /// returns true, if it is; false otherwise.
 | |
| bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const {
 | |
|   const Expr *E = IgnoreParens();
 | |
|   switch (E->getStmtClass()) {
 | |
|   default:
 | |
|     return false;
 | |
|   case ObjCIvarRefExprClass:
 | |
|     return true;
 | |
|   case Expr::UnaryOperatorClass:
 | |
|     return cast<UnaryOperator>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
 | |
|   case ImplicitCastExprClass:
 | |
|     return cast<ImplicitCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
 | |
|   case MaterializeTemporaryExprClass:
 | |
|     return cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr()
 | |
|                                                       ->isOBJCGCCandidate(Ctx);
 | |
|   case CStyleCastExprClass:
 | |
|     return cast<CStyleCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
 | |
|   case DeclRefExprClass: {
 | |
|     const Decl *D = cast<DeclRefExpr>(E)->getDecl();
 | |
|         
 | |
|     if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
 | |
|       if (VD->hasGlobalStorage())
 | |
|         return true;
 | |
|       QualType T = VD->getType();
 | |
|       // dereferencing to a  pointer is always a gc'able candidate,
 | |
|       // unless it is __weak.
 | |
|       return T->isPointerType() &&
 | |
|              (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak);
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
|   case MemberExprClass: {
 | |
|     const MemberExpr *M = cast<MemberExpr>(E);
 | |
|     return M->getBase()->isOBJCGCCandidate(Ctx);
 | |
|   }
 | |
|   case ArraySubscriptExprClass:
 | |
|     return cast<ArraySubscriptExpr>(E)->getBase()->isOBJCGCCandidate(Ctx);
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool Expr::isBoundMemberFunction(ASTContext &Ctx) const {
 | |
|   if (isTypeDependent())
 | |
|     return false;
 | |
|   return ClassifyLValue(Ctx) == Expr::LV_MemberFunction;
 | |
| }
 | |
| 
 | |
| QualType Expr::findBoundMemberType(const Expr *expr) {
 | |
|   assert(expr->hasPlaceholderType(BuiltinType::BoundMember));
 | |
| 
 | |
|   // Bound member expressions are always one of these possibilities:
 | |
|   //   x->m      x.m      x->*y      x.*y
 | |
|   // (possibly parenthesized)
 | |
| 
 | |
|   expr = expr->IgnoreParens();
 | |
|   if (const MemberExpr *mem = dyn_cast<MemberExpr>(expr)) {
 | |
|     assert(isa<CXXMethodDecl>(mem->getMemberDecl()));
 | |
|     return mem->getMemberDecl()->getType();
 | |
|   }
 | |
| 
 | |
|   if (const BinaryOperator *op = dyn_cast<BinaryOperator>(expr)) {
 | |
|     QualType type = op->getRHS()->getType()->castAs<MemberPointerType>()
 | |
|                       ->getPointeeType();
 | |
|     assert(type->isFunctionType());
 | |
|     return type;
 | |
|   }
 | |
| 
 | |
|   assert(isa<UnresolvedMemberExpr>(expr));
 | |
|   return QualType();
 | |
| }
 | |
| 
 | |
| Expr* Expr::IgnoreParens() {
 | |
|   Expr* E = this;
 | |
|   while (true) {
 | |
|     if (ParenExpr* P = dyn_cast<ParenExpr>(E)) {
 | |
|       E = P->getSubExpr();
 | |
|       continue;
 | |
|     }
 | |
|     if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
 | |
|       if (P->getOpcode() == UO_Extension) {
 | |
|         E = P->getSubExpr();
 | |
|         continue;
 | |
|       }
 | |
|     }
 | |
|     if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
 | |
|       if (!P->isResultDependent()) {
 | |
|         E = P->getResultExpr();
 | |
|         continue;
 | |
|       }
 | |
|     }
 | |
|     if (ChooseExpr* P = dyn_cast<ChooseExpr>(E)) {
 | |
|       if (!P->isConditionDependent()) {
 | |
|         E = P->getChosenSubExpr();
 | |
|         continue;
 | |
|       }
 | |
|     }
 | |
|     return E;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
 | |
| /// or CastExprs or ImplicitCastExprs, returning their operand.
 | |
| Expr *Expr::IgnoreParenCasts() {
 | |
|   Expr *E = this;
 | |
|   while (true) {
 | |
|     E = E->IgnoreParens();
 | |
|     if (CastExpr *P = dyn_cast<CastExpr>(E)) {
 | |
|       E = P->getSubExpr();
 | |
|       continue;
 | |
|     }
 | |
|     if (MaterializeTemporaryExpr *Materialize 
 | |
|                                       = dyn_cast<MaterializeTemporaryExpr>(E)) {
 | |
|       E = Materialize->GetTemporaryExpr();
 | |
|       continue;
 | |
|     }
 | |
|     if (SubstNonTypeTemplateParmExpr *NTTP
 | |
|                                   = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
 | |
|       E = NTTP->getReplacement();
 | |
|       continue;
 | |
|     }      
 | |
|     return E;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// IgnoreParenLValueCasts - Ignore parentheses and lvalue-to-rvalue
 | |
| /// casts.  This is intended purely as a temporary workaround for code
 | |
| /// that hasn't yet been rewritten to do the right thing about those
 | |
| /// casts, and may disappear along with the last internal use.
 | |
| Expr *Expr::IgnoreParenLValueCasts() {
 | |
|   Expr *E = this;
 | |
|   while (true) {
 | |
|     E = E->IgnoreParens();
 | |
|     if (CastExpr *P = dyn_cast<CastExpr>(E)) {
 | |
|       if (P->getCastKind() == CK_LValueToRValue) {
 | |
|         E = P->getSubExpr();
 | |
|         continue;
 | |
|       }
 | |
|     } else if (MaterializeTemporaryExpr *Materialize 
 | |
|                                       = dyn_cast<MaterializeTemporaryExpr>(E)) {
 | |
|       E = Materialize->GetTemporaryExpr();
 | |
|       continue;
 | |
|     } else if (SubstNonTypeTemplateParmExpr *NTTP
 | |
|                                   = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
 | |
|       E = NTTP->getReplacement();
 | |
|       continue;
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   return E;
 | |
| }
 | |
| 
 | |
| Expr *Expr::ignoreParenBaseCasts() {
 | |
|   Expr *E = this;
 | |
|   while (true) {
 | |
|     E = E->IgnoreParens();
 | |
|     if (CastExpr *CE = dyn_cast<CastExpr>(E)) {
 | |
|       if (CE->getCastKind() == CK_DerivedToBase ||
 | |
|           CE->getCastKind() == CK_UncheckedDerivedToBase ||
 | |
|           CE->getCastKind() == CK_NoOp) {
 | |
|         E = CE->getSubExpr();
 | |
|         continue;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     return E;
 | |
|   }
 | |
| }
 | |
| 
 | |
| Expr *Expr::IgnoreParenImpCasts() {
 | |
|   Expr *E = this;
 | |
|   while (true) {
 | |
|     E = E->IgnoreParens();
 | |
|     if (ImplicitCastExpr *P = dyn_cast<ImplicitCastExpr>(E)) {
 | |
|       E = P->getSubExpr();
 | |
|       continue;
 | |
|     }
 | |
|     if (MaterializeTemporaryExpr *Materialize 
 | |
|                                       = dyn_cast<MaterializeTemporaryExpr>(E)) {
 | |
|       E = Materialize->GetTemporaryExpr();
 | |
|       continue;
 | |
|     }
 | |
|     if (SubstNonTypeTemplateParmExpr *NTTP
 | |
|                                   = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
 | |
|       E = NTTP->getReplacement();
 | |
|       continue;
 | |
|     }
 | |
|     return E;
 | |
|   }
 | |
| }
 | |
| 
 | |
| Expr *Expr::IgnoreConversionOperator() {
 | |
|   if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(this)) {
 | |
|     if (MCE->getMethodDecl() && isa<CXXConversionDecl>(MCE->getMethodDecl()))
 | |
|       return MCE->getImplicitObjectArgument();
 | |
|   }
 | |
|   return this;
 | |
| }
 | |
| 
 | |
| /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
 | |
| /// value (including ptr->int casts of the same size).  Strip off any
 | |
| /// ParenExpr or CastExprs, returning their operand.
 | |
| Expr *Expr::IgnoreParenNoopCasts(ASTContext &Ctx) {
 | |
|   Expr *E = this;
 | |
|   while (true) {
 | |
|     E = E->IgnoreParens();
 | |
| 
 | |
|     if (CastExpr *P = dyn_cast<CastExpr>(E)) {
 | |
|       // We ignore integer <-> casts that are of the same width, ptr<->ptr and
 | |
|       // ptr<->int casts of the same width.  We also ignore all identity casts.
 | |
|       Expr *SE = P->getSubExpr();
 | |
| 
 | |
|       if (Ctx.hasSameUnqualifiedType(E->getType(), SE->getType())) {
 | |
|         E = SE;
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       if ((E->getType()->isPointerType() ||
 | |
|            E->getType()->isIntegralType(Ctx)) &&
 | |
|           (SE->getType()->isPointerType() ||
 | |
|            SE->getType()->isIntegralType(Ctx)) &&
 | |
|           Ctx.getTypeSize(E->getType()) == Ctx.getTypeSize(SE->getType())) {
 | |
|         E = SE;
 | |
|         continue;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (SubstNonTypeTemplateParmExpr *NTTP
 | |
|                                   = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
 | |
|       E = NTTP->getReplacement();
 | |
|       continue;
 | |
|     }
 | |
|     
 | |
|     return E;
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool Expr::isDefaultArgument() const {
 | |
|   const Expr *E = this;
 | |
|   if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
 | |
|     E = M->GetTemporaryExpr();
 | |
| 
 | |
|   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
 | |
|     E = ICE->getSubExprAsWritten();
 | |
|   
 | |
|   return isa<CXXDefaultArgExpr>(E);
 | |
| }
 | |
| 
 | |
| /// \brief Skip over any no-op casts and any temporary-binding
 | |
| /// expressions.
 | |
| static const Expr *skipTemporaryBindingsNoOpCastsAndParens(const Expr *E) {
 | |
|   if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
 | |
|     E = M->GetTemporaryExpr();
 | |
| 
 | |
|   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
 | |
|     if (ICE->getCastKind() == CK_NoOp)
 | |
|       E = ICE->getSubExpr();
 | |
|     else
 | |
|       break;
 | |
|   }
 | |
| 
 | |
|   while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
 | |
|     E = BE->getSubExpr();
 | |
| 
 | |
|   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
 | |
|     if (ICE->getCastKind() == CK_NoOp)
 | |
|       E = ICE->getSubExpr();
 | |
|     else
 | |
|       break;
 | |
|   }
 | |
| 
 | |
|   return E->IgnoreParens();
 | |
| }
 | |
| 
 | |
| /// isTemporaryObject - Determines if this expression produces a
 | |
| /// temporary of the given class type.
 | |
| bool Expr::isTemporaryObject(ASTContext &C, const CXXRecordDecl *TempTy) const {
 | |
|   if (!C.hasSameUnqualifiedType(getType(), C.getTypeDeclType(TempTy)))
 | |
|     return false;
 | |
| 
 | |
|   const Expr *E = skipTemporaryBindingsNoOpCastsAndParens(this);
 | |
| 
 | |
|   // Temporaries are by definition pr-values of class type.
 | |
|   if (!E->Classify(C).isPRValue()) {
 | |
|     // In this context, property reference is a message call and is pr-value.
 | |
|     if (!isa<ObjCPropertyRefExpr>(E))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // Black-list a few cases which yield pr-values of class type that don't
 | |
|   // refer to temporaries of that type:
 | |
| 
 | |
|   // - implicit derived-to-base conversions
 | |
|   if (isa<ImplicitCastExpr>(E)) {
 | |
|     switch (cast<ImplicitCastExpr>(E)->getCastKind()) {
 | |
|     case CK_DerivedToBase:
 | |
|     case CK_UncheckedDerivedToBase:
 | |
|       return false;
 | |
|     default:
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // - member expressions (all)
 | |
|   if (isa<MemberExpr>(E))
 | |
|     return false;
 | |
| 
 | |
|   if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E))
 | |
|     if (BO->isPtrMemOp())
 | |
|       return false;
 | |
| 
 | |
|   // - opaque values (all)
 | |
|   if (isa<OpaqueValueExpr>(E))
 | |
|     return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool Expr::isImplicitCXXThis() const {
 | |
|   const Expr *E = this;
 | |
|   
 | |
|   // Strip away parentheses and casts we don't care about.
 | |
|   while (true) {
 | |
|     if (const ParenExpr *Paren = dyn_cast<ParenExpr>(E)) {
 | |
|       E = Paren->getSubExpr();
 | |
|       continue;
 | |
|     }
 | |
|     
 | |
|     if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
 | |
|       if (ICE->getCastKind() == CK_NoOp ||
 | |
|           ICE->getCastKind() == CK_LValueToRValue ||
 | |
|           ICE->getCastKind() == CK_DerivedToBase || 
 | |
|           ICE->getCastKind() == CK_UncheckedDerivedToBase) {
 | |
|         E = ICE->getSubExpr();
 | |
|         continue;
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     if (const UnaryOperator* UnOp = dyn_cast<UnaryOperator>(E)) {
 | |
|       if (UnOp->getOpcode() == UO_Extension) {
 | |
|         E = UnOp->getSubExpr();
 | |
|         continue;
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     if (const MaterializeTemporaryExpr *M
 | |
|                                       = dyn_cast<MaterializeTemporaryExpr>(E)) {
 | |
|       E = M->GetTemporaryExpr();
 | |
|       continue;
 | |
|     }
 | |
|     
 | |
|     break;
 | |
|   }
 | |
|   
 | |
|   if (const CXXThisExpr *This = dyn_cast<CXXThisExpr>(E))
 | |
|     return This->isImplicit();
 | |
|   
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// hasAnyTypeDependentArguments - Determines if any of the expressions
 | |
| /// in Exprs is type-dependent.
 | |
| bool Expr::hasAnyTypeDependentArguments(ArrayRef<Expr *> Exprs) {
 | |
|   for (unsigned I = 0; I < Exprs.size(); ++I)
 | |
|     if (Exprs[I]->isTypeDependent())
 | |
|       return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool Expr::isConstantInitializer(ASTContext &Ctx, bool IsForRef) const {
 | |
|   // This function is attempting whether an expression is an initializer
 | |
|   // which can be evaluated at compile-time. It very closely parallels
 | |
|   // ConstExprEmitter in CGExprConstant.cpp; if they don't match, it
 | |
|   // will lead to unexpected results.  Like ConstExprEmitter, it falls back
 | |
|   // to isEvaluatable most of the time.
 | |
|   //
 | |
|   // If we ever capture reference-binding directly in the AST, we can
 | |
|   // kill the second parameter.
 | |
| 
 | |
|   if (IsForRef) {
 | |
|     EvalResult Result;
 | |
|     return EvaluateAsLValue(Result, Ctx) && !Result.HasSideEffects;
 | |
|   }
 | |
| 
 | |
|   switch (getStmtClass()) {
 | |
|   default: break;
 | |
|   case StringLiteralClass:
 | |
|   case ObjCEncodeExprClass:
 | |
|     return true;
 | |
|   case CXXTemporaryObjectExprClass:
 | |
|   case CXXConstructExprClass: {
 | |
|     const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
 | |
| 
 | |
|     if (CE->getConstructor()->isTrivial() &&
 | |
|         CE->getConstructor()->getParent()->hasTrivialDestructor()) {
 | |
|       // Trivial default constructor
 | |
|       if (!CE->getNumArgs()) return true;
 | |
| 
 | |
|       // Trivial copy constructor
 | |
|       assert(CE->getNumArgs() == 1 && "trivial ctor with > 1 argument");
 | |
|       return CE->getArg(0)->isConstantInitializer(Ctx, false);
 | |
|     }
 | |
| 
 | |
|     break;
 | |
|   }
 | |
|   case CompoundLiteralExprClass: {
 | |
|     // This handles gcc's extension that allows global initializers like
 | |
|     // "struct x {int x;} x = (struct x) {};".
 | |
|     // FIXME: This accepts other cases it shouldn't!
 | |
|     const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer();
 | |
|     return Exp->isConstantInitializer(Ctx, false);
 | |
|   }
 | |
|   case InitListExprClass: {
 | |
|     const InitListExpr *ILE = cast<InitListExpr>(this);
 | |
|     if (ILE->getType()->isArrayType()) {
 | |
|       unsigned numInits = ILE->getNumInits();
 | |
|       for (unsigned i = 0; i < numInits; i++) {
 | |
|         if (!ILE->getInit(i)->isConstantInitializer(Ctx, false))
 | |
|           return false;
 | |
|       }
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     if (ILE->getType()->isRecordType()) {
 | |
|       unsigned ElementNo = 0;
 | |
|       RecordDecl *RD = ILE->getType()->getAs<RecordType>()->getDecl();
 | |
|       for (RecordDecl::field_iterator Field = RD->field_begin(),
 | |
|            FieldEnd = RD->field_end(); Field != FieldEnd; ++Field) {
 | |
|         // If this is a union, skip all the fields that aren't being initialized.
 | |
|         if (RD->isUnion() && ILE->getInitializedFieldInUnion() != *Field)
 | |
|           continue;
 | |
| 
 | |
|         // Don't emit anonymous bitfields, they just affect layout.
 | |
|         if (Field->isUnnamedBitfield())
 | |
|           continue;
 | |
| 
 | |
|         if (ElementNo < ILE->getNumInits()) {
 | |
|           const Expr *Elt = ILE->getInit(ElementNo++);
 | |
|           if (Field->isBitField()) {
 | |
|             // Bitfields have to evaluate to an integer.
 | |
|             llvm::APSInt ResultTmp;
 | |
|             if (!Elt->EvaluateAsInt(ResultTmp, Ctx))
 | |
|               return false;
 | |
|           } else {
 | |
|             bool RefType = Field->getType()->isReferenceType();
 | |
|             if (!Elt->isConstantInitializer(Ctx, RefType))
 | |
|               return false;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     break;
 | |
|   }
 | |
|   case ImplicitValueInitExprClass:
 | |
|     return true;
 | |
|   case ParenExprClass:
 | |
|     return cast<ParenExpr>(this)->getSubExpr()
 | |
|       ->isConstantInitializer(Ctx, IsForRef);
 | |
|   case GenericSelectionExprClass:
 | |
|     return cast<GenericSelectionExpr>(this)->getResultExpr()
 | |
|       ->isConstantInitializer(Ctx, IsForRef);
 | |
|   case ChooseExprClass:
 | |
|     if (cast<ChooseExpr>(this)->isConditionDependent())
 | |
|       return false;
 | |
|     return cast<ChooseExpr>(this)->getChosenSubExpr()
 | |
|       ->isConstantInitializer(Ctx, IsForRef);
 | |
|   case UnaryOperatorClass: {
 | |
|     const UnaryOperator* Exp = cast<UnaryOperator>(this);
 | |
|     if (Exp->getOpcode() == UO_Extension)
 | |
|       return Exp->getSubExpr()->isConstantInitializer(Ctx, false);
 | |
|     break;
 | |
|   }
 | |
|   case CXXFunctionalCastExprClass:
 | |
|   case CXXStaticCastExprClass:
 | |
|   case ImplicitCastExprClass:
 | |
|   case CStyleCastExprClass:
 | |
|   case ObjCBridgedCastExprClass:
 | |
|   case CXXDynamicCastExprClass:
 | |
|   case CXXReinterpretCastExprClass:
 | |
|   case CXXConstCastExprClass: {
 | |
|     const CastExpr *CE = cast<CastExpr>(this);
 | |
| 
 | |
|     // Handle misc casts we want to ignore.
 | |
|     if (CE->getCastKind() == CK_NoOp ||
 | |
|         CE->getCastKind() == CK_LValueToRValue ||
 | |
|         CE->getCastKind() == CK_ToUnion ||
 | |
|         CE->getCastKind() == CK_ConstructorConversion ||
 | |
|         CE->getCastKind() == CK_NonAtomicToAtomic ||
 | |
|         CE->getCastKind() == CK_AtomicToNonAtomic)
 | |
|       return CE->getSubExpr()->isConstantInitializer(Ctx, false);
 | |
| 
 | |
|     break;
 | |
|   }
 | |
|   case MaterializeTemporaryExprClass:
 | |
|     return cast<MaterializeTemporaryExpr>(this)->GetTemporaryExpr()
 | |
|                                             ->isConstantInitializer(Ctx, false);
 | |
| 
 | |
|   case SubstNonTypeTemplateParmExprClass:
 | |
|     return cast<SubstNonTypeTemplateParmExpr>(this)->getReplacement()
 | |
|                                             ->isConstantInitializer(Ctx, false);
 | |
|   case CXXDefaultArgExprClass:
 | |
|     return cast<CXXDefaultArgExpr>(this)->getExpr()
 | |
|                                             ->isConstantInitializer(Ctx, false);
 | |
|   case CXXDefaultInitExprClass:
 | |
|     return cast<CXXDefaultInitExpr>(this)->getExpr()
 | |
|                                             ->isConstantInitializer(Ctx, false);
 | |
|   }
 | |
|   return isEvaluatable(Ctx);
 | |
| }
 | |
| 
 | |
| bool Expr::HasSideEffects(const ASTContext &Ctx) const {
 | |
|   if (isInstantiationDependent())
 | |
|     return true;
 | |
| 
 | |
|   switch (getStmtClass()) {
 | |
|   case NoStmtClass:
 | |
|   #define ABSTRACT_STMT(Type)
 | |
|   #define STMT(Type, Base) case Type##Class:
 | |
|   #define EXPR(Type, Base)
 | |
|   #include "clang/AST/StmtNodes.inc"
 | |
|     llvm_unreachable("unexpected Expr kind");
 | |
| 
 | |
|   case DependentScopeDeclRefExprClass:
 | |
|   case CXXUnresolvedConstructExprClass:
 | |
|   case CXXDependentScopeMemberExprClass:
 | |
|   case UnresolvedLookupExprClass:
 | |
|   case UnresolvedMemberExprClass:
 | |
|   case PackExpansionExprClass:
 | |
|   case SubstNonTypeTemplateParmPackExprClass:
 | |
|   case FunctionParmPackExprClass:
 | |
|     llvm_unreachable("shouldn't see dependent / unresolved nodes here");
 | |
| 
 | |
|   case DeclRefExprClass:
 | |
|   case ObjCIvarRefExprClass:
 | |
|   case PredefinedExprClass:
 | |
|   case IntegerLiteralClass:
 | |
|   case FloatingLiteralClass:
 | |
|   case ImaginaryLiteralClass:
 | |
|   case StringLiteralClass:
 | |
|   case CharacterLiteralClass:
 | |
|   case OffsetOfExprClass:
 | |
|   case ImplicitValueInitExprClass:
 | |
|   case UnaryExprOrTypeTraitExprClass:
 | |
|   case AddrLabelExprClass:
 | |
|   case GNUNullExprClass:
 | |
|   case CXXBoolLiteralExprClass:
 | |
|   case CXXNullPtrLiteralExprClass:
 | |
|   case CXXThisExprClass:
 | |
|   case CXXScalarValueInitExprClass:
 | |
|   case TypeTraitExprClass:
 | |
|   case UnaryTypeTraitExprClass:
 | |
|   case BinaryTypeTraitExprClass:
 | |
|   case ArrayTypeTraitExprClass:
 | |
|   case ExpressionTraitExprClass:
 | |
|   case CXXNoexceptExprClass:
 | |
|   case SizeOfPackExprClass:
 | |
|   case ObjCStringLiteralClass:
 | |
|   case ObjCEncodeExprClass:
 | |
|   case ObjCBoolLiteralExprClass:
 | |
|   case CXXUuidofExprClass:
 | |
|   case OpaqueValueExprClass:
 | |
|     // These never have a side-effect.
 | |
|     return false;
 | |
| 
 | |
|   case CallExprClass:
 | |
|   case MSPropertyRefExprClass:
 | |
|   case CompoundAssignOperatorClass:
 | |
|   case VAArgExprClass:
 | |
|   case AtomicExprClass:
 | |
|   case StmtExprClass:
 | |
|   case CXXOperatorCallExprClass:
 | |
|   case CXXMemberCallExprClass:
 | |
|   case UserDefinedLiteralClass:
 | |
|   case CXXThrowExprClass:
 | |
|   case CXXNewExprClass:
 | |
|   case CXXDeleteExprClass:
 | |
|   case ExprWithCleanupsClass:
 | |
|   case CXXBindTemporaryExprClass:
 | |
|   case BlockExprClass:
 | |
|   case CUDAKernelCallExprClass:
 | |
|     // These always have a side-effect.
 | |
|     return true;
 | |
| 
 | |
|   case ParenExprClass:
 | |
|   case ArraySubscriptExprClass:
 | |
|   case MemberExprClass:
 | |
|   case ConditionalOperatorClass:
 | |
|   case BinaryConditionalOperatorClass:
 | |
|   case CompoundLiteralExprClass:
 | |
|   case ExtVectorElementExprClass:
 | |
|   case DesignatedInitExprClass:
 | |
|   case ParenListExprClass:
 | |
|   case CXXPseudoDestructorExprClass:
 | |
|   case CXXStdInitializerListExprClass:
 | |
|   case SubstNonTypeTemplateParmExprClass:
 | |
|   case MaterializeTemporaryExprClass:
 | |
|   case ShuffleVectorExprClass:
 | |
|   case ConvertVectorExprClass:
 | |
|   case AsTypeExprClass:
 | |
|     // These have a side-effect if any subexpression does.
 | |
|     break;
 | |
| 
 | |
|   case UnaryOperatorClass:
 | |
|     if (cast<UnaryOperator>(this)->isIncrementDecrementOp())
 | |
|       return true;
 | |
|     break;
 | |
| 
 | |
|   case BinaryOperatorClass:
 | |
|     if (cast<BinaryOperator>(this)->isAssignmentOp())
 | |
|       return true;
 | |
|     break;
 | |
| 
 | |
|   case InitListExprClass:
 | |
|     // FIXME: The children for an InitListExpr doesn't include the array filler.
 | |
|     if (const Expr *E = cast<InitListExpr>(this)->getArrayFiller())
 | |
|       if (E->HasSideEffects(Ctx))
 | |
|         return true;
 | |
|     break;
 | |
| 
 | |
|   case GenericSelectionExprClass:
 | |
|     return cast<GenericSelectionExpr>(this)->getResultExpr()->
 | |
|         HasSideEffects(Ctx);
 | |
| 
 | |
|   case ChooseExprClass:
 | |
|     return cast<ChooseExpr>(this)->getChosenSubExpr()->HasSideEffects(Ctx);
 | |
| 
 | |
|   case CXXDefaultArgExprClass:
 | |
|     return cast<CXXDefaultArgExpr>(this)->getExpr()->HasSideEffects(Ctx);
 | |
| 
 | |
|   case CXXDefaultInitExprClass:
 | |
|     if (const Expr *E = cast<CXXDefaultInitExpr>(this)->getExpr())
 | |
|       return E->HasSideEffects(Ctx);
 | |
|     // If we've not yet parsed the initializer, assume it has side-effects.
 | |
|     return true;
 | |
| 
 | |
|   case CXXDynamicCastExprClass: {
 | |
|     // A dynamic_cast expression has side-effects if it can throw.
 | |
|     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(this);
 | |
|     if (DCE->getTypeAsWritten()->isReferenceType() &&
 | |
|         DCE->getCastKind() == CK_Dynamic)
 | |
|       return true;
 | |
|   } // Fall through.
 | |
|   case ImplicitCastExprClass:
 | |
|   case CStyleCastExprClass:
 | |
|   case CXXStaticCastExprClass:
 | |
|   case CXXReinterpretCastExprClass:
 | |
|   case CXXConstCastExprClass:
 | |
|   case CXXFunctionalCastExprClass: {
 | |
|     const CastExpr *CE = cast<CastExpr>(this);
 | |
|     if (CE->getCastKind() == CK_LValueToRValue &&
 | |
|         CE->getSubExpr()->getType().isVolatileQualified())
 | |
|       return true;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case CXXTypeidExprClass:
 | |
|     // typeid might throw if its subexpression is potentially-evaluated, so has
 | |
|     // side-effects in that case whether or not its subexpression does.
 | |
|     return cast<CXXTypeidExpr>(this)->isPotentiallyEvaluated();
 | |
| 
 | |
|   case CXXConstructExprClass:
 | |
|   case CXXTemporaryObjectExprClass: {
 | |
|     const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
 | |
|     if (!CE->getConstructor()->isTrivial())
 | |
|       return true;
 | |
|     // A trivial constructor does not add any side-effects of its own. Just look
 | |
|     // at its arguments.
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case LambdaExprClass: {
 | |
|     const LambdaExpr *LE = cast<LambdaExpr>(this);
 | |
|     for (LambdaExpr::capture_iterator I = LE->capture_begin(),
 | |
|                                       E = LE->capture_end(); I != E; ++I)
 | |
|       if (I->getCaptureKind() == LCK_ByCopy)
 | |
|         // FIXME: Only has a side-effect if the variable is volatile or if
 | |
|         // the copy would invoke a non-trivial copy constructor.
 | |
|         return true;
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   case PseudoObjectExprClass: {
 | |
|     // Only look for side-effects in the semantic form, and look past
 | |
|     // OpaqueValueExpr bindings in that form.
 | |
|     const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
 | |
|     for (PseudoObjectExpr::const_semantics_iterator I = PO->semantics_begin(),
 | |
|                                                     E = PO->semantics_end();
 | |
|          I != E; ++I) {
 | |
|       const Expr *Subexpr = *I;
 | |
|       if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Subexpr))
 | |
|         Subexpr = OVE->getSourceExpr();
 | |
|       if (Subexpr->HasSideEffects(Ctx))
 | |
|         return true;
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   case ObjCBoxedExprClass:
 | |
|   case ObjCArrayLiteralClass:
 | |
|   case ObjCDictionaryLiteralClass:
 | |
|   case ObjCMessageExprClass:
 | |
|   case ObjCSelectorExprClass:
 | |
|   case ObjCProtocolExprClass:
 | |
|   case ObjCPropertyRefExprClass:
 | |
|   case ObjCIsaExprClass:
 | |
|   case ObjCIndirectCopyRestoreExprClass:
 | |
|   case ObjCSubscriptRefExprClass:
 | |
|   case ObjCBridgedCastExprClass:
 | |
|     // FIXME: Classify these cases better.
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Recurse to children.
 | |
|   for (const_child_range SubStmts = children(); SubStmts; ++SubStmts)
 | |
|     if (const Stmt *S = *SubStmts)
 | |
|       if (cast<Expr>(S)->HasSideEffects(Ctx))
 | |
|         return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   /// \brief Look for a call to a non-trivial function within an expression.
 | |
|   class NonTrivialCallFinder : public EvaluatedExprVisitor<NonTrivialCallFinder>
 | |
|   {
 | |
|     typedef EvaluatedExprVisitor<NonTrivialCallFinder> Inherited;
 | |
|     
 | |
|     bool NonTrivial;
 | |
|     
 | |
|   public:
 | |
|     explicit NonTrivialCallFinder(ASTContext &Context) 
 | |
|       : Inherited(Context), NonTrivial(false) { }
 | |
|     
 | |
|     bool hasNonTrivialCall() const { return NonTrivial; }
 | |
|     
 | |
|     void VisitCallExpr(CallExpr *E) {
 | |
|       if (CXXMethodDecl *Method
 | |
|           = dyn_cast_or_null<CXXMethodDecl>(E->getCalleeDecl())) {
 | |
|         if (Method->isTrivial()) {
 | |
|           // Recurse to children of the call.
 | |
|           Inherited::VisitStmt(E);
 | |
|           return;
 | |
|         }
 | |
|       }
 | |
|       
 | |
|       NonTrivial = true;
 | |
|     }
 | |
|     
 | |
|     void VisitCXXConstructExpr(CXXConstructExpr *E) {
 | |
|       if (E->getConstructor()->isTrivial()) {
 | |
|         // Recurse to children of the call.
 | |
|         Inherited::VisitStmt(E);
 | |
|         return;
 | |
|       }
 | |
|       
 | |
|       NonTrivial = true;
 | |
|     }
 | |
|     
 | |
|     void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
 | |
|       if (E->getTemporary()->getDestructor()->isTrivial()) {
 | |
|         Inherited::VisitStmt(E);
 | |
|         return;
 | |
|       }
 | |
|       
 | |
|       NonTrivial = true;
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| bool Expr::hasNonTrivialCall(ASTContext &Ctx) {
 | |
|   NonTrivialCallFinder Finder(Ctx);
 | |
|   Finder.Visit(this);
 | |
|   return Finder.hasNonTrivialCall();  
 | |
| }
 | |
| 
 | |
| /// isNullPointerConstant - C99 6.3.2.3p3 - Return whether this is a null 
 | |
| /// pointer constant or not, as well as the specific kind of constant detected.
 | |
| /// Null pointer constants can be integer constant expressions with the
 | |
| /// value zero, casts of zero to void*, nullptr (C++0X), or __null
 | |
| /// (a GNU extension).
 | |
| Expr::NullPointerConstantKind
 | |
| Expr::isNullPointerConstant(ASTContext &Ctx,
 | |
|                             NullPointerConstantValueDependence NPC) const {
 | |
|   if (isValueDependent() &&
 | |
|       (!Ctx.getLangOpts().CPlusPlus11 || Ctx.getLangOpts().MicrosoftMode)) {
 | |
|     switch (NPC) {
 | |
|     case NPC_NeverValueDependent:
 | |
|       llvm_unreachable("Unexpected value dependent expression!");
 | |
|     case NPC_ValueDependentIsNull:
 | |
|       if (isTypeDependent() || getType()->isIntegralType(Ctx))
 | |
|         return NPCK_ZeroExpression;
 | |
|       else
 | |
|         return NPCK_NotNull;
 | |
|         
 | |
|     case NPC_ValueDependentIsNotNull:
 | |
|       return NPCK_NotNull;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Strip off a cast to void*, if it exists. Except in C++.
 | |
|   if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) {
 | |
|     if (!Ctx.getLangOpts().CPlusPlus) {
 | |
|       // Check that it is a cast to void*.
 | |
|       if (const PointerType *PT = CE->getType()->getAs<PointerType>()) {
 | |
|         QualType Pointee = PT->getPointeeType();
 | |
|         if (!Pointee.hasQualifiers() &&
 | |
|             Pointee->isVoidType() &&                              // to void*
 | |
|             CE->getSubExpr()->getType()->isIntegerType())         // from int.
 | |
|           return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
 | |
|       }
 | |
|     }
 | |
|   } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
 | |
|     // Ignore the ImplicitCastExpr type entirely.
 | |
|     return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
 | |
|   } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
 | |
|     // Accept ((void*)0) as a null pointer constant, as many other
 | |
|     // implementations do.
 | |
|     return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
 | |
|   } else if (const GenericSelectionExpr *GE =
 | |
|                dyn_cast<GenericSelectionExpr>(this)) {
 | |
|     if (GE->isResultDependent())
 | |
|       return NPCK_NotNull;
 | |
|     return GE->getResultExpr()->isNullPointerConstant(Ctx, NPC);
 | |
|   } else if (const ChooseExpr *CE = dyn_cast<ChooseExpr>(this)) {
 | |
|     if (CE->isConditionDependent())
 | |
|       return NPCK_NotNull;
 | |
|     return CE->getChosenSubExpr()->isNullPointerConstant(Ctx, NPC);
 | |
|   } else if (const CXXDefaultArgExpr *DefaultArg
 | |
|                = dyn_cast<CXXDefaultArgExpr>(this)) {
 | |
|     // See through default argument expressions.
 | |
|     return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC);
 | |
|   } else if (const CXXDefaultInitExpr *DefaultInit
 | |
|                = dyn_cast<CXXDefaultInitExpr>(this)) {
 | |
|     // See through default initializer expressions.
 | |
|     return DefaultInit->getExpr()->isNullPointerConstant(Ctx, NPC);
 | |
|   } else if (isa<GNUNullExpr>(this)) {
 | |
|     // The GNU __null extension is always a null pointer constant.
 | |
|     return NPCK_GNUNull;
 | |
|   } else if (const MaterializeTemporaryExpr *M 
 | |
|                                    = dyn_cast<MaterializeTemporaryExpr>(this)) {
 | |
|     return M->GetTemporaryExpr()->isNullPointerConstant(Ctx, NPC);
 | |
|   } else if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(this)) {
 | |
|     if (const Expr *Source = OVE->getSourceExpr())
 | |
|       return Source->isNullPointerConstant(Ctx, NPC);
 | |
|   }
 | |
| 
 | |
|   // C++11 nullptr_t is always a null pointer constant.
 | |
|   if (getType()->isNullPtrType())
 | |
|     return NPCK_CXX11_nullptr;
 | |
| 
 | |
|   if (const RecordType *UT = getType()->getAsUnionType())
 | |
|     if (!Ctx.getLangOpts().CPlusPlus11 &&
 | |
|         UT && UT->getDecl()->hasAttr<TransparentUnionAttr>())
 | |
|       if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(this)){
 | |
|         const Expr *InitExpr = CLE->getInitializer();
 | |
|         if (const InitListExpr *ILE = dyn_cast<InitListExpr>(InitExpr))
 | |
|           return ILE->getInit(0)->isNullPointerConstant(Ctx, NPC);
 | |
|       }
 | |
|   // This expression must be an integer type.
 | |
|   if (!getType()->isIntegerType() || 
 | |
|       (Ctx.getLangOpts().CPlusPlus && getType()->isEnumeralType()))
 | |
|     return NPCK_NotNull;
 | |
| 
 | |
|   if (Ctx.getLangOpts().CPlusPlus11) {
 | |
|     // C++11 [conv.ptr]p1: A null pointer constant is an integer literal with
 | |
|     // value zero or a prvalue of type std::nullptr_t.
 | |
|     // Microsoft mode permits C++98 rules reflecting MSVC behavior.
 | |
|     const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(this);
 | |
|     if (Lit && !Lit->getValue())
 | |
|       return NPCK_ZeroLiteral;
 | |
|     else if (!Ctx.getLangOpts().MicrosoftMode ||
 | |
|              !isCXX98IntegralConstantExpr(Ctx))
 | |
|       return NPCK_NotNull;
 | |
|   } else {
 | |
|     // If we have an integer constant expression, we need to *evaluate* it and
 | |
|     // test for the value 0.
 | |
|     if (!isIntegerConstantExpr(Ctx))
 | |
|       return NPCK_NotNull;
 | |
|   }
 | |
| 
 | |
|   if (EvaluateKnownConstInt(Ctx) != 0)
 | |
|     return NPCK_NotNull;
 | |
| 
 | |
|   if (isa<IntegerLiteral>(this))
 | |
|     return NPCK_ZeroLiteral;
 | |
|   return NPCK_ZeroExpression;
 | |
| }
 | |
| 
 | |
| /// \brief If this expression is an l-value for an Objective C
 | |
| /// property, find the underlying property reference expression.
 | |
| const ObjCPropertyRefExpr *Expr::getObjCProperty() const {
 | |
|   const Expr *E = this;
 | |
|   while (true) {
 | |
|     assert((E->getValueKind() == VK_LValue &&
 | |
|             E->getObjectKind() == OK_ObjCProperty) &&
 | |
|            "expression is not a property reference");
 | |
|     E = E->IgnoreParenCasts();
 | |
|     if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
 | |
|       if (BO->getOpcode() == BO_Comma) {
 | |
|         E = BO->getRHS();
 | |
|         continue;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   return cast<ObjCPropertyRefExpr>(E);
 | |
| }
 | |
| 
 | |
| bool Expr::isObjCSelfExpr() const {
 | |
|   const Expr *E = IgnoreParenImpCasts();
 | |
| 
 | |
|   const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
 | |
|   if (!DRE)
 | |
|     return false;
 | |
| 
 | |
|   const ImplicitParamDecl *Param = dyn_cast<ImplicitParamDecl>(DRE->getDecl());
 | |
|   if (!Param)
 | |
|     return false;
 | |
| 
 | |
|   const ObjCMethodDecl *M = dyn_cast<ObjCMethodDecl>(Param->getDeclContext());
 | |
|   if (!M)
 | |
|     return false;
 | |
| 
 | |
|   return M->getSelfDecl() == Param;
 | |
| }
 | |
| 
 | |
| FieldDecl *Expr::getSourceBitField() {
 | |
|   Expr *E = this->IgnoreParens();
 | |
| 
 | |
|   while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
 | |
|     if (ICE->getCastKind() == CK_LValueToRValue ||
 | |
|         (ICE->getValueKind() != VK_RValue && ICE->getCastKind() == CK_NoOp))
 | |
|       E = ICE->getSubExpr()->IgnoreParens();
 | |
|     else
 | |
|       break;
 | |
|   }
 | |
| 
 | |
|   if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E))
 | |
|     if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl()))
 | |
|       if (Field->isBitField())
 | |
|         return Field;
 | |
| 
 | |
|   if (ObjCIvarRefExpr *IvarRef = dyn_cast<ObjCIvarRefExpr>(E))
 | |
|     if (FieldDecl *Ivar = dyn_cast<FieldDecl>(IvarRef->getDecl()))
 | |
|       if (Ivar->isBitField())
 | |
|         return Ivar;
 | |
| 
 | |
|   if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E))
 | |
|     if (FieldDecl *Field = dyn_cast<FieldDecl>(DeclRef->getDecl()))
 | |
|       if (Field->isBitField())
 | |
|         return Field;
 | |
| 
 | |
|   if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E)) {
 | |
|     if (BinOp->isAssignmentOp() && BinOp->getLHS())
 | |
|       return BinOp->getLHS()->getSourceBitField();
 | |
| 
 | |
|     if (BinOp->getOpcode() == BO_Comma && BinOp->getRHS())
 | |
|       return BinOp->getRHS()->getSourceBitField();
 | |
|   }
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| bool Expr::refersToVectorElement() const {
 | |
|   const Expr *E = this->IgnoreParens();
 | |
|   
 | |
|   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
 | |
|     if (ICE->getValueKind() != VK_RValue &&
 | |
|         ICE->getCastKind() == CK_NoOp)
 | |
|       E = ICE->getSubExpr()->IgnoreParens();
 | |
|     else
 | |
|       break;
 | |
|   }
 | |
|   
 | |
|   if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E))
 | |
|     return ASE->getBase()->getType()->isVectorType();
 | |
| 
 | |
|   if (isa<ExtVectorElementExpr>(E))
 | |
|     return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// isArrow - Return true if the base expression is a pointer to vector,
 | |
| /// return false if the base expression is a vector.
 | |
| bool ExtVectorElementExpr::isArrow() const {
 | |
|   return getBase()->getType()->isPointerType();
 | |
| }
 | |
| 
 | |
| unsigned ExtVectorElementExpr::getNumElements() const {
 | |
|   if (const VectorType *VT = getType()->getAs<VectorType>())
 | |
|     return VT->getNumElements();
 | |
|   return 1;
 | |
| }
 | |
| 
 | |
| /// containsDuplicateElements - Return true if any element access is repeated.
 | |
| bool ExtVectorElementExpr::containsDuplicateElements() const {
 | |
|   // FIXME: Refactor this code to an accessor on the AST node which returns the
 | |
|   // "type" of component access, and share with code below and in Sema.
 | |
|   StringRef Comp = Accessor->getName();
 | |
| 
 | |
|   // Halving swizzles do not contain duplicate elements.
 | |
|   if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd")
 | |
|     return false;
 | |
| 
 | |
|   // Advance past s-char prefix on hex swizzles.
 | |
|   if (Comp[0] == 's' || Comp[0] == 'S')
 | |
|     Comp = Comp.substr(1);
 | |
| 
 | |
|   for (unsigned i = 0, e = Comp.size(); i != e; ++i)
 | |
|     if (Comp.substr(i + 1).find(Comp[i]) != StringRef::npos)
 | |
|         return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
 | |
| void ExtVectorElementExpr::getEncodedElementAccess(
 | |
|                                   SmallVectorImpl<unsigned> &Elts) const {
 | |
|   StringRef Comp = Accessor->getName();
 | |
|   if (Comp[0] == 's' || Comp[0] == 'S')
 | |
|     Comp = Comp.substr(1);
 | |
| 
 | |
|   bool isHi =   Comp == "hi";
 | |
|   bool isLo =   Comp == "lo";
 | |
|   bool isEven = Comp == "even";
 | |
|   bool isOdd  = Comp == "odd";
 | |
| 
 | |
|   for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
 | |
|     uint64_t Index;
 | |
| 
 | |
|     if (isHi)
 | |
|       Index = e + i;
 | |
|     else if (isLo)
 | |
|       Index = i;
 | |
|     else if (isEven)
 | |
|       Index = 2 * i;
 | |
|     else if (isOdd)
 | |
|       Index = 2 * i + 1;
 | |
|     else
 | |
|       Index = ExtVectorType::getAccessorIdx(Comp[i]);
 | |
| 
 | |
|     Elts.push_back(Index);
 | |
|   }
 | |
| }
 | |
| 
 | |
| ObjCMessageExpr::ObjCMessageExpr(QualType T,
 | |
|                                  ExprValueKind VK,
 | |
|                                  SourceLocation LBracLoc,
 | |
|                                  SourceLocation SuperLoc,
 | |
|                                  bool IsInstanceSuper,
 | |
|                                  QualType SuperType,
 | |
|                                  Selector Sel, 
 | |
|                                  ArrayRef<SourceLocation> SelLocs,
 | |
|                                  SelectorLocationsKind SelLocsK,
 | |
|                                  ObjCMethodDecl *Method,
 | |
|                                  ArrayRef<Expr *> Args,
 | |
|                                  SourceLocation RBracLoc,
 | |
|                                  bool isImplicit)
 | |
|   : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary,
 | |
|          /*TypeDependent=*/false, /*ValueDependent=*/false,
 | |
|          /*InstantiationDependent=*/false,
 | |
|          /*ContainsUnexpandedParameterPack=*/false),
 | |
|     SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
 | |
|                                                        : Sel.getAsOpaquePtr())),
 | |
|     Kind(IsInstanceSuper? SuperInstance : SuperClass),
 | |
|     HasMethod(Method != 0), IsDelegateInitCall(false), IsImplicit(isImplicit),
 | |
|     SuperLoc(SuperLoc), LBracLoc(LBracLoc), RBracLoc(RBracLoc) 
 | |
| {
 | |
|   initArgsAndSelLocs(Args, SelLocs, SelLocsK);
 | |
|   setReceiverPointer(SuperType.getAsOpaquePtr());
 | |
| }
 | |
| 
 | |
| ObjCMessageExpr::ObjCMessageExpr(QualType T,
 | |
|                                  ExprValueKind VK,
 | |
|                                  SourceLocation LBracLoc,
 | |
|                                  TypeSourceInfo *Receiver,
 | |
|                                  Selector Sel,
 | |
|                                  ArrayRef<SourceLocation> SelLocs,
 | |
|                                  SelectorLocationsKind SelLocsK,
 | |
|                                  ObjCMethodDecl *Method,
 | |
|                                  ArrayRef<Expr *> Args,
 | |
|                                  SourceLocation RBracLoc,
 | |
|                                  bool isImplicit)
 | |
|   : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary, T->isDependentType(),
 | |
|          T->isDependentType(), T->isInstantiationDependentType(),
 | |
|          T->containsUnexpandedParameterPack()),
 | |
|     SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
 | |
|                                                        : Sel.getAsOpaquePtr())),
 | |
|     Kind(Class),
 | |
|     HasMethod(Method != 0), IsDelegateInitCall(false), IsImplicit(isImplicit),
 | |
|     LBracLoc(LBracLoc), RBracLoc(RBracLoc) 
 | |
| {
 | |
|   initArgsAndSelLocs(Args, SelLocs, SelLocsK);
 | |
|   setReceiverPointer(Receiver);
 | |
| }
 | |
| 
 | |
| ObjCMessageExpr::ObjCMessageExpr(QualType T,
 | |
|                                  ExprValueKind VK,
 | |
|                                  SourceLocation LBracLoc,
 | |
|                                  Expr *Receiver,
 | |
|                                  Selector Sel, 
 | |
|                                  ArrayRef<SourceLocation> SelLocs,
 | |
|                                  SelectorLocationsKind SelLocsK,
 | |
|                                  ObjCMethodDecl *Method,
 | |
|                                  ArrayRef<Expr *> Args,
 | |
|                                  SourceLocation RBracLoc,
 | |
|                                  bool isImplicit)
 | |
|   : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary, Receiver->isTypeDependent(),
 | |
|          Receiver->isTypeDependent(),
 | |
|          Receiver->isInstantiationDependent(),
 | |
|          Receiver->containsUnexpandedParameterPack()),
 | |
|     SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
 | |
|                                                        : Sel.getAsOpaquePtr())),
 | |
|     Kind(Instance),
 | |
|     HasMethod(Method != 0), IsDelegateInitCall(false), IsImplicit(isImplicit),
 | |
|     LBracLoc(LBracLoc), RBracLoc(RBracLoc) 
 | |
| {
 | |
|   initArgsAndSelLocs(Args, SelLocs, SelLocsK);
 | |
|   setReceiverPointer(Receiver);
 | |
| }
 | |
| 
 | |
| void ObjCMessageExpr::initArgsAndSelLocs(ArrayRef<Expr *> Args,
 | |
|                                          ArrayRef<SourceLocation> SelLocs,
 | |
|                                          SelectorLocationsKind SelLocsK) {
 | |
|   setNumArgs(Args.size());
 | |
|   Expr **MyArgs = getArgs();
 | |
|   for (unsigned I = 0; I != Args.size(); ++I) {
 | |
|     if (Args[I]->isTypeDependent())
 | |
|       ExprBits.TypeDependent = true;
 | |
|     if (Args[I]->isValueDependent())
 | |
|       ExprBits.ValueDependent = true;
 | |
|     if (Args[I]->isInstantiationDependent())
 | |
|       ExprBits.InstantiationDependent = true;
 | |
|     if (Args[I]->containsUnexpandedParameterPack())
 | |
|       ExprBits.ContainsUnexpandedParameterPack = true;
 | |
|   
 | |
|     MyArgs[I] = Args[I];
 | |
|   }
 | |
| 
 | |
|   SelLocsKind = SelLocsK;
 | |
|   if (!isImplicit()) {
 | |
|     if (SelLocsK == SelLoc_NonStandard)
 | |
|       std::copy(SelLocs.begin(), SelLocs.end(), getStoredSelLocs());
 | |
|   }
 | |
| }
 | |
| 
 | |
| ObjCMessageExpr *ObjCMessageExpr::Create(const ASTContext &Context, QualType T,
 | |
|                                          ExprValueKind VK,
 | |
|                                          SourceLocation LBracLoc,
 | |
|                                          SourceLocation SuperLoc,
 | |
|                                          bool IsInstanceSuper,
 | |
|                                          QualType SuperType,
 | |
|                                          Selector Sel, 
 | |
|                                          ArrayRef<SourceLocation> SelLocs,
 | |
|                                          ObjCMethodDecl *Method,
 | |
|                                          ArrayRef<Expr *> Args,
 | |
|                                          SourceLocation RBracLoc,
 | |
|                                          bool isImplicit) {
 | |
|   assert((!SelLocs.empty() || isImplicit) &&
 | |
|          "No selector locs for non-implicit message");
 | |
|   ObjCMessageExpr *Mem;
 | |
|   SelectorLocationsKind SelLocsK = SelectorLocationsKind();
 | |
|   if (isImplicit)
 | |
|     Mem = alloc(Context, Args.size(), 0);
 | |
|   else
 | |
|     Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK);
 | |
|   return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, SuperLoc, IsInstanceSuper,
 | |
|                                    SuperType, Sel, SelLocs, SelLocsK,
 | |
|                                    Method, Args, RBracLoc, isImplicit);
 | |
| }
 | |
| 
 | |
| ObjCMessageExpr *ObjCMessageExpr::Create(const ASTContext &Context, QualType T,
 | |
|                                          ExprValueKind VK,
 | |
|                                          SourceLocation LBracLoc,
 | |
|                                          TypeSourceInfo *Receiver,
 | |
|                                          Selector Sel, 
 | |
|                                          ArrayRef<SourceLocation> SelLocs,
 | |
|                                          ObjCMethodDecl *Method,
 | |
|                                          ArrayRef<Expr *> Args,
 | |
|                                          SourceLocation RBracLoc,
 | |
|                                          bool isImplicit) {
 | |
|   assert((!SelLocs.empty() || isImplicit) &&
 | |
|          "No selector locs for non-implicit message");
 | |
|   ObjCMessageExpr *Mem;
 | |
|   SelectorLocationsKind SelLocsK = SelectorLocationsKind();
 | |
|   if (isImplicit)
 | |
|     Mem = alloc(Context, Args.size(), 0);
 | |
|   else
 | |
|     Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK);
 | |
|   return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, Receiver, Sel,
 | |
|                                    SelLocs, SelLocsK, Method, Args, RBracLoc,
 | |
|                                    isImplicit);
 | |
| }
 | |
| 
 | |
| ObjCMessageExpr *ObjCMessageExpr::Create(const ASTContext &Context, QualType T,
 | |
|                                          ExprValueKind VK,
 | |
|                                          SourceLocation LBracLoc,
 | |
|                                          Expr *Receiver,
 | |
|                                          Selector Sel,
 | |
|                                          ArrayRef<SourceLocation> SelLocs,
 | |
|                                          ObjCMethodDecl *Method,
 | |
|                                          ArrayRef<Expr *> Args,
 | |
|                                          SourceLocation RBracLoc,
 | |
|                                          bool isImplicit) {
 | |
|   assert((!SelLocs.empty() || isImplicit) &&
 | |
|          "No selector locs for non-implicit message");
 | |
|   ObjCMessageExpr *Mem;
 | |
|   SelectorLocationsKind SelLocsK = SelectorLocationsKind();
 | |
|   if (isImplicit)
 | |
|     Mem = alloc(Context, Args.size(), 0);
 | |
|   else
 | |
|     Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK);
 | |
|   return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, Receiver, Sel,
 | |
|                                    SelLocs, SelLocsK, Method, Args, RBracLoc,
 | |
|                                    isImplicit);
 | |
| }
 | |
| 
 | |
| ObjCMessageExpr *ObjCMessageExpr::CreateEmpty(const ASTContext &Context,
 | |
|                                               unsigned NumArgs,
 | |
|                                               unsigned NumStoredSelLocs) {
 | |
|   ObjCMessageExpr *Mem = alloc(Context, NumArgs, NumStoredSelLocs);
 | |
|   return new (Mem) ObjCMessageExpr(EmptyShell(), NumArgs);
 | |
| }
 | |
| 
 | |
| ObjCMessageExpr *ObjCMessageExpr::alloc(const ASTContext &C,
 | |
|                                         ArrayRef<Expr *> Args,
 | |
|                                         SourceLocation RBraceLoc,
 | |
|                                         ArrayRef<SourceLocation> SelLocs,
 | |
|                                         Selector Sel,
 | |
|                                         SelectorLocationsKind &SelLocsK) {
 | |
|   SelLocsK = hasStandardSelectorLocs(Sel, SelLocs, Args, RBraceLoc);
 | |
|   unsigned NumStoredSelLocs = (SelLocsK == SelLoc_NonStandard) ? SelLocs.size()
 | |
|                                                                : 0;
 | |
|   return alloc(C, Args.size(), NumStoredSelLocs);
 | |
| }
 | |
| 
 | |
| ObjCMessageExpr *ObjCMessageExpr::alloc(const ASTContext &C,
 | |
|                                         unsigned NumArgs,
 | |
|                                         unsigned NumStoredSelLocs) {
 | |
|   unsigned Size = sizeof(ObjCMessageExpr) + sizeof(void *) + 
 | |
|     NumArgs * sizeof(Expr *) + NumStoredSelLocs * sizeof(SourceLocation);
 | |
|   return (ObjCMessageExpr *)C.Allocate(Size,
 | |
|                                      llvm::AlignOf<ObjCMessageExpr>::Alignment);
 | |
| }
 | |
| 
 | |
| void ObjCMessageExpr::getSelectorLocs(
 | |
|                                SmallVectorImpl<SourceLocation> &SelLocs) const {
 | |
|   for (unsigned i = 0, e = getNumSelectorLocs(); i != e; ++i)
 | |
|     SelLocs.push_back(getSelectorLoc(i));
 | |
| }
 | |
| 
 | |
| SourceRange ObjCMessageExpr::getReceiverRange() const {
 | |
|   switch (getReceiverKind()) {
 | |
|   case Instance:
 | |
|     return getInstanceReceiver()->getSourceRange();
 | |
| 
 | |
|   case Class:
 | |
|     return getClassReceiverTypeInfo()->getTypeLoc().getSourceRange();
 | |
| 
 | |
|   case SuperInstance:
 | |
|   case SuperClass:
 | |
|     return getSuperLoc();
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("Invalid ReceiverKind!");
 | |
| }
 | |
| 
 | |
| Selector ObjCMessageExpr::getSelector() const {
 | |
|   if (HasMethod)
 | |
|     return reinterpret_cast<const ObjCMethodDecl *>(SelectorOrMethod)
 | |
|                                                                ->getSelector();
 | |
|   return Selector(SelectorOrMethod); 
 | |
| }
 | |
| 
 | |
| QualType ObjCMessageExpr::getReceiverType() const {
 | |
|   switch (getReceiverKind()) {
 | |
|   case Instance:
 | |
|     return getInstanceReceiver()->getType();
 | |
|   case Class:
 | |
|     return getClassReceiver();
 | |
|   case SuperInstance:
 | |
|   case SuperClass:
 | |
|     return getSuperType();
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("unexpected receiver kind");
 | |
| }
 | |
| 
 | |
| ObjCInterfaceDecl *ObjCMessageExpr::getReceiverInterface() const {
 | |
|   QualType T = getReceiverType();
 | |
| 
 | |
|   if (const ObjCObjectPointerType *Ptr = T->getAs<ObjCObjectPointerType>())
 | |
|     return Ptr->getInterfaceDecl();
 | |
| 
 | |
|   if (const ObjCObjectType *Ty = T->getAs<ObjCObjectType>())
 | |
|     return Ty->getInterface();
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| StringRef ObjCBridgedCastExpr::getBridgeKindName() const {
 | |
|   switch (getBridgeKind()) {
 | |
|   case OBC_Bridge:
 | |
|     return "__bridge";
 | |
|   case OBC_BridgeTransfer:
 | |
|     return "__bridge_transfer";
 | |
|   case OBC_BridgeRetained:
 | |
|     return "__bridge_retained";
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("Invalid BridgeKind!");
 | |
| }
 | |
| 
 | |
| ShuffleVectorExpr::ShuffleVectorExpr(const ASTContext &C, ArrayRef<Expr*> args,
 | |
|                                      QualType Type, SourceLocation BLoc,
 | |
|                                      SourceLocation RP) 
 | |
|    : Expr(ShuffleVectorExprClass, Type, VK_RValue, OK_Ordinary,
 | |
|           Type->isDependentType(), Type->isDependentType(),
 | |
|           Type->isInstantiationDependentType(),
 | |
|           Type->containsUnexpandedParameterPack()),
 | |
|      BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(args.size())
 | |
| {
 | |
|   SubExprs = new (C) Stmt*[args.size()];
 | |
|   for (unsigned i = 0; i != args.size(); i++) {
 | |
|     if (args[i]->isTypeDependent())
 | |
|       ExprBits.TypeDependent = true;
 | |
|     if (args[i]->isValueDependent())
 | |
|       ExprBits.ValueDependent = true;
 | |
|     if (args[i]->isInstantiationDependent())
 | |
|       ExprBits.InstantiationDependent = true;
 | |
|     if (args[i]->containsUnexpandedParameterPack())
 | |
|       ExprBits.ContainsUnexpandedParameterPack = true;
 | |
| 
 | |
|     SubExprs[i] = args[i];
 | |
|   }
 | |
| }
 | |
| 
 | |
| void ShuffleVectorExpr::setExprs(const ASTContext &C, ArrayRef<Expr *> Exprs) {
 | |
|   if (SubExprs) C.Deallocate(SubExprs);
 | |
| 
 | |
|   this->NumExprs = Exprs.size();
 | |
|   SubExprs = new (C) Stmt*[NumExprs];
 | |
|   memcpy(SubExprs, Exprs.data(), sizeof(Expr *) * Exprs.size());
 | |
| }
 | |
| 
 | |
| GenericSelectionExpr::GenericSelectionExpr(const ASTContext &Context,
 | |
|                                SourceLocation GenericLoc, Expr *ControllingExpr,
 | |
|                                ArrayRef<TypeSourceInfo*> AssocTypes,
 | |
|                                ArrayRef<Expr*> AssocExprs,
 | |
|                                SourceLocation DefaultLoc,
 | |
|                                SourceLocation RParenLoc,
 | |
|                                bool ContainsUnexpandedParameterPack,
 | |
|                                unsigned ResultIndex)
 | |
|   : Expr(GenericSelectionExprClass,
 | |
|          AssocExprs[ResultIndex]->getType(),
 | |
|          AssocExprs[ResultIndex]->getValueKind(),
 | |
|          AssocExprs[ResultIndex]->getObjectKind(),
 | |
|          AssocExprs[ResultIndex]->isTypeDependent(),
 | |
|          AssocExprs[ResultIndex]->isValueDependent(),
 | |
|          AssocExprs[ResultIndex]->isInstantiationDependent(),
 | |
|          ContainsUnexpandedParameterPack),
 | |
|     AssocTypes(new (Context) TypeSourceInfo*[AssocTypes.size()]),
 | |
|     SubExprs(new (Context) Stmt*[END_EXPR+AssocExprs.size()]),
 | |
|     NumAssocs(AssocExprs.size()), ResultIndex(ResultIndex),
 | |
|     GenericLoc(GenericLoc), DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
 | |
|   SubExprs[CONTROLLING] = ControllingExpr;
 | |
|   assert(AssocTypes.size() == AssocExprs.size());
 | |
|   std::copy(AssocTypes.begin(), AssocTypes.end(), this->AssocTypes);
 | |
|   std::copy(AssocExprs.begin(), AssocExprs.end(), SubExprs+END_EXPR);
 | |
| }
 | |
| 
 | |
| GenericSelectionExpr::GenericSelectionExpr(const ASTContext &Context,
 | |
|                                SourceLocation GenericLoc, Expr *ControllingExpr,
 | |
|                                ArrayRef<TypeSourceInfo*> AssocTypes,
 | |
|                                ArrayRef<Expr*> AssocExprs,
 | |
|                                SourceLocation DefaultLoc,
 | |
|                                SourceLocation RParenLoc,
 | |
|                                bool ContainsUnexpandedParameterPack)
 | |
|   : Expr(GenericSelectionExprClass,
 | |
|          Context.DependentTy,
 | |
|          VK_RValue,
 | |
|          OK_Ordinary,
 | |
|          /*isTypeDependent=*/true,
 | |
|          /*isValueDependent=*/true,
 | |
|          /*isInstantiationDependent=*/true,
 | |
|          ContainsUnexpandedParameterPack),
 | |
|     AssocTypes(new (Context) TypeSourceInfo*[AssocTypes.size()]),
 | |
|     SubExprs(new (Context) Stmt*[END_EXPR+AssocExprs.size()]),
 | |
|     NumAssocs(AssocExprs.size()), ResultIndex(-1U), GenericLoc(GenericLoc),
 | |
|     DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
 | |
|   SubExprs[CONTROLLING] = ControllingExpr;
 | |
|   assert(AssocTypes.size() == AssocExprs.size());
 | |
|   std::copy(AssocTypes.begin(), AssocTypes.end(), this->AssocTypes);
 | |
|   std::copy(AssocExprs.begin(), AssocExprs.end(), SubExprs+END_EXPR);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  DesignatedInitExpr
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() const {
 | |
|   assert(Kind == FieldDesignator && "Only valid on a field designator");
 | |
|   if (Field.NameOrField & 0x01)
 | |
|     return reinterpret_cast<IdentifierInfo *>(Field.NameOrField&~0x01);
 | |
|   else
 | |
|     return getField()->getIdentifier();
 | |
| }
 | |
| 
 | |
| DesignatedInitExpr::DesignatedInitExpr(const ASTContext &C, QualType Ty,
 | |
|                                        unsigned NumDesignators,
 | |
|                                        const Designator *Designators,
 | |
|                                        SourceLocation EqualOrColonLoc,
 | |
|                                        bool GNUSyntax,
 | |
|                                        ArrayRef<Expr*> IndexExprs,
 | |
|                                        Expr *Init)
 | |
|   : Expr(DesignatedInitExprClass, Ty,
 | |
|          Init->getValueKind(), Init->getObjectKind(),
 | |
|          Init->isTypeDependent(), Init->isValueDependent(),
 | |
|          Init->isInstantiationDependent(),
 | |
|          Init->containsUnexpandedParameterPack()),
 | |
|     EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax),
 | |
|     NumDesignators(NumDesignators), NumSubExprs(IndexExprs.size() + 1) {
 | |
|   this->Designators = new (C) Designator[NumDesignators];
 | |
| 
 | |
|   // Record the initializer itself.
 | |
|   child_range Child = children();
 | |
|   *Child++ = Init;
 | |
| 
 | |
|   // Copy the designators and their subexpressions, computing
 | |
|   // value-dependence along the way.
 | |
|   unsigned IndexIdx = 0;
 | |
|   for (unsigned I = 0; I != NumDesignators; ++I) {
 | |
|     this->Designators[I] = Designators[I];
 | |
| 
 | |
|     if (this->Designators[I].isArrayDesignator()) {
 | |
|       // Compute type- and value-dependence.
 | |
|       Expr *Index = IndexExprs[IndexIdx];
 | |
|       if (Index->isTypeDependent() || Index->isValueDependent())
 | |
|         ExprBits.ValueDependent = true;
 | |
|       if (Index->isInstantiationDependent())
 | |
|         ExprBits.InstantiationDependent = true;
 | |
|       // Propagate unexpanded parameter packs.
 | |
|       if (Index->containsUnexpandedParameterPack())
 | |
|         ExprBits.ContainsUnexpandedParameterPack = true;
 | |
| 
 | |
|       // Copy the index expressions into permanent storage.
 | |
|       *Child++ = IndexExprs[IndexIdx++];
 | |
|     } else if (this->Designators[I].isArrayRangeDesignator()) {
 | |
|       // Compute type- and value-dependence.
 | |
|       Expr *Start = IndexExprs[IndexIdx];
 | |
|       Expr *End = IndexExprs[IndexIdx + 1];
 | |
|       if (Start->isTypeDependent() || Start->isValueDependent() ||
 | |
|           End->isTypeDependent() || End->isValueDependent()) {
 | |
|         ExprBits.ValueDependent = true;
 | |
|         ExprBits.InstantiationDependent = true;
 | |
|       } else if (Start->isInstantiationDependent() || 
 | |
|                  End->isInstantiationDependent()) {
 | |
|         ExprBits.InstantiationDependent = true;
 | |
|       }
 | |
|                  
 | |
|       // Propagate unexpanded parameter packs.
 | |
|       if (Start->containsUnexpandedParameterPack() ||
 | |
|           End->containsUnexpandedParameterPack())
 | |
|         ExprBits.ContainsUnexpandedParameterPack = true;
 | |
| 
 | |
|       // Copy the start/end expressions into permanent storage.
 | |
|       *Child++ = IndexExprs[IndexIdx++];
 | |
|       *Child++ = IndexExprs[IndexIdx++];
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   assert(IndexIdx == IndexExprs.size() && "Wrong number of index expressions");
 | |
| }
 | |
| 
 | |
| DesignatedInitExpr *
 | |
| DesignatedInitExpr::Create(const ASTContext &C, Designator *Designators,
 | |
|                            unsigned NumDesignators,
 | |
|                            ArrayRef<Expr*> IndexExprs,
 | |
|                            SourceLocation ColonOrEqualLoc,
 | |
|                            bool UsesColonSyntax, Expr *Init) {
 | |
|   void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
 | |
|                          sizeof(Stmt *) * (IndexExprs.size() + 1), 8);
 | |
|   return new (Mem) DesignatedInitExpr(C, C.VoidTy, NumDesignators, Designators,
 | |
|                                       ColonOrEqualLoc, UsesColonSyntax,
 | |
|                                       IndexExprs, Init);
 | |
| }
 | |
| 
 | |
| DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(const ASTContext &C,
 | |
|                                                     unsigned NumIndexExprs) {
 | |
|   void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
 | |
|                          sizeof(Stmt *) * (NumIndexExprs + 1), 8);
 | |
|   return new (Mem) DesignatedInitExpr(NumIndexExprs + 1);
 | |
| }
 | |
| 
 | |
| void DesignatedInitExpr::setDesignators(const ASTContext &C,
 | |
|                                         const Designator *Desigs,
 | |
|                                         unsigned NumDesigs) {
 | |
|   Designators = new (C) Designator[NumDesigs];
 | |
|   NumDesignators = NumDesigs;
 | |
|   for (unsigned I = 0; I != NumDesigs; ++I)
 | |
|     Designators[I] = Desigs[I];
 | |
| }
 | |
| 
 | |
| SourceRange DesignatedInitExpr::getDesignatorsSourceRange() const {
 | |
|   DesignatedInitExpr *DIE = const_cast<DesignatedInitExpr*>(this);
 | |
|   if (size() == 1)
 | |
|     return DIE->getDesignator(0)->getSourceRange();
 | |
|   return SourceRange(DIE->getDesignator(0)->getLocStart(),
 | |
|                      DIE->getDesignator(size()-1)->getLocEnd());
 | |
| }
 | |
| 
 | |
| SourceLocation DesignatedInitExpr::getLocStart() const {
 | |
|   SourceLocation StartLoc;
 | |
|   Designator &First =
 | |
|     *const_cast<DesignatedInitExpr*>(this)->designators_begin();
 | |
|   if (First.isFieldDesignator()) {
 | |
|     if (GNUSyntax)
 | |
|       StartLoc = SourceLocation::getFromRawEncoding(First.Field.FieldLoc);
 | |
|     else
 | |
|       StartLoc = SourceLocation::getFromRawEncoding(First.Field.DotLoc);
 | |
|   } else
 | |
|     StartLoc =
 | |
|       SourceLocation::getFromRawEncoding(First.ArrayOrRange.LBracketLoc);
 | |
|   return StartLoc;
 | |
| }
 | |
| 
 | |
| SourceLocation DesignatedInitExpr::getLocEnd() const {
 | |
|   return getInit()->getLocEnd();
 | |
| }
 | |
| 
 | |
| Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) const {
 | |
|   assert(D.Kind == Designator::ArrayDesignator && "Requires array designator");
 | |
|   char *Ptr = static_cast<char *>(
 | |
|                   const_cast<void *>(static_cast<const void *>(this)));
 | |
|   Ptr += sizeof(DesignatedInitExpr);
 | |
|   Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
 | |
|   return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
 | |
| }
 | |
| 
 | |
| Expr *DesignatedInitExpr::getArrayRangeStart(const Designator &D) const {
 | |
|   assert(D.Kind == Designator::ArrayRangeDesignator &&
 | |
|          "Requires array range designator");
 | |
|   char *Ptr = static_cast<char *>(
 | |
|                   const_cast<void *>(static_cast<const void *>(this)));
 | |
|   Ptr += sizeof(DesignatedInitExpr);
 | |
|   Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
 | |
|   return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
 | |
| }
 | |
| 
 | |
| Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator &D) const {
 | |
|   assert(D.Kind == Designator::ArrayRangeDesignator &&
 | |
|          "Requires array range designator");
 | |
|   char *Ptr = static_cast<char *>(
 | |
|                   const_cast<void *>(static_cast<const void *>(this)));
 | |
|   Ptr += sizeof(DesignatedInitExpr);
 | |
|   Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
 | |
|   return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 2));
 | |
| }
 | |
| 
 | |
| /// \brief Replaces the designator at index @p Idx with the series
 | |
| /// of designators in [First, Last).
 | |
| void DesignatedInitExpr::ExpandDesignator(const ASTContext &C, unsigned Idx,
 | |
|                                           const Designator *First,
 | |
|                                           const Designator *Last) {
 | |
|   unsigned NumNewDesignators = Last - First;
 | |
|   if (NumNewDesignators == 0) {
 | |
|     std::copy_backward(Designators + Idx + 1,
 | |
|                        Designators + NumDesignators,
 | |
|                        Designators + Idx);
 | |
|     --NumNewDesignators;
 | |
|     return;
 | |
|   } else if (NumNewDesignators == 1) {
 | |
|     Designators[Idx] = *First;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   Designator *NewDesignators
 | |
|     = new (C) Designator[NumDesignators - 1 + NumNewDesignators];
 | |
|   std::copy(Designators, Designators + Idx, NewDesignators);
 | |
|   std::copy(First, Last, NewDesignators + Idx);
 | |
|   std::copy(Designators + Idx + 1, Designators + NumDesignators,
 | |
|             NewDesignators + Idx + NumNewDesignators);
 | |
|   Designators = NewDesignators;
 | |
|   NumDesignators = NumDesignators - 1 + NumNewDesignators;
 | |
| }
 | |
| 
 | |
| ParenListExpr::ParenListExpr(const ASTContext& C, SourceLocation lparenloc,
 | |
|                              ArrayRef<Expr*> exprs,
 | |
|                              SourceLocation rparenloc)
 | |
|   : Expr(ParenListExprClass, QualType(), VK_RValue, OK_Ordinary,
 | |
|          false, false, false, false),
 | |
|     NumExprs(exprs.size()), LParenLoc(lparenloc), RParenLoc(rparenloc) {
 | |
|   Exprs = new (C) Stmt*[exprs.size()];
 | |
|   for (unsigned i = 0; i != exprs.size(); ++i) {
 | |
|     if (exprs[i]->isTypeDependent())
 | |
|       ExprBits.TypeDependent = true;
 | |
|     if (exprs[i]->isValueDependent())
 | |
|       ExprBits.ValueDependent = true;
 | |
|     if (exprs[i]->isInstantiationDependent())
 | |
|       ExprBits.InstantiationDependent = true;
 | |
|     if (exprs[i]->containsUnexpandedParameterPack())
 | |
|       ExprBits.ContainsUnexpandedParameterPack = true;
 | |
| 
 | |
|     Exprs[i] = exprs[i];
 | |
|   }
 | |
| }
 | |
| 
 | |
| const OpaqueValueExpr *OpaqueValueExpr::findInCopyConstruct(const Expr *e) {
 | |
|   if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(e))
 | |
|     e = ewc->getSubExpr();
 | |
|   if (const MaterializeTemporaryExpr *m = dyn_cast<MaterializeTemporaryExpr>(e))
 | |
|     e = m->GetTemporaryExpr();
 | |
|   e = cast<CXXConstructExpr>(e)->getArg(0);
 | |
|   while (const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
 | |
|     e = ice->getSubExpr();
 | |
|   return cast<OpaqueValueExpr>(e);
 | |
| }
 | |
| 
 | |
| PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &Context,
 | |
|                                            EmptyShell sh,
 | |
|                                            unsigned numSemanticExprs) {
 | |
|   void *buffer = Context.Allocate(sizeof(PseudoObjectExpr) +
 | |
|                                     (1 + numSemanticExprs) * sizeof(Expr*),
 | |
|                                   llvm::alignOf<PseudoObjectExpr>());
 | |
|   return new(buffer) PseudoObjectExpr(sh, numSemanticExprs);
 | |
| }
 | |
| 
 | |
| PseudoObjectExpr::PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs)
 | |
|   : Expr(PseudoObjectExprClass, shell) {
 | |
|   PseudoObjectExprBits.NumSubExprs = numSemanticExprs + 1;
 | |
| }
 | |
| 
 | |
| PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &C, Expr *syntax,
 | |
|                                            ArrayRef<Expr*> semantics,
 | |
|                                            unsigned resultIndex) {
 | |
|   assert(syntax && "no syntactic expression!");
 | |
|   assert(semantics.size() && "no semantic expressions!");
 | |
| 
 | |
|   QualType type;
 | |
|   ExprValueKind VK;
 | |
|   if (resultIndex == NoResult) {
 | |
|     type = C.VoidTy;
 | |
|     VK = VK_RValue;
 | |
|   } else {
 | |
|     assert(resultIndex < semantics.size());
 | |
|     type = semantics[resultIndex]->getType();
 | |
|     VK = semantics[resultIndex]->getValueKind();
 | |
|     assert(semantics[resultIndex]->getObjectKind() == OK_Ordinary);
 | |
|   }
 | |
| 
 | |
|   void *buffer = C.Allocate(sizeof(PseudoObjectExpr) +
 | |
|                               (1 + semantics.size()) * sizeof(Expr*),
 | |
|                             llvm::alignOf<PseudoObjectExpr>());
 | |
|   return new(buffer) PseudoObjectExpr(type, VK, syntax, semantics,
 | |
|                                       resultIndex);
 | |
| }
 | |
| 
 | |
| PseudoObjectExpr::PseudoObjectExpr(QualType type, ExprValueKind VK,
 | |
|                                    Expr *syntax, ArrayRef<Expr*> semantics,
 | |
|                                    unsigned resultIndex)
 | |
|   : Expr(PseudoObjectExprClass, type, VK, OK_Ordinary,
 | |
|          /*filled in at end of ctor*/ false, false, false, false) {
 | |
|   PseudoObjectExprBits.NumSubExprs = semantics.size() + 1;
 | |
|   PseudoObjectExprBits.ResultIndex = resultIndex + 1;
 | |
| 
 | |
|   for (unsigned i = 0, e = semantics.size() + 1; i != e; ++i) {
 | |
|     Expr *E = (i == 0 ? syntax : semantics[i-1]);
 | |
|     getSubExprsBuffer()[i] = E;
 | |
| 
 | |
|     if (E->isTypeDependent())
 | |
|       ExprBits.TypeDependent = true;
 | |
|     if (E->isValueDependent())
 | |
|       ExprBits.ValueDependent = true;
 | |
|     if (E->isInstantiationDependent())
 | |
|       ExprBits.InstantiationDependent = true;
 | |
|     if (E->containsUnexpandedParameterPack())
 | |
|       ExprBits.ContainsUnexpandedParameterPack = true;
 | |
| 
 | |
|     if (isa<OpaqueValueExpr>(E))
 | |
|       assert(cast<OpaqueValueExpr>(E)->getSourceExpr() != 0 &&
 | |
|              "opaque-value semantic expressions for pseudo-object "
 | |
|              "operations must have sources");
 | |
|   }
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  ExprIterator.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| Expr* ExprIterator::operator[](size_t idx) { return cast<Expr>(I[idx]); }
 | |
| Expr* ExprIterator::operator*() const { return cast<Expr>(*I); }
 | |
| Expr* ExprIterator::operator->() const { return cast<Expr>(*I); }
 | |
| const Expr* ConstExprIterator::operator[](size_t idx) const {
 | |
|   return cast<Expr>(I[idx]);
 | |
| }
 | |
| const Expr* ConstExprIterator::operator*() const { return cast<Expr>(*I); }
 | |
| const Expr* ConstExprIterator::operator->() const { return cast<Expr>(*I); }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  Child Iterators for iterating over subexpressions/substatements
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // UnaryExprOrTypeTraitExpr
 | |
| Stmt::child_range UnaryExprOrTypeTraitExpr::children() {
 | |
|   // If this is of a type and the type is a VLA type (and not a typedef), the
 | |
|   // size expression of the VLA needs to be treated as an executable expression.
 | |
|   // Why isn't this weirdness documented better in StmtIterator?
 | |
|   if (isArgumentType()) {
 | |
|     if (const VariableArrayType* T = dyn_cast<VariableArrayType>(
 | |
|                                    getArgumentType().getTypePtr()))
 | |
|       return child_range(child_iterator(T), child_iterator());
 | |
|     return child_range();
 | |
|   }
 | |
|   return child_range(&Argument.Ex, &Argument.Ex + 1);
 | |
| }
 | |
| 
 | |
| // ObjCMessageExpr
 | |
| Stmt::child_range ObjCMessageExpr::children() {
 | |
|   Stmt **begin;
 | |
|   if (getReceiverKind() == Instance)
 | |
|     begin = reinterpret_cast<Stmt **>(this + 1);
 | |
|   else
 | |
|     begin = reinterpret_cast<Stmt **>(getArgs());
 | |
|   return child_range(begin,
 | |
|                      reinterpret_cast<Stmt **>(getArgs() + getNumArgs()));
 | |
| }
 | |
| 
 | |
| ObjCArrayLiteral::ObjCArrayLiteral(ArrayRef<Expr *> Elements, 
 | |
|                                    QualType T, ObjCMethodDecl *Method,
 | |
|                                    SourceRange SR)
 | |
|   : Expr(ObjCArrayLiteralClass, T, VK_RValue, OK_Ordinary, 
 | |
|          false, false, false, false), 
 | |
|     NumElements(Elements.size()), Range(SR), ArrayWithObjectsMethod(Method)
 | |
| {
 | |
|   Expr **SaveElements = getElements();
 | |
|   for (unsigned I = 0, N = Elements.size(); I != N; ++I) {
 | |
|     if (Elements[I]->isTypeDependent() || Elements[I]->isValueDependent())
 | |
|       ExprBits.ValueDependent = true;
 | |
|     if (Elements[I]->isInstantiationDependent())
 | |
|       ExprBits.InstantiationDependent = true;
 | |
|     if (Elements[I]->containsUnexpandedParameterPack())
 | |
|       ExprBits.ContainsUnexpandedParameterPack = true;
 | |
|     
 | |
|     SaveElements[I] = Elements[I];
 | |
|   }
 | |
| }
 | |
| 
 | |
| ObjCArrayLiteral *ObjCArrayLiteral::Create(const ASTContext &C,
 | |
|                                            ArrayRef<Expr *> Elements,
 | |
|                                            QualType T, ObjCMethodDecl * Method,
 | |
|                                            SourceRange SR) {
 | |
|   void *Mem = C.Allocate(sizeof(ObjCArrayLiteral) 
 | |
|                          + Elements.size() * sizeof(Expr *));
 | |
|   return new (Mem) ObjCArrayLiteral(Elements, T, Method, SR);
 | |
| }
 | |
| 
 | |
| ObjCArrayLiteral *ObjCArrayLiteral::CreateEmpty(const ASTContext &C,
 | |
|                                                 unsigned NumElements) {
 | |
|   
 | |
|   void *Mem = C.Allocate(sizeof(ObjCArrayLiteral) 
 | |
|                          + NumElements * sizeof(Expr *));
 | |
|   return new (Mem) ObjCArrayLiteral(EmptyShell(), NumElements);
 | |
| }
 | |
| 
 | |
| ObjCDictionaryLiteral::ObjCDictionaryLiteral(
 | |
|                                              ArrayRef<ObjCDictionaryElement> VK, 
 | |
|                                              bool HasPackExpansions,
 | |
|                                              QualType T, ObjCMethodDecl *method,
 | |
|                                              SourceRange SR)
 | |
|   : Expr(ObjCDictionaryLiteralClass, T, VK_RValue, OK_Ordinary, false, false,
 | |
|          false, false),
 | |
|     NumElements(VK.size()), HasPackExpansions(HasPackExpansions), Range(SR), 
 | |
|     DictWithObjectsMethod(method)
 | |
| {
 | |
|   KeyValuePair *KeyValues = getKeyValues();
 | |
|   ExpansionData *Expansions = getExpansionData();
 | |
|   for (unsigned I = 0; I < NumElements; I++) {
 | |
|     if (VK[I].Key->isTypeDependent() || VK[I].Key->isValueDependent() ||
 | |
|         VK[I].Value->isTypeDependent() || VK[I].Value->isValueDependent())
 | |
|       ExprBits.ValueDependent = true;
 | |
|     if (VK[I].Key->isInstantiationDependent() ||
 | |
|         VK[I].Value->isInstantiationDependent())
 | |
|       ExprBits.InstantiationDependent = true;
 | |
|     if (VK[I].EllipsisLoc.isInvalid() &&
 | |
|         (VK[I].Key->containsUnexpandedParameterPack() ||
 | |
|          VK[I].Value->containsUnexpandedParameterPack()))
 | |
|       ExprBits.ContainsUnexpandedParameterPack = true;
 | |
| 
 | |
|     KeyValues[I].Key = VK[I].Key;
 | |
|     KeyValues[I].Value = VK[I].Value; 
 | |
|     if (Expansions) {
 | |
|       Expansions[I].EllipsisLoc = VK[I].EllipsisLoc;
 | |
|       if (VK[I].NumExpansions)
 | |
|         Expansions[I].NumExpansionsPlusOne = *VK[I].NumExpansions + 1;
 | |
|       else
 | |
|         Expansions[I].NumExpansionsPlusOne = 0;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| ObjCDictionaryLiteral *
 | |
| ObjCDictionaryLiteral::Create(const ASTContext &C,
 | |
|                               ArrayRef<ObjCDictionaryElement> VK, 
 | |
|                               bool HasPackExpansions,
 | |
|                               QualType T, ObjCMethodDecl *method,
 | |
|                               SourceRange SR) {
 | |
|   unsigned ExpansionsSize = 0;
 | |
|   if (HasPackExpansions)
 | |
|     ExpansionsSize = sizeof(ExpansionData) * VK.size();
 | |
|     
 | |
|   void *Mem = C.Allocate(sizeof(ObjCDictionaryLiteral) + 
 | |
|                          sizeof(KeyValuePair) * VK.size() + ExpansionsSize);
 | |
|   return new (Mem) ObjCDictionaryLiteral(VK, HasPackExpansions, T, method, SR);
 | |
| }
 | |
| 
 | |
| ObjCDictionaryLiteral *
 | |
| ObjCDictionaryLiteral::CreateEmpty(const ASTContext &C, unsigned NumElements,
 | |
|                                    bool HasPackExpansions) {
 | |
|   unsigned ExpansionsSize = 0;
 | |
|   if (HasPackExpansions)
 | |
|     ExpansionsSize = sizeof(ExpansionData) * NumElements;
 | |
|   void *Mem = C.Allocate(sizeof(ObjCDictionaryLiteral) + 
 | |
|                          sizeof(KeyValuePair) * NumElements + ExpansionsSize);
 | |
|   return new (Mem) ObjCDictionaryLiteral(EmptyShell(), NumElements, 
 | |
|                                          HasPackExpansions);
 | |
| }
 | |
| 
 | |
| ObjCSubscriptRefExpr *ObjCSubscriptRefExpr::Create(const ASTContext &C,
 | |
|                                                    Expr *base,
 | |
|                                                    Expr *key, QualType T, 
 | |
|                                                    ObjCMethodDecl *getMethod,
 | |
|                                                    ObjCMethodDecl *setMethod, 
 | |
|                                                    SourceLocation RB) {
 | |
|   void *Mem = C.Allocate(sizeof(ObjCSubscriptRefExpr));
 | |
|   return new (Mem) ObjCSubscriptRefExpr(base, key, T, VK_LValue, 
 | |
|                                         OK_ObjCSubscript,
 | |
|                                         getMethod, setMethod, RB);
 | |
| }
 | |
| 
 | |
| AtomicExpr::AtomicExpr(SourceLocation BLoc, ArrayRef<Expr*> args,
 | |
|                        QualType t, AtomicOp op, SourceLocation RP)
 | |
|   : Expr(AtomicExprClass, t, VK_RValue, OK_Ordinary,
 | |
|          false, false, false, false),
 | |
|     NumSubExprs(args.size()), BuiltinLoc(BLoc), RParenLoc(RP), Op(op)
 | |
| {
 | |
|   assert(args.size() == getNumSubExprs(op) && "wrong number of subexpressions");
 | |
|   for (unsigned i = 0; i != args.size(); i++) {
 | |
|     if (args[i]->isTypeDependent())
 | |
|       ExprBits.TypeDependent = true;
 | |
|     if (args[i]->isValueDependent())
 | |
|       ExprBits.ValueDependent = true;
 | |
|     if (args[i]->isInstantiationDependent())
 | |
|       ExprBits.InstantiationDependent = true;
 | |
|     if (args[i]->containsUnexpandedParameterPack())
 | |
|       ExprBits.ContainsUnexpandedParameterPack = true;
 | |
| 
 | |
|     SubExprs[i] = args[i];
 | |
|   }
 | |
| }
 | |
| 
 | |
| unsigned AtomicExpr::getNumSubExprs(AtomicOp Op) {
 | |
|   switch (Op) {
 | |
|   case AO__c11_atomic_init:
 | |
|   case AO__c11_atomic_load:
 | |
|   case AO__atomic_load_n:
 | |
|     return 2;
 | |
| 
 | |
|   case AO__c11_atomic_store:
 | |
|   case AO__c11_atomic_exchange:
 | |
|   case AO__atomic_load:
 | |
|   case AO__atomic_store:
 | |
|   case AO__atomic_store_n:
 | |
|   case AO__atomic_exchange_n:
 | |
|   case AO__c11_atomic_fetch_add:
 | |
|   case AO__c11_atomic_fetch_sub:
 | |
|   case AO__c11_atomic_fetch_and:
 | |
|   case AO__c11_atomic_fetch_or:
 | |
|   case AO__c11_atomic_fetch_xor:
 | |
|   case AO__atomic_fetch_add:
 | |
|   case AO__atomic_fetch_sub:
 | |
|   case AO__atomic_fetch_and:
 | |
|   case AO__atomic_fetch_or:
 | |
|   case AO__atomic_fetch_xor:
 | |
|   case AO__atomic_fetch_nand:
 | |
|   case AO__atomic_add_fetch:
 | |
|   case AO__atomic_sub_fetch:
 | |
|   case AO__atomic_and_fetch:
 | |
|   case AO__atomic_or_fetch:
 | |
|   case AO__atomic_xor_fetch:
 | |
|   case AO__atomic_nand_fetch:
 | |
|     return 3;
 | |
| 
 | |
|   case AO__atomic_exchange:
 | |
|     return 4;
 | |
| 
 | |
|   case AO__c11_atomic_compare_exchange_strong:
 | |
|   case AO__c11_atomic_compare_exchange_weak:
 | |
|     return 5;
 | |
| 
 | |
|   case AO__atomic_compare_exchange:
 | |
|   case AO__atomic_compare_exchange_n:
 | |
|     return 6;
 | |
|   }
 | |
|   llvm_unreachable("unknown atomic op");
 | |
| }
 | 
