7380 lines
		
	
	
		
			269 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			7380 lines
		
	
	
		
			269 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| //  This file implements extra semantic analysis beyond what is enforced
 | |
| //  by the C type system.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "clang/Sema/SemaInternal.h"
 | |
| #include "clang/AST/ASTContext.h"
 | |
| #include "clang/AST/CharUnits.h"
 | |
| #include "clang/AST/DeclCXX.h"
 | |
| #include "clang/AST/DeclObjC.h"
 | |
| #include "clang/AST/EvaluatedExprVisitor.h"
 | |
| #include "clang/AST/Expr.h"
 | |
| #include "clang/AST/ExprCXX.h"
 | |
| #include "clang/AST/ExprObjC.h"
 | |
| #include "clang/AST/StmtCXX.h"
 | |
| #include "clang/AST/StmtObjC.h"
 | |
| #include "clang/Analysis/Analyses/FormatString.h"
 | |
| #include "clang/Basic/CharInfo.h"
 | |
| #include "clang/Basic/TargetBuiltins.h"
 | |
| #include "clang/Basic/TargetInfo.h"
 | |
| #include "clang/Lex/Preprocessor.h"
 | |
| #include "clang/Sema/Initialization.h"
 | |
| #include "clang/Sema/Lookup.h"
 | |
| #include "clang/Sema/ScopeInfo.h"
 | |
| #include "clang/Sema/Sema.h"
 | |
| #include "llvm/ADT/SmallBitVector.h"
 | |
| #include "llvm/ADT/SmallString.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/Support/ConvertUTF.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include <limits>
 | |
| using namespace clang;
 | |
| using namespace sema;
 | |
| 
 | |
| SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
 | |
|                                                     unsigned ByteNo) const {
 | |
|   return SL->getLocationOfByte(ByteNo, PP.getSourceManager(),
 | |
|                                PP.getLangOpts(), PP.getTargetInfo());
 | |
| }
 | |
| 
 | |
| /// Checks that a call expression's argument count is the desired number.
 | |
| /// This is useful when doing custom type-checking.  Returns true on error.
 | |
| static bool checkArgCount(Sema &S, CallExpr *call, unsigned desiredArgCount) {
 | |
|   unsigned argCount = call->getNumArgs();
 | |
|   if (argCount == desiredArgCount) return false;
 | |
| 
 | |
|   if (argCount < desiredArgCount)
 | |
|     return S.Diag(call->getLocEnd(), diag::err_typecheck_call_too_few_args)
 | |
|         << 0 /*function call*/ << desiredArgCount << argCount
 | |
|         << call->getSourceRange();
 | |
| 
 | |
|   // Highlight all the excess arguments.
 | |
|   SourceRange range(call->getArg(desiredArgCount)->getLocStart(),
 | |
|                     call->getArg(argCount - 1)->getLocEnd());
 | |
|     
 | |
|   return S.Diag(range.getBegin(), diag::err_typecheck_call_too_many_args)
 | |
|     << 0 /*function call*/ << desiredArgCount << argCount
 | |
|     << call->getArg(1)->getSourceRange();
 | |
| }
 | |
| 
 | |
| /// Check that the first argument to __builtin_annotation is an integer
 | |
| /// and the second argument is a non-wide string literal.
 | |
| static bool SemaBuiltinAnnotation(Sema &S, CallExpr *TheCall) {
 | |
|   if (checkArgCount(S, TheCall, 2))
 | |
|     return true;
 | |
| 
 | |
|   // First argument should be an integer.
 | |
|   Expr *ValArg = TheCall->getArg(0);
 | |
|   QualType Ty = ValArg->getType();
 | |
|   if (!Ty->isIntegerType()) {
 | |
|     S.Diag(ValArg->getLocStart(), diag::err_builtin_annotation_first_arg)
 | |
|       << ValArg->getSourceRange();
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Second argument should be a constant string.
 | |
|   Expr *StrArg = TheCall->getArg(1)->IgnoreParenCasts();
 | |
|   StringLiteral *Literal = dyn_cast<StringLiteral>(StrArg);
 | |
|   if (!Literal || !Literal->isAscii()) {
 | |
|     S.Diag(StrArg->getLocStart(), diag::err_builtin_annotation_second_arg)
 | |
|       << StrArg->getSourceRange();
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   TheCall->setType(Ty);
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Check that the argument to __builtin_addressof is a glvalue, and set the
 | |
| /// result type to the corresponding pointer type.
 | |
| static bool SemaBuiltinAddressof(Sema &S, CallExpr *TheCall) {
 | |
|   if (checkArgCount(S, TheCall, 1))
 | |
|     return true;
 | |
| 
 | |
|   ExprResult Arg(S.Owned(TheCall->getArg(0)));
 | |
|   QualType ResultType = S.CheckAddressOfOperand(Arg, TheCall->getLocStart());
 | |
|   if (ResultType.isNull())
 | |
|     return true;
 | |
| 
 | |
|   TheCall->setArg(0, Arg.take());
 | |
|   TheCall->setType(ResultType);
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| ExprResult
 | |
| Sema::CheckBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
 | |
|   ExprResult TheCallResult(Owned(TheCall));
 | |
| 
 | |
|   // Find out if any arguments are required to be integer constant expressions.
 | |
|   unsigned ICEArguments = 0;
 | |
|   ASTContext::GetBuiltinTypeError Error;
 | |
|   Context.GetBuiltinType(BuiltinID, Error, &ICEArguments);
 | |
|   if (Error != ASTContext::GE_None)
 | |
|     ICEArguments = 0;  // Don't diagnose previously diagnosed errors.
 | |
|   
 | |
|   // If any arguments are required to be ICE's, check and diagnose.
 | |
|   for (unsigned ArgNo = 0; ICEArguments != 0; ++ArgNo) {
 | |
|     // Skip arguments not required to be ICE's.
 | |
|     if ((ICEArguments & (1 << ArgNo)) == 0) continue;
 | |
|     
 | |
|     llvm::APSInt Result;
 | |
|     if (SemaBuiltinConstantArg(TheCall, ArgNo, Result))
 | |
|       return true;
 | |
|     ICEArguments &= ~(1 << ArgNo);
 | |
|   }
 | |
|   
 | |
|   switch (BuiltinID) {
 | |
|   case Builtin::BI__builtin___CFStringMakeConstantString:
 | |
|     assert(TheCall->getNumArgs() == 1 &&
 | |
|            "Wrong # arguments to builtin CFStringMakeConstantString");
 | |
|     if (CheckObjCString(TheCall->getArg(0)))
 | |
|       return ExprError();
 | |
|     break;
 | |
|   case Builtin::BI__builtin_stdarg_start:
 | |
|   case Builtin::BI__builtin_va_start:
 | |
|     if (SemaBuiltinVAStart(TheCall))
 | |
|       return ExprError();
 | |
|     break;
 | |
|   case Builtin::BI__builtin_isgreater:
 | |
|   case Builtin::BI__builtin_isgreaterequal:
 | |
|   case Builtin::BI__builtin_isless:
 | |
|   case Builtin::BI__builtin_islessequal:
 | |
|   case Builtin::BI__builtin_islessgreater:
 | |
|   case Builtin::BI__builtin_isunordered:
 | |
|     if (SemaBuiltinUnorderedCompare(TheCall))
 | |
|       return ExprError();
 | |
|     break;
 | |
|   case Builtin::BI__builtin_fpclassify:
 | |
|     if (SemaBuiltinFPClassification(TheCall, 6))
 | |
|       return ExprError();
 | |
|     break;
 | |
|   case Builtin::BI__builtin_isfinite:
 | |
|   case Builtin::BI__builtin_isinf:
 | |
|   case Builtin::BI__builtin_isinf_sign:
 | |
|   case Builtin::BI__builtin_isnan:
 | |
|   case Builtin::BI__builtin_isnormal:
 | |
|     if (SemaBuiltinFPClassification(TheCall, 1))
 | |
|       return ExprError();
 | |
|     break;
 | |
|   case Builtin::BI__builtin_shufflevector:
 | |
|     return SemaBuiltinShuffleVector(TheCall);
 | |
|     // TheCall will be freed by the smart pointer here, but that's fine, since
 | |
|     // SemaBuiltinShuffleVector guts it, but then doesn't release it.
 | |
|   case Builtin::BI__builtin_prefetch:
 | |
|     if (SemaBuiltinPrefetch(TheCall))
 | |
|       return ExprError();
 | |
|     break;
 | |
|   case Builtin::BI__builtin_object_size:
 | |
|     if (SemaBuiltinObjectSize(TheCall))
 | |
|       return ExprError();
 | |
|     break;
 | |
|   case Builtin::BI__builtin_longjmp:
 | |
|     if (SemaBuiltinLongjmp(TheCall))
 | |
|       return ExprError();
 | |
|     break;
 | |
| 
 | |
|   case Builtin::BI__builtin_classify_type:
 | |
|     if (checkArgCount(*this, TheCall, 1)) return true;
 | |
|     TheCall->setType(Context.IntTy);
 | |
|     break;
 | |
|   case Builtin::BI__builtin_constant_p:
 | |
|     if (checkArgCount(*this, TheCall, 1)) return true;
 | |
|     TheCall->setType(Context.IntTy);
 | |
|     break;
 | |
|   case Builtin::BI__sync_fetch_and_add:
 | |
|   case Builtin::BI__sync_fetch_and_add_1:
 | |
|   case Builtin::BI__sync_fetch_and_add_2:
 | |
|   case Builtin::BI__sync_fetch_and_add_4:
 | |
|   case Builtin::BI__sync_fetch_and_add_8:
 | |
|   case Builtin::BI__sync_fetch_and_add_16:
 | |
|   case Builtin::BI__sync_fetch_and_sub:
 | |
|   case Builtin::BI__sync_fetch_and_sub_1:
 | |
|   case Builtin::BI__sync_fetch_and_sub_2:
 | |
|   case Builtin::BI__sync_fetch_and_sub_4:
 | |
|   case Builtin::BI__sync_fetch_and_sub_8:
 | |
|   case Builtin::BI__sync_fetch_and_sub_16:
 | |
|   case Builtin::BI__sync_fetch_and_or:
 | |
|   case Builtin::BI__sync_fetch_and_or_1:
 | |
|   case Builtin::BI__sync_fetch_and_or_2:
 | |
|   case Builtin::BI__sync_fetch_and_or_4:
 | |
|   case Builtin::BI__sync_fetch_and_or_8:
 | |
|   case Builtin::BI__sync_fetch_and_or_16:
 | |
|   case Builtin::BI__sync_fetch_and_and:
 | |
|   case Builtin::BI__sync_fetch_and_and_1:
 | |
|   case Builtin::BI__sync_fetch_and_and_2:
 | |
|   case Builtin::BI__sync_fetch_and_and_4:
 | |
|   case Builtin::BI__sync_fetch_and_and_8:
 | |
|   case Builtin::BI__sync_fetch_and_and_16:
 | |
|   case Builtin::BI__sync_fetch_and_xor:
 | |
|   case Builtin::BI__sync_fetch_and_xor_1:
 | |
|   case Builtin::BI__sync_fetch_and_xor_2:
 | |
|   case Builtin::BI__sync_fetch_and_xor_4:
 | |
|   case Builtin::BI__sync_fetch_and_xor_8:
 | |
|   case Builtin::BI__sync_fetch_and_xor_16:
 | |
|   case Builtin::BI__sync_add_and_fetch:
 | |
|   case Builtin::BI__sync_add_and_fetch_1:
 | |
|   case Builtin::BI__sync_add_and_fetch_2:
 | |
|   case Builtin::BI__sync_add_and_fetch_4:
 | |
|   case Builtin::BI__sync_add_and_fetch_8:
 | |
|   case Builtin::BI__sync_add_and_fetch_16:
 | |
|   case Builtin::BI__sync_sub_and_fetch:
 | |
|   case Builtin::BI__sync_sub_and_fetch_1:
 | |
|   case Builtin::BI__sync_sub_and_fetch_2:
 | |
|   case Builtin::BI__sync_sub_and_fetch_4:
 | |
|   case Builtin::BI__sync_sub_and_fetch_8:
 | |
|   case Builtin::BI__sync_sub_and_fetch_16:
 | |
|   case Builtin::BI__sync_and_and_fetch:
 | |
|   case Builtin::BI__sync_and_and_fetch_1:
 | |
|   case Builtin::BI__sync_and_and_fetch_2:
 | |
|   case Builtin::BI__sync_and_and_fetch_4:
 | |
|   case Builtin::BI__sync_and_and_fetch_8:
 | |
|   case Builtin::BI__sync_and_and_fetch_16:
 | |
|   case Builtin::BI__sync_or_and_fetch:
 | |
|   case Builtin::BI__sync_or_and_fetch_1:
 | |
|   case Builtin::BI__sync_or_and_fetch_2:
 | |
|   case Builtin::BI__sync_or_and_fetch_4:
 | |
|   case Builtin::BI__sync_or_and_fetch_8:
 | |
|   case Builtin::BI__sync_or_and_fetch_16:
 | |
|   case Builtin::BI__sync_xor_and_fetch:
 | |
|   case Builtin::BI__sync_xor_and_fetch_1:
 | |
|   case Builtin::BI__sync_xor_and_fetch_2:
 | |
|   case Builtin::BI__sync_xor_and_fetch_4:
 | |
|   case Builtin::BI__sync_xor_and_fetch_8:
 | |
|   case Builtin::BI__sync_xor_and_fetch_16:
 | |
|   case Builtin::BI__sync_val_compare_and_swap:
 | |
|   case Builtin::BI__sync_val_compare_and_swap_1:
 | |
|   case Builtin::BI__sync_val_compare_and_swap_2:
 | |
|   case Builtin::BI__sync_val_compare_and_swap_4:
 | |
|   case Builtin::BI__sync_val_compare_and_swap_8:
 | |
|   case Builtin::BI__sync_val_compare_and_swap_16:
 | |
|   case Builtin::BI__sync_bool_compare_and_swap:
 | |
|   case Builtin::BI__sync_bool_compare_and_swap_1:
 | |
|   case Builtin::BI__sync_bool_compare_and_swap_2:
 | |
|   case Builtin::BI__sync_bool_compare_and_swap_4:
 | |
|   case Builtin::BI__sync_bool_compare_and_swap_8:
 | |
|   case Builtin::BI__sync_bool_compare_and_swap_16:
 | |
|   case Builtin::BI__sync_lock_test_and_set:
 | |
|   case Builtin::BI__sync_lock_test_and_set_1:
 | |
|   case Builtin::BI__sync_lock_test_and_set_2:
 | |
|   case Builtin::BI__sync_lock_test_and_set_4:
 | |
|   case Builtin::BI__sync_lock_test_and_set_8:
 | |
|   case Builtin::BI__sync_lock_test_and_set_16:
 | |
|   case Builtin::BI__sync_lock_release:
 | |
|   case Builtin::BI__sync_lock_release_1:
 | |
|   case Builtin::BI__sync_lock_release_2:
 | |
|   case Builtin::BI__sync_lock_release_4:
 | |
|   case Builtin::BI__sync_lock_release_8:
 | |
|   case Builtin::BI__sync_lock_release_16:
 | |
|   case Builtin::BI__sync_swap:
 | |
|   case Builtin::BI__sync_swap_1:
 | |
|   case Builtin::BI__sync_swap_2:
 | |
|   case Builtin::BI__sync_swap_4:
 | |
|   case Builtin::BI__sync_swap_8:
 | |
|   case Builtin::BI__sync_swap_16:
 | |
|     return SemaBuiltinAtomicOverloaded(TheCallResult);
 | |
| #define BUILTIN(ID, TYPE, ATTRS)
 | |
| #define ATOMIC_BUILTIN(ID, TYPE, ATTRS) \
 | |
|   case Builtin::BI##ID: \
 | |
|     return SemaAtomicOpsOverloaded(TheCallResult, AtomicExpr::AO##ID);
 | |
| #include "clang/Basic/Builtins.def"
 | |
|   case Builtin::BI__builtin_annotation:
 | |
|     if (SemaBuiltinAnnotation(*this, TheCall))
 | |
|       return ExprError();
 | |
|     break;
 | |
|   case Builtin::BI__builtin_addressof:
 | |
|     if (SemaBuiltinAddressof(*this, TheCall))
 | |
|       return ExprError();
 | |
|     break;
 | |
|   }
 | |
|   
 | |
|   // Since the target specific builtins for each arch overlap, only check those
 | |
|   // of the arch we are compiling for.
 | |
|   if (BuiltinID >= Builtin::FirstTSBuiltin) {
 | |
|     switch (Context.getTargetInfo().getTriple().getArch()) {
 | |
|       case llvm::Triple::arm:
 | |
|       case llvm::Triple::thumb:
 | |
|         if (CheckARMBuiltinFunctionCall(BuiltinID, TheCall))
 | |
|           return ExprError();
 | |
|         break;
 | |
|       case llvm::Triple::aarch64:
 | |
|         if (CheckAArch64BuiltinFunctionCall(BuiltinID, TheCall))
 | |
|           return ExprError();
 | |
|         break;
 | |
|       case llvm::Triple::mips:
 | |
|       case llvm::Triple::mipsel:
 | |
|       case llvm::Triple::mips64:
 | |
|       case llvm::Triple::mips64el:
 | |
|         if (CheckMipsBuiltinFunctionCall(BuiltinID, TheCall))
 | |
|           return ExprError();
 | |
|         break;
 | |
|       default:
 | |
|         break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return TheCallResult;
 | |
| }
 | |
| 
 | |
| // Get the valid immediate range for the specified NEON type code.
 | |
| static unsigned RFT(unsigned t, bool shift = false) {
 | |
|   NeonTypeFlags Type(t);
 | |
|   int IsQuad = Type.isQuad();
 | |
|   switch (Type.getEltType()) {
 | |
|   case NeonTypeFlags::Int8:
 | |
|   case NeonTypeFlags::Poly8:
 | |
|     return shift ? 7 : (8 << IsQuad) - 1;
 | |
|   case NeonTypeFlags::Int16:
 | |
|   case NeonTypeFlags::Poly16:
 | |
|     return shift ? 15 : (4 << IsQuad) - 1;
 | |
|   case NeonTypeFlags::Int32:
 | |
|     return shift ? 31 : (2 << IsQuad) - 1;
 | |
|   case NeonTypeFlags::Int64:
 | |
|   case NeonTypeFlags::Poly64:
 | |
|     return shift ? 63 : (1 << IsQuad) - 1;
 | |
|   case NeonTypeFlags::Float16:
 | |
|     assert(!shift && "cannot shift float types!");
 | |
|     return (4 << IsQuad) - 1;
 | |
|   case NeonTypeFlags::Float32:
 | |
|     assert(!shift && "cannot shift float types!");
 | |
|     return (2 << IsQuad) - 1;
 | |
|   case NeonTypeFlags::Float64:
 | |
|     assert(!shift && "cannot shift float types!");
 | |
|     return (1 << IsQuad) - 1;
 | |
|   }
 | |
|   llvm_unreachable("Invalid NeonTypeFlag!");
 | |
| }
 | |
| 
 | |
| /// getNeonEltType - Return the QualType corresponding to the elements of
 | |
| /// the vector type specified by the NeonTypeFlags.  This is used to check
 | |
| /// the pointer arguments for Neon load/store intrinsics.
 | |
| static QualType getNeonEltType(NeonTypeFlags Flags, ASTContext &Context,
 | |
|                                bool IsAArch64) {
 | |
|   switch (Flags.getEltType()) {
 | |
|   case NeonTypeFlags::Int8:
 | |
|     return Flags.isUnsigned() ? Context.UnsignedCharTy : Context.SignedCharTy;
 | |
|   case NeonTypeFlags::Int16:
 | |
|     return Flags.isUnsigned() ? Context.UnsignedShortTy : Context.ShortTy;
 | |
|   case NeonTypeFlags::Int32:
 | |
|     return Flags.isUnsigned() ? Context.UnsignedIntTy : Context.IntTy;
 | |
|   case NeonTypeFlags::Int64:
 | |
|     return Flags.isUnsigned() ? Context.UnsignedLongLongTy : Context.LongLongTy;
 | |
|   case NeonTypeFlags::Poly8:
 | |
|     return IsAArch64 ? Context.UnsignedCharTy : Context.SignedCharTy;
 | |
|   case NeonTypeFlags::Poly16:
 | |
|     return IsAArch64 ? Context.UnsignedShortTy : Context.ShortTy;
 | |
|   case NeonTypeFlags::Poly64:
 | |
|     return Context.UnsignedLongLongTy;
 | |
|   case NeonTypeFlags::Float16:
 | |
|     return Context.HalfTy;
 | |
|   case NeonTypeFlags::Float32:
 | |
|     return Context.FloatTy;
 | |
|   case NeonTypeFlags::Float64:
 | |
|     return Context.DoubleTy;
 | |
|   }
 | |
|   llvm_unreachable("Invalid NeonTypeFlag!");
 | |
| }
 | |
| 
 | |
| bool Sema::CheckAArch64BuiltinFunctionCall(unsigned BuiltinID,
 | |
|                                            CallExpr *TheCall) {
 | |
| 
 | |
|   llvm::APSInt Result;
 | |
| 
 | |
|   uint64_t mask = 0;
 | |
|   unsigned TV = 0;
 | |
|   int PtrArgNum = -1;
 | |
|   bool HasConstPtr = false;
 | |
|   switch (BuiltinID) {
 | |
| #define GET_NEON_AARCH64_OVERLOAD_CHECK
 | |
| #include "clang/Basic/arm_neon.inc"
 | |
| #undef GET_NEON_AARCH64_OVERLOAD_CHECK
 | |
|   }
 | |
| 
 | |
|   // For NEON intrinsics which are overloaded on vector element type, validate
 | |
|   // the immediate which specifies which variant to emit.
 | |
|   unsigned ImmArg = TheCall->getNumArgs() - 1;
 | |
|   if (mask) {
 | |
|     if (SemaBuiltinConstantArg(TheCall, ImmArg, Result))
 | |
|       return true;
 | |
| 
 | |
|     TV = Result.getLimitedValue(64);
 | |
|     if ((TV > 63) || (mask & (1ULL << TV)) == 0)
 | |
|       return Diag(TheCall->getLocStart(), diag::err_invalid_neon_type_code)
 | |
|              << TheCall->getArg(ImmArg)->getSourceRange();
 | |
|   }
 | |
| 
 | |
|   if (PtrArgNum >= 0) {
 | |
|     // Check that pointer arguments have the specified type.
 | |
|     Expr *Arg = TheCall->getArg(PtrArgNum);
 | |
|     if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg))
 | |
|       Arg = ICE->getSubExpr();
 | |
|     ExprResult RHS = DefaultFunctionArrayLvalueConversion(Arg);
 | |
|     QualType RHSTy = RHS.get()->getType();
 | |
|     QualType EltTy = getNeonEltType(NeonTypeFlags(TV), Context, true);
 | |
|     if (HasConstPtr)
 | |
|       EltTy = EltTy.withConst();
 | |
|     QualType LHSTy = Context.getPointerType(EltTy);
 | |
|     AssignConvertType ConvTy;
 | |
|     ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
 | |
|     if (RHS.isInvalid())
 | |
|       return true;
 | |
|     if (DiagnoseAssignmentResult(ConvTy, Arg->getLocStart(), LHSTy, RHSTy,
 | |
|                                  RHS.get(), AA_Assigning))
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   // For NEON intrinsics which take an immediate value as part of the
 | |
|   // instruction, range check them here.
 | |
|   unsigned i = 0, l = 0, u = 0;
 | |
|   switch (BuiltinID) {
 | |
|   default:
 | |
|     return false;
 | |
| #define GET_NEON_AARCH64_IMMEDIATE_CHECK
 | |
| #include "clang/Basic/arm_neon.inc"
 | |
| #undef GET_NEON_AARCH64_IMMEDIATE_CHECK
 | |
|   }
 | |
|   ;
 | |
| 
 | |
|   // We can't check the value of a dependent argument.
 | |
|   if (TheCall->getArg(i)->isTypeDependent() ||
 | |
|       TheCall->getArg(i)->isValueDependent())
 | |
|     return false;
 | |
| 
 | |
|   // Check that the immediate argument is actually a constant.
 | |
|   if (SemaBuiltinConstantArg(TheCall, i, Result))
 | |
|     return true;
 | |
| 
 | |
|   // Range check against the upper/lower values for this isntruction.
 | |
|   unsigned Val = Result.getZExtValue();
 | |
|   if (Val < l || Val > (u + l))
 | |
|     return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
 | |
|            << l << u + l << TheCall->getArg(i)->getSourceRange();
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool Sema::CheckARMBuiltinExclusiveCall(unsigned BuiltinID, CallExpr *TheCall) {
 | |
|   assert((BuiltinID == ARM::BI__builtin_arm_ldrex ||
 | |
|           BuiltinID == ARM::BI__builtin_arm_strex) &&
 | |
|          "unexpected ARM builtin");
 | |
|   bool IsLdrex = BuiltinID == ARM::BI__builtin_arm_ldrex;
 | |
| 
 | |
|   DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
 | |
| 
 | |
|   // Ensure that we have the proper number of arguments.
 | |
|   if (checkArgCount(*this, TheCall, IsLdrex ? 1 : 2))
 | |
|     return true;
 | |
| 
 | |
|   // Inspect the pointer argument of the atomic builtin.  This should always be
 | |
|   // a pointer type, whose element is an integral scalar or pointer type.
 | |
|   // Because it is a pointer type, we don't have to worry about any implicit
 | |
|   // casts here.
 | |
|   Expr *PointerArg = TheCall->getArg(IsLdrex ? 0 : 1);
 | |
|   ExprResult PointerArgRes = DefaultFunctionArrayLvalueConversion(PointerArg);
 | |
|   if (PointerArgRes.isInvalid())
 | |
|     return true;
 | |
|   PointerArg = PointerArgRes.take();
 | |
| 
 | |
|   const PointerType *pointerType = PointerArg->getType()->getAs<PointerType>();
 | |
|   if (!pointerType) {
 | |
|     Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
 | |
|       << PointerArg->getType() << PointerArg->getSourceRange();
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // ldrex takes a "const volatile T*" and strex takes a "volatile T*". Our next
 | |
|   // task is to insert the appropriate casts into the AST. First work out just
 | |
|   // what the appropriate type is.
 | |
|   QualType ValType = pointerType->getPointeeType();
 | |
|   QualType AddrType = ValType.getUnqualifiedType().withVolatile();
 | |
|   if (IsLdrex)
 | |
|     AddrType.addConst();
 | |
| 
 | |
|   // Issue a warning if the cast is dodgy.
 | |
|   CastKind CastNeeded = CK_NoOp;
 | |
|   if (!AddrType.isAtLeastAsQualifiedAs(ValType)) {
 | |
|     CastNeeded = CK_BitCast;
 | |
|     Diag(DRE->getLocStart(), diag::ext_typecheck_convert_discards_qualifiers)
 | |
|       << PointerArg->getType()
 | |
|       << Context.getPointerType(AddrType)
 | |
|       << AA_Passing << PointerArg->getSourceRange();
 | |
|   }
 | |
| 
 | |
|   // Finally, do the cast and replace the argument with the corrected version.
 | |
|   AddrType = Context.getPointerType(AddrType);
 | |
|   PointerArgRes = ImpCastExprToType(PointerArg, AddrType, CastNeeded);
 | |
|   if (PointerArgRes.isInvalid())
 | |
|     return true;
 | |
|   PointerArg = PointerArgRes.take();
 | |
| 
 | |
|   TheCall->setArg(IsLdrex ? 0 : 1, PointerArg);
 | |
| 
 | |
|   // In general, we allow ints, floats and pointers to be loaded and stored.
 | |
|   if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
 | |
|       !ValType->isBlockPointerType() && !ValType->isFloatingType()) {
 | |
|     Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer_intfltptr)
 | |
|       << PointerArg->getType() << PointerArg->getSourceRange();
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // But ARM doesn't have instructions to deal with 128-bit versions.
 | |
|   if (Context.getTypeSize(ValType) > 64) {
 | |
|     Diag(DRE->getLocStart(), diag::err_atomic_exclusive_builtin_pointer_size)
 | |
|       << PointerArg->getType() << PointerArg->getSourceRange();
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   switch (ValType.getObjCLifetime()) {
 | |
|   case Qualifiers::OCL_None:
 | |
|   case Qualifiers::OCL_ExplicitNone:
 | |
|     // okay
 | |
|     break;
 | |
| 
 | |
|   case Qualifiers::OCL_Weak:
 | |
|   case Qualifiers::OCL_Strong:
 | |
|   case Qualifiers::OCL_Autoreleasing:
 | |
|     Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
 | |
|       << ValType << PointerArg->getSourceRange();
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
| 
 | |
|   if (IsLdrex) {
 | |
|     TheCall->setType(ValType);
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Initialize the argument to be stored.
 | |
|   ExprResult ValArg = TheCall->getArg(0);
 | |
|   InitializedEntity Entity = InitializedEntity::InitializeParameter(
 | |
|       Context, ValType, /*consume*/ false);
 | |
|   ValArg = PerformCopyInitialization(Entity, SourceLocation(), ValArg);
 | |
|   if (ValArg.isInvalid())
 | |
|     return true;
 | |
|   TheCall->setArg(0, ValArg.get());
 | |
| 
 | |
|   // __builtin_arm_strex always returns an int. It's marked as such in the .def,
 | |
|   // but the custom checker bypasses all default analysis.
 | |
|   TheCall->setType(Context.IntTy);
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool Sema::CheckARMBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
 | |
|   llvm::APSInt Result;
 | |
| 
 | |
|   if (BuiltinID == ARM::BI__builtin_arm_ldrex ||
 | |
|       BuiltinID == ARM::BI__builtin_arm_strex) {
 | |
|     return CheckARMBuiltinExclusiveCall(BuiltinID, TheCall);
 | |
|   }
 | |
| 
 | |
|   uint64_t mask = 0;
 | |
|   unsigned TV = 0;
 | |
|   int PtrArgNum = -1;
 | |
|   bool HasConstPtr = false;
 | |
|   switch (BuiltinID) {
 | |
| #define GET_NEON_OVERLOAD_CHECK
 | |
| #include "clang/Basic/arm_neon.inc"
 | |
| #undef GET_NEON_OVERLOAD_CHECK
 | |
|   }
 | |
|   
 | |
|   // For NEON intrinsics which are overloaded on vector element type, validate
 | |
|   // the immediate which specifies which variant to emit.
 | |
|   unsigned ImmArg = TheCall->getNumArgs()-1;
 | |
|   if (mask) {
 | |
|     if (SemaBuiltinConstantArg(TheCall, ImmArg, Result))
 | |
|       return true;
 | |
|     
 | |
|     TV = Result.getLimitedValue(64);
 | |
|     if ((TV > 63) || (mask & (1ULL << TV)) == 0)
 | |
|       return Diag(TheCall->getLocStart(), diag::err_invalid_neon_type_code)
 | |
|         << TheCall->getArg(ImmArg)->getSourceRange();
 | |
|   }
 | |
| 
 | |
|   if (PtrArgNum >= 0) {
 | |
|     // Check that pointer arguments have the specified type.
 | |
|     Expr *Arg = TheCall->getArg(PtrArgNum);
 | |
|     if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg))
 | |
|       Arg = ICE->getSubExpr();
 | |
|     ExprResult RHS = DefaultFunctionArrayLvalueConversion(Arg);
 | |
|     QualType RHSTy = RHS.get()->getType();
 | |
|     QualType EltTy = getNeonEltType(NeonTypeFlags(TV), Context, false);
 | |
|     if (HasConstPtr)
 | |
|       EltTy = EltTy.withConst();
 | |
|     QualType LHSTy = Context.getPointerType(EltTy);
 | |
|     AssignConvertType ConvTy;
 | |
|     ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
 | |
|     if (RHS.isInvalid())
 | |
|       return true;
 | |
|     if (DiagnoseAssignmentResult(ConvTy, Arg->getLocStart(), LHSTy, RHSTy,
 | |
|                                  RHS.get(), AA_Assigning))
 | |
|       return true;
 | |
|   }
 | |
|   
 | |
|   // For NEON intrinsics which take an immediate value as part of the 
 | |
|   // instruction, range check them here.
 | |
|   unsigned i = 0, l = 0, u = 0;
 | |
|   switch (BuiltinID) {
 | |
|   default: return false;
 | |
|   case ARM::BI__builtin_arm_ssat: i = 1; l = 1; u = 31; break;
 | |
|   case ARM::BI__builtin_arm_usat: i = 1; u = 31; break;
 | |
|   case ARM::BI__builtin_arm_vcvtr_f:
 | |
|   case ARM::BI__builtin_arm_vcvtr_d: i = 1; u = 1; break;
 | |
|   case ARM::BI__builtin_arm_dmb:
 | |
|   case ARM::BI__builtin_arm_dsb: l = 0; u = 15; break;
 | |
| #define GET_NEON_IMMEDIATE_CHECK
 | |
| #include "clang/Basic/arm_neon.inc"
 | |
| #undef GET_NEON_IMMEDIATE_CHECK
 | |
|   };
 | |
| 
 | |
|   // We can't check the value of a dependent argument.
 | |
|   if (TheCall->getArg(i)->isTypeDependent() ||
 | |
|       TheCall->getArg(i)->isValueDependent())
 | |
|     return false;
 | |
| 
 | |
|   // Check that the immediate argument is actually a constant.
 | |
|   if (SemaBuiltinConstantArg(TheCall, i, Result))
 | |
|     return true;
 | |
| 
 | |
|   // Range check against the upper/lower values for this isntruction.
 | |
|   unsigned Val = Result.getZExtValue();
 | |
|   if (Val < l || Val > (u + l))
 | |
|     return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
 | |
|       << l << u+l << TheCall->getArg(i)->getSourceRange();
 | |
| 
 | |
|   // FIXME: VFP Intrinsics should error if VFP not present.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool Sema::CheckMipsBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
 | |
|   unsigned i = 0, l = 0, u = 0;
 | |
|   switch (BuiltinID) {
 | |
|   default: return false;
 | |
|   case Mips::BI__builtin_mips_wrdsp: i = 1; l = 0; u = 63; break;
 | |
|   case Mips::BI__builtin_mips_rddsp: i = 0; l = 0; u = 63; break;
 | |
|   case Mips::BI__builtin_mips_append: i = 2; l = 0; u = 31; break;
 | |
|   case Mips::BI__builtin_mips_balign: i = 2; l = 0; u = 3; break;
 | |
|   case Mips::BI__builtin_mips_precr_sra_ph_w: i = 2; l = 0; u = 31; break;
 | |
|   case Mips::BI__builtin_mips_precr_sra_r_ph_w: i = 2; l = 0; u = 31; break;
 | |
|   case Mips::BI__builtin_mips_prepend: i = 2; l = 0; u = 31; break;
 | |
|   };
 | |
| 
 | |
|   // We can't check the value of a dependent argument.
 | |
|   if (TheCall->getArg(i)->isTypeDependent() ||
 | |
|       TheCall->getArg(i)->isValueDependent())
 | |
|     return false;
 | |
| 
 | |
|   // Check that the immediate argument is actually a constant.
 | |
|   llvm::APSInt Result;
 | |
|   if (SemaBuiltinConstantArg(TheCall, i, Result))
 | |
|     return true;
 | |
| 
 | |
|   // Range check against the upper/lower values for this instruction.
 | |
|   unsigned Val = Result.getZExtValue();
 | |
|   if (Val < l || Val > u)
 | |
|     return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
 | |
|       << l << u << TheCall->getArg(i)->getSourceRange();
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Given a FunctionDecl's FormatAttr, attempts to populate the FomatStringInfo
 | |
| /// parameter with the FormatAttr's correct format_idx and firstDataArg.
 | |
| /// Returns true when the format fits the function and the FormatStringInfo has
 | |
| /// been populated.
 | |
| bool Sema::getFormatStringInfo(const FormatAttr *Format, bool IsCXXMember,
 | |
|                                FormatStringInfo *FSI) {
 | |
|   FSI->HasVAListArg = Format->getFirstArg() == 0;
 | |
|   FSI->FormatIdx = Format->getFormatIdx() - 1;
 | |
|   FSI->FirstDataArg = FSI->HasVAListArg ? 0 : Format->getFirstArg() - 1;
 | |
| 
 | |
|   // The way the format attribute works in GCC, the implicit this argument
 | |
|   // of member functions is counted. However, it doesn't appear in our own
 | |
|   // lists, so decrement format_idx in that case.
 | |
|   if (IsCXXMember) {
 | |
|     if(FSI->FormatIdx == 0)
 | |
|       return false;
 | |
|     --FSI->FormatIdx;
 | |
|     if (FSI->FirstDataArg != 0)
 | |
|       --FSI->FirstDataArg;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Handles the checks for format strings, non-POD arguments to vararg
 | |
| /// functions, and NULL arguments passed to non-NULL parameters.
 | |
| void Sema::checkCall(NamedDecl *FDecl,
 | |
|                      ArrayRef<const Expr *> Args,
 | |
|                      unsigned NumProtoArgs,
 | |
|                      bool IsMemberFunction,
 | |
|                      SourceLocation Loc,
 | |
|                      SourceRange Range,
 | |
|                      VariadicCallType CallType) {
 | |
|   // FIXME: We should check as much as we can in the template definition.
 | |
|   if (CurContext->isDependentContext())
 | |
|     return;
 | |
| 
 | |
|   // Printf and scanf checking.
 | |
|   llvm::SmallBitVector CheckedVarArgs;
 | |
|   if (FDecl) {
 | |
|     for (specific_attr_iterator<FormatAttr>
 | |
|              I = FDecl->specific_attr_begin<FormatAttr>(),
 | |
|              E = FDecl->specific_attr_end<FormatAttr>();
 | |
|          I != E; ++I) {
 | |
|       // Only create vector if there are format attributes.
 | |
|       CheckedVarArgs.resize(Args.size());
 | |
| 
 | |
|       CheckFormatArguments(*I, Args, IsMemberFunction, CallType, Loc, Range,
 | |
|                            CheckedVarArgs);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Refuse POD arguments that weren't caught by the format string
 | |
|   // checks above.
 | |
|   if (CallType != VariadicDoesNotApply) {
 | |
|     for (unsigned ArgIdx = NumProtoArgs; ArgIdx < Args.size(); ++ArgIdx) {
 | |
|       // Args[ArgIdx] can be null in malformed code.
 | |
|       if (const Expr *Arg = Args[ArgIdx]) {
 | |
|         if (CheckedVarArgs.empty() || !CheckedVarArgs[ArgIdx])
 | |
|           checkVariadicArgument(Arg, CallType);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (FDecl) {
 | |
|     for (specific_attr_iterator<NonNullAttr>
 | |
|            I = FDecl->specific_attr_begin<NonNullAttr>(),
 | |
|            E = FDecl->specific_attr_end<NonNullAttr>(); I != E; ++I)
 | |
|       CheckNonNullArguments(*I, Args.data(), Loc);
 | |
| 
 | |
|     // Type safety checking.
 | |
|     for (specific_attr_iterator<ArgumentWithTypeTagAttr>
 | |
|            i = FDecl->specific_attr_begin<ArgumentWithTypeTagAttr>(),
 | |
|            e = FDecl->specific_attr_end<ArgumentWithTypeTagAttr>();
 | |
|          i != e; ++i) {
 | |
|       CheckArgumentWithTypeTag(*i, Args.data());
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// CheckConstructorCall - Check a constructor call for correctness and safety
 | |
| /// properties not enforced by the C type system.
 | |
| void Sema::CheckConstructorCall(FunctionDecl *FDecl,
 | |
|                                 ArrayRef<const Expr *> Args,
 | |
|                                 const FunctionProtoType *Proto,
 | |
|                                 SourceLocation Loc) {
 | |
|   VariadicCallType CallType =
 | |
|     Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
 | |
|   checkCall(FDecl, Args, Proto->getNumArgs(),
 | |
|             /*IsMemberFunction=*/true, Loc, SourceRange(), CallType);
 | |
| }
 | |
| 
 | |
| /// CheckFunctionCall - Check a direct function call for various correctness
 | |
| /// and safety properties not strictly enforced by the C type system.
 | |
| bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall,
 | |
|                              const FunctionProtoType *Proto) {
 | |
|   bool IsMemberOperatorCall = isa<CXXOperatorCallExpr>(TheCall) &&
 | |
|                               isa<CXXMethodDecl>(FDecl);
 | |
|   bool IsMemberFunction = isa<CXXMemberCallExpr>(TheCall) ||
 | |
|                           IsMemberOperatorCall;
 | |
|   VariadicCallType CallType = getVariadicCallType(FDecl, Proto,
 | |
|                                                   TheCall->getCallee());
 | |
|   unsigned NumProtoArgs = Proto ? Proto->getNumArgs() : 0;
 | |
|   Expr** Args = TheCall->getArgs();
 | |
|   unsigned NumArgs = TheCall->getNumArgs();
 | |
|   if (IsMemberOperatorCall) {
 | |
|     // If this is a call to a member operator, hide the first argument
 | |
|     // from checkCall.
 | |
|     // FIXME: Our choice of AST representation here is less than ideal.
 | |
|     ++Args;
 | |
|     --NumArgs;
 | |
|   }
 | |
|   checkCall(FDecl, llvm::makeArrayRef<const Expr *>(Args, NumArgs),
 | |
|             NumProtoArgs,
 | |
|             IsMemberFunction, TheCall->getRParenLoc(),
 | |
|             TheCall->getCallee()->getSourceRange(), CallType);
 | |
| 
 | |
|   IdentifierInfo *FnInfo = FDecl->getIdentifier();
 | |
|   // None of the checks below are needed for functions that don't have
 | |
|   // simple names (e.g., C++ conversion functions).
 | |
|   if (!FnInfo)
 | |
|     return false;
 | |
| 
 | |
|   unsigned CMId = FDecl->getMemoryFunctionKind();
 | |
|   if (CMId == 0)
 | |
|     return false;
 | |
| 
 | |
|   // Handle memory setting and copying functions.
 | |
|   if (CMId == Builtin::BIstrlcpy || CMId == Builtin::BIstrlcat)
 | |
|     CheckStrlcpycatArguments(TheCall, FnInfo);
 | |
|   else if (CMId == Builtin::BIstrncat)
 | |
|     CheckStrncatArguments(TheCall, FnInfo);
 | |
|   else
 | |
|     CheckMemaccessArguments(TheCall, CMId, FnInfo);
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool Sema::CheckObjCMethodCall(ObjCMethodDecl *Method, SourceLocation lbrac, 
 | |
|                                ArrayRef<const Expr *> Args) {
 | |
|   VariadicCallType CallType =
 | |
|       Method->isVariadic() ? VariadicMethod : VariadicDoesNotApply;
 | |
| 
 | |
|   checkCall(Method, Args, Method->param_size(),
 | |
|             /*IsMemberFunction=*/false,
 | |
|             lbrac, Method->getSourceRange(), CallType);
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool Sema::CheckPointerCall(NamedDecl *NDecl, CallExpr *TheCall,
 | |
|                             const FunctionProtoType *Proto) {
 | |
|   const VarDecl *V = dyn_cast<VarDecl>(NDecl);
 | |
|   if (!V)
 | |
|     return false;
 | |
| 
 | |
|   QualType Ty = V->getType();
 | |
|   if (!Ty->isBlockPointerType() && !Ty->isFunctionPointerType())
 | |
|     return false;
 | |
| 
 | |
|   VariadicCallType CallType;
 | |
|   if (!Proto || !Proto->isVariadic()) {
 | |
|     CallType = VariadicDoesNotApply;
 | |
|   } else if (Ty->isBlockPointerType()) {
 | |
|     CallType = VariadicBlock;
 | |
|   } else { // Ty->isFunctionPointerType()
 | |
|     CallType = VariadicFunction;
 | |
|   }
 | |
|   unsigned NumProtoArgs = Proto ? Proto->getNumArgs() : 0;
 | |
| 
 | |
|   checkCall(NDecl,
 | |
|             llvm::makeArrayRef<const Expr *>(TheCall->getArgs(),
 | |
|                                              TheCall->getNumArgs()),
 | |
|             NumProtoArgs, /*IsMemberFunction=*/false,
 | |
|             TheCall->getRParenLoc(),
 | |
|             TheCall->getCallee()->getSourceRange(), CallType);
 | |
|   
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Checks function calls when a FunctionDecl or a NamedDecl is not available,
 | |
| /// such as function pointers returned from functions.
 | |
| bool Sema::CheckOtherCall(CallExpr *TheCall, const FunctionProtoType *Proto) {
 | |
|   VariadicCallType CallType = getVariadicCallType(/*FDecl=*/0, Proto,
 | |
|                                                   TheCall->getCallee());
 | |
|   unsigned NumProtoArgs = Proto ? Proto->getNumArgs() : 0;
 | |
| 
 | |
|   checkCall(/*FDecl=*/0,
 | |
|             llvm::makeArrayRef<const Expr *>(TheCall->getArgs(),
 | |
|                                              TheCall->getNumArgs()),
 | |
|             NumProtoArgs, /*IsMemberFunction=*/false,
 | |
|             TheCall->getRParenLoc(),
 | |
|             TheCall->getCallee()->getSourceRange(), CallType);
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| ExprResult Sema::SemaAtomicOpsOverloaded(ExprResult TheCallResult,
 | |
|                                          AtomicExpr::AtomicOp Op) {
 | |
|   CallExpr *TheCall = cast<CallExpr>(TheCallResult.get());
 | |
|   DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
 | |
| 
 | |
|   // All these operations take one of the following forms:
 | |
|   enum {
 | |
|     // C    __c11_atomic_init(A *, C)
 | |
|     Init,
 | |
|     // C    __c11_atomic_load(A *, int)
 | |
|     Load,
 | |
|     // void __atomic_load(A *, CP, int)
 | |
|     Copy,
 | |
|     // C    __c11_atomic_add(A *, M, int)
 | |
|     Arithmetic,
 | |
|     // C    __atomic_exchange_n(A *, CP, int)
 | |
|     Xchg,
 | |
|     // void __atomic_exchange(A *, C *, CP, int)
 | |
|     GNUXchg,
 | |
|     // bool __c11_atomic_compare_exchange_strong(A *, C *, CP, int, int)
 | |
|     C11CmpXchg,
 | |
|     // bool __atomic_compare_exchange(A *, C *, CP, bool, int, int)
 | |
|     GNUCmpXchg
 | |
|   } Form = Init;
 | |
|   const unsigned NumArgs[] = { 2, 2, 3, 3, 3, 4, 5, 6 };
 | |
|   const unsigned NumVals[] = { 1, 0, 1, 1, 1, 2, 2, 3 };
 | |
|   // where:
 | |
|   //   C is an appropriate type,
 | |
|   //   A is volatile _Atomic(C) for __c11 builtins and is C for GNU builtins,
 | |
|   //   CP is C for __c11 builtins and GNU _n builtins and is C * otherwise,
 | |
|   //   M is C if C is an integer, and ptrdiff_t if C is a pointer, and
 | |
|   //   the int parameters are for orderings.
 | |
| 
 | |
|   assert(AtomicExpr::AO__c11_atomic_init == 0 &&
 | |
|          AtomicExpr::AO__c11_atomic_fetch_xor + 1 == AtomicExpr::AO__atomic_load
 | |
|          && "need to update code for modified C11 atomics");
 | |
|   bool IsC11 = Op >= AtomicExpr::AO__c11_atomic_init &&
 | |
|                Op <= AtomicExpr::AO__c11_atomic_fetch_xor;
 | |
|   bool IsN = Op == AtomicExpr::AO__atomic_load_n ||
 | |
|              Op == AtomicExpr::AO__atomic_store_n ||
 | |
|              Op == AtomicExpr::AO__atomic_exchange_n ||
 | |
|              Op == AtomicExpr::AO__atomic_compare_exchange_n;
 | |
|   bool IsAddSub = false;
 | |
| 
 | |
|   switch (Op) {
 | |
|   case AtomicExpr::AO__c11_atomic_init:
 | |
|     Form = Init;
 | |
|     break;
 | |
| 
 | |
|   case AtomicExpr::AO__c11_atomic_load:
 | |
|   case AtomicExpr::AO__atomic_load_n:
 | |
|     Form = Load;
 | |
|     break;
 | |
| 
 | |
|   case AtomicExpr::AO__c11_atomic_store:
 | |
|   case AtomicExpr::AO__atomic_load:
 | |
|   case AtomicExpr::AO__atomic_store:
 | |
|   case AtomicExpr::AO__atomic_store_n:
 | |
|     Form = Copy;
 | |
|     break;
 | |
| 
 | |
|   case AtomicExpr::AO__c11_atomic_fetch_add:
 | |
|   case AtomicExpr::AO__c11_atomic_fetch_sub:
 | |
|   case AtomicExpr::AO__atomic_fetch_add:
 | |
|   case AtomicExpr::AO__atomic_fetch_sub:
 | |
|   case AtomicExpr::AO__atomic_add_fetch:
 | |
|   case AtomicExpr::AO__atomic_sub_fetch:
 | |
|     IsAddSub = true;
 | |
|     // Fall through.
 | |
|   case AtomicExpr::AO__c11_atomic_fetch_and:
 | |
|   case AtomicExpr::AO__c11_atomic_fetch_or:
 | |
|   case AtomicExpr::AO__c11_atomic_fetch_xor:
 | |
|   case AtomicExpr::AO__atomic_fetch_and:
 | |
|   case AtomicExpr::AO__atomic_fetch_or:
 | |
|   case AtomicExpr::AO__atomic_fetch_xor:
 | |
|   case AtomicExpr::AO__atomic_fetch_nand:
 | |
|   case AtomicExpr::AO__atomic_and_fetch:
 | |
|   case AtomicExpr::AO__atomic_or_fetch:
 | |
|   case AtomicExpr::AO__atomic_xor_fetch:
 | |
|   case AtomicExpr::AO__atomic_nand_fetch:
 | |
|     Form = Arithmetic;
 | |
|     break;
 | |
| 
 | |
|   case AtomicExpr::AO__c11_atomic_exchange:
 | |
|   case AtomicExpr::AO__atomic_exchange_n:
 | |
|     Form = Xchg;
 | |
|     break;
 | |
| 
 | |
|   case AtomicExpr::AO__atomic_exchange:
 | |
|     Form = GNUXchg;
 | |
|     break;
 | |
| 
 | |
|   case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
 | |
|   case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
 | |
|     Form = C11CmpXchg;
 | |
|     break;
 | |
| 
 | |
|   case AtomicExpr::AO__atomic_compare_exchange:
 | |
|   case AtomicExpr::AO__atomic_compare_exchange_n:
 | |
|     Form = GNUCmpXchg;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // Check we have the right number of arguments.
 | |
|   if (TheCall->getNumArgs() < NumArgs[Form]) {
 | |
|     Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
 | |
|       << 0 << NumArgs[Form] << TheCall->getNumArgs()
 | |
|       << TheCall->getCallee()->getSourceRange();
 | |
|     return ExprError();
 | |
|   } else if (TheCall->getNumArgs() > NumArgs[Form]) {
 | |
|     Diag(TheCall->getArg(NumArgs[Form])->getLocStart(),
 | |
|          diag::err_typecheck_call_too_many_args)
 | |
|       << 0 << NumArgs[Form] << TheCall->getNumArgs()
 | |
|       << TheCall->getCallee()->getSourceRange();
 | |
|     return ExprError();
 | |
|   }
 | |
| 
 | |
|   // Inspect the first argument of the atomic operation.
 | |
|   Expr *Ptr = TheCall->getArg(0);
 | |
|   Ptr = DefaultFunctionArrayLvalueConversion(Ptr).get();
 | |
|   const PointerType *pointerType = Ptr->getType()->getAs<PointerType>();
 | |
|   if (!pointerType) {
 | |
|     Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
 | |
|       << Ptr->getType() << Ptr->getSourceRange();
 | |
|     return ExprError();
 | |
|   }
 | |
| 
 | |
|   // For a __c11 builtin, this should be a pointer to an _Atomic type.
 | |
|   QualType AtomTy = pointerType->getPointeeType(); // 'A'
 | |
|   QualType ValType = AtomTy; // 'C'
 | |
|   if (IsC11) {
 | |
|     if (!AtomTy->isAtomicType()) {
 | |
|       Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic)
 | |
|         << Ptr->getType() << Ptr->getSourceRange();
 | |
|       return ExprError();
 | |
|     }
 | |
|     if (AtomTy.isConstQualified()) {
 | |
|       Diag(DRE->getLocStart(), diag::err_atomic_op_needs_non_const_atomic)
 | |
|         << Ptr->getType() << Ptr->getSourceRange();
 | |
|       return ExprError();
 | |
|     }
 | |
|     ValType = AtomTy->getAs<AtomicType>()->getValueType();
 | |
|   }
 | |
| 
 | |
|   // For an arithmetic operation, the implied arithmetic must be well-formed.
 | |
|   if (Form == Arithmetic) {
 | |
|     // gcc does not enforce these rules for GNU atomics, but we do so for sanity.
 | |
|     if (IsAddSub && !ValType->isIntegerType() && !ValType->isPointerType()) {
 | |
|       Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic_int_or_ptr)
 | |
|         << IsC11 << Ptr->getType() << Ptr->getSourceRange();
 | |
|       return ExprError();
 | |
|     }
 | |
|     if (!IsAddSub && !ValType->isIntegerType()) {
 | |
|       Diag(DRE->getLocStart(), diag::err_atomic_op_bitwise_needs_atomic_int)
 | |
|         << IsC11 << Ptr->getType() << Ptr->getSourceRange();
 | |
|       return ExprError();
 | |
|     }
 | |
|   } else if (IsN && !ValType->isIntegerType() && !ValType->isPointerType()) {
 | |
|     // For __atomic_*_n operations, the value type must be a scalar integral or
 | |
|     // pointer type which is 1, 2, 4, 8 or 16 bytes in length.
 | |
|     Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic_int_or_ptr)
 | |
|       << IsC11 << Ptr->getType() << Ptr->getSourceRange();
 | |
|     return ExprError();
 | |
|   }
 | |
| 
 | |
|   if (!IsC11 && !AtomTy.isTriviallyCopyableType(Context) &&
 | |
|       !AtomTy->isScalarType()) {
 | |
|     // For GNU atomics, require a trivially-copyable type. This is not part of
 | |
|     // the GNU atomics specification, but we enforce it for sanity.
 | |
|     Diag(DRE->getLocStart(), diag::err_atomic_op_needs_trivial_copy)
 | |
|       << Ptr->getType() << Ptr->getSourceRange();
 | |
|     return ExprError();
 | |
|   }
 | |
| 
 | |
|   // FIXME: For any builtin other than a load, the ValType must not be
 | |
|   // const-qualified.
 | |
| 
 | |
|   switch (ValType.getObjCLifetime()) {
 | |
|   case Qualifiers::OCL_None:
 | |
|   case Qualifiers::OCL_ExplicitNone:
 | |
|     // okay
 | |
|     break;
 | |
| 
 | |
|   case Qualifiers::OCL_Weak:
 | |
|   case Qualifiers::OCL_Strong:
 | |
|   case Qualifiers::OCL_Autoreleasing:
 | |
|     // FIXME: Can this happen? By this point, ValType should be known
 | |
|     // to be trivially copyable.
 | |
|     Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
 | |
|       << ValType << Ptr->getSourceRange();
 | |
|     return ExprError();
 | |
|   }
 | |
| 
 | |
|   QualType ResultType = ValType;
 | |
|   if (Form == Copy || Form == GNUXchg || Form == Init)
 | |
|     ResultType = Context.VoidTy;
 | |
|   else if (Form == C11CmpXchg || Form == GNUCmpXchg)
 | |
|     ResultType = Context.BoolTy;
 | |
| 
 | |
|   // The type of a parameter passed 'by value'. In the GNU atomics, such
 | |
|   // arguments are actually passed as pointers.
 | |
|   QualType ByValType = ValType; // 'CP'
 | |
|   if (!IsC11 && !IsN)
 | |
|     ByValType = Ptr->getType();
 | |
| 
 | |
|   // The first argument --- the pointer --- has a fixed type; we
 | |
|   // deduce the types of the rest of the arguments accordingly.  Walk
 | |
|   // the remaining arguments, converting them to the deduced value type.
 | |
|   for (unsigned i = 1; i != NumArgs[Form]; ++i) {
 | |
|     QualType Ty;
 | |
|     if (i < NumVals[Form] + 1) {
 | |
|       switch (i) {
 | |
|       case 1:
 | |
|         // The second argument is the non-atomic operand. For arithmetic, this
 | |
|         // is always passed by value, and for a compare_exchange it is always
 | |
|         // passed by address. For the rest, GNU uses by-address and C11 uses
 | |
|         // by-value.
 | |
|         assert(Form != Load);
 | |
|         if (Form == Init || (Form == Arithmetic && ValType->isIntegerType()))
 | |
|           Ty = ValType;
 | |
|         else if (Form == Copy || Form == Xchg)
 | |
|           Ty = ByValType;
 | |
|         else if (Form == Arithmetic)
 | |
|           Ty = Context.getPointerDiffType();
 | |
|         else
 | |
|           Ty = Context.getPointerType(ValType.getUnqualifiedType());
 | |
|         break;
 | |
|       case 2:
 | |
|         // The third argument to compare_exchange / GNU exchange is a
 | |
|         // (pointer to a) desired value.
 | |
|         Ty = ByValType;
 | |
|         break;
 | |
|       case 3:
 | |
|         // The fourth argument to GNU compare_exchange is a 'weak' flag.
 | |
|         Ty = Context.BoolTy;
 | |
|         break;
 | |
|       }
 | |
|     } else {
 | |
|       // The order(s) are always converted to int.
 | |
|       Ty = Context.IntTy;
 | |
|     }
 | |
| 
 | |
|     InitializedEntity Entity =
 | |
|         InitializedEntity::InitializeParameter(Context, Ty, false);
 | |
|     ExprResult Arg = TheCall->getArg(i);
 | |
|     Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
 | |
|     if (Arg.isInvalid())
 | |
|       return true;
 | |
|     TheCall->setArg(i, Arg.get());
 | |
|   }
 | |
| 
 | |
|   // Permute the arguments into a 'consistent' order.
 | |
|   SmallVector<Expr*, 5> SubExprs;
 | |
|   SubExprs.push_back(Ptr);
 | |
|   switch (Form) {
 | |
|   case Init:
 | |
|     // Note, AtomicExpr::getVal1() has a special case for this atomic.
 | |
|     SubExprs.push_back(TheCall->getArg(1)); // Val1
 | |
|     break;
 | |
|   case Load:
 | |
|     SubExprs.push_back(TheCall->getArg(1)); // Order
 | |
|     break;
 | |
|   case Copy:
 | |
|   case Arithmetic:
 | |
|   case Xchg:
 | |
|     SubExprs.push_back(TheCall->getArg(2)); // Order
 | |
|     SubExprs.push_back(TheCall->getArg(1)); // Val1
 | |
|     break;
 | |
|   case GNUXchg:
 | |
|     // Note, AtomicExpr::getVal2() has a special case for this atomic.
 | |
|     SubExprs.push_back(TheCall->getArg(3)); // Order
 | |
|     SubExprs.push_back(TheCall->getArg(1)); // Val1
 | |
|     SubExprs.push_back(TheCall->getArg(2)); // Val2
 | |
|     break;
 | |
|   case C11CmpXchg:
 | |
|     SubExprs.push_back(TheCall->getArg(3)); // Order
 | |
|     SubExprs.push_back(TheCall->getArg(1)); // Val1
 | |
|     SubExprs.push_back(TheCall->getArg(4)); // OrderFail
 | |
|     SubExprs.push_back(TheCall->getArg(2)); // Val2
 | |
|     break;
 | |
|   case GNUCmpXchg:
 | |
|     SubExprs.push_back(TheCall->getArg(4)); // Order
 | |
|     SubExprs.push_back(TheCall->getArg(1)); // Val1
 | |
|     SubExprs.push_back(TheCall->getArg(5)); // OrderFail
 | |
|     SubExprs.push_back(TheCall->getArg(2)); // Val2
 | |
|     SubExprs.push_back(TheCall->getArg(3)); // Weak
 | |
|     break;
 | |
|   }
 | |
|   
 | |
|   AtomicExpr *AE = new (Context) AtomicExpr(TheCall->getCallee()->getLocStart(),
 | |
|                                             SubExprs, ResultType, Op,
 | |
|                                             TheCall->getRParenLoc());
 | |
|   
 | |
|   if ((Op == AtomicExpr::AO__c11_atomic_load ||
 | |
|        (Op == AtomicExpr::AO__c11_atomic_store)) &&
 | |
|       Context.AtomicUsesUnsupportedLibcall(AE))
 | |
|     Diag(AE->getLocStart(), diag::err_atomic_load_store_uses_lib) <<
 | |
|     ((Op == AtomicExpr::AO__c11_atomic_load) ? 0 : 1);
 | |
| 
 | |
|   return Owned(AE);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// checkBuiltinArgument - Given a call to a builtin function, perform
 | |
| /// normal type-checking on the given argument, updating the call in
 | |
| /// place.  This is useful when a builtin function requires custom
 | |
| /// type-checking for some of its arguments but not necessarily all of
 | |
| /// them.
 | |
| ///
 | |
| /// Returns true on error.
 | |
| static bool checkBuiltinArgument(Sema &S, CallExpr *E, unsigned ArgIndex) {
 | |
|   FunctionDecl *Fn = E->getDirectCallee();
 | |
|   assert(Fn && "builtin call without direct callee!");
 | |
| 
 | |
|   ParmVarDecl *Param = Fn->getParamDecl(ArgIndex);
 | |
|   InitializedEntity Entity =
 | |
|     InitializedEntity::InitializeParameter(S.Context, Param);
 | |
| 
 | |
|   ExprResult Arg = E->getArg(0);
 | |
|   Arg = S.PerformCopyInitialization(Entity, SourceLocation(), Arg);
 | |
|   if (Arg.isInvalid())
 | |
|     return true;
 | |
| 
 | |
|   E->setArg(ArgIndex, Arg.take());
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// SemaBuiltinAtomicOverloaded - We have a call to a function like
 | |
| /// __sync_fetch_and_add, which is an overloaded function based on the pointer
 | |
| /// type of its first argument.  The main ActOnCallExpr routines have already
 | |
| /// promoted the types of arguments because all of these calls are prototyped as
 | |
| /// void(...).
 | |
| ///
 | |
| /// This function goes through and does final semantic checking for these
 | |
| /// builtins,
 | |
| ExprResult
 | |
| Sema::SemaBuiltinAtomicOverloaded(ExprResult TheCallResult) {
 | |
|   CallExpr *TheCall = (CallExpr *)TheCallResult.get();
 | |
|   DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
 | |
|   FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
 | |
| 
 | |
|   // Ensure that we have at least one argument to do type inference from.
 | |
|   if (TheCall->getNumArgs() < 1) {
 | |
|     Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
 | |
|       << 0 << 1 << TheCall->getNumArgs()
 | |
|       << TheCall->getCallee()->getSourceRange();
 | |
|     return ExprError();
 | |
|   }
 | |
| 
 | |
|   // Inspect the first argument of the atomic builtin.  This should always be
 | |
|   // a pointer type, whose element is an integral scalar or pointer type.
 | |
|   // Because it is a pointer type, we don't have to worry about any implicit
 | |
|   // casts here.
 | |
|   // FIXME: We don't allow floating point scalars as input.
 | |
|   Expr *FirstArg = TheCall->getArg(0);
 | |
|   ExprResult FirstArgResult = DefaultFunctionArrayLvalueConversion(FirstArg);
 | |
|   if (FirstArgResult.isInvalid())
 | |
|     return ExprError();
 | |
|   FirstArg = FirstArgResult.take();
 | |
|   TheCall->setArg(0, FirstArg);
 | |
| 
 | |
|   const PointerType *pointerType = FirstArg->getType()->getAs<PointerType>();
 | |
|   if (!pointerType) {
 | |
|     Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
 | |
|       << FirstArg->getType() << FirstArg->getSourceRange();
 | |
|     return ExprError();
 | |
|   }
 | |
| 
 | |
|   QualType ValType = pointerType->getPointeeType();
 | |
|   if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
 | |
|       !ValType->isBlockPointerType()) {
 | |
|     Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer_intptr)
 | |
|       << FirstArg->getType() << FirstArg->getSourceRange();
 | |
|     return ExprError();
 | |
|   }
 | |
| 
 | |
|   switch (ValType.getObjCLifetime()) {
 | |
|   case Qualifiers::OCL_None:
 | |
|   case Qualifiers::OCL_ExplicitNone:
 | |
|     // okay
 | |
|     break;
 | |
| 
 | |
|   case Qualifiers::OCL_Weak:
 | |
|   case Qualifiers::OCL_Strong:
 | |
|   case Qualifiers::OCL_Autoreleasing:
 | |
|     Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
 | |
|       << ValType << FirstArg->getSourceRange();
 | |
|     return ExprError();
 | |
|   }
 | |
| 
 | |
|   // Strip any qualifiers off ValType.
 | |
|   ValType = ValType.getUnqualifiedType();
 | |
| 
 | |
|   // The majority of builtins return a value, but a few have special return
 | |
|   // types, so allow them to override appropriately below.
 | |
|   QualType ResultType = ValType;
 | |
| 
 | |
|   // We need to figure out which concrete builtin this maps onto.  For example,
 | |
|   // __sync_fetch_and_add with a 2 byte object turns into
 | |
|   // __sync_fetch_and_add_2.
 | |
| #define BUILTIN_ROW(x) \
 | |
|   { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
 | |
|     Builtin::BI##x##_8, Builtin::BI##x##_16 }
 | |
| 
 | |
|   static const unsigned BuiltinIndices[][5] = {
 | |
|     BUILTIN_ROW(__sync_fetch_and_add),
 | |
|     BUILTIN_ROW(__sync_fetch_and_sub),
 | |
|     BUILTIN_ROW(__sync_fetch_and_or),
 | |
|     BUILTIN_ROW(__sync_fetch_and_and),
 | |
|     BUILTIN_ROW(__sync_fetch_and_xor),
 | |
| 
 | |
|     BUILTIN_ROW(__sync_add_and_fetch),
 | |
|     BUILTIN_ROW(__sync_sub_and_fetch),
 | |
|     BUILTIN_ROW(__sync_and_and_fetch),
 | |
|     BUILTIN_ROW(__sync_or_and_fetch),
 | |
|     BUILTIN_ROW(__sync_xor_and_fetch),
 | |
| 
 | |
|     BUILTIN_ROW(__sync_val_compare_and_swap),
 | |
|     BUILTIN_ROW(__sync_bool_compare_and_swap),
 | |
|     BUILTIN_ROW(__sync_lock_test_and_set),
 | |
|     BUILTIN_ROW(__sync_lock_release),
 | |
|     BUILTIN_ROW(__sync_swap)
 | |
|   };
 | |
| #undef BUILTIN_ROW
 | |
| 
 | |
|   // Determine the index of the size.
 | |
|   unsigned SizeIndex;
 | |
|   switch (Context.getTypeSizeInChars(ValType).getQuantity()) {
 | |
|   case 1: SizeIndex = 0; break;
 | |
|   case 2: SizeIndex = 1; break;
 | |
|   case 4: SizeIndex = 2; break;
 | |
|   case 8: SizeIndex = 3; break;
 | |
|   case 16: SizeIndex = 4; break;
 | |
|   default:
 | |
|     Diag(DRE->getLocStart(), diag::err_atomic_builtin_pointer_size)
 | |
|       << FirstArg->getType() << FirstArg->getSourceRange();
 | |
|     return ExprError();
 | |
|   }
 | |
| 
 | |
|   // Each of these builtins has one pointer argument, followed by some number of
 | |
|   // values (0, 1 or 2) followed by a potentially empty varags list of stuff
 | |
|   // that we ignore.  Find out which row of BuiltinIndices to read from as well
 | |
|   // as the number of fixed args.
 | |
|   unsigned BuiltinID = FDecl->getBuiltinID();
 | |
|   unsigned BuiltinIndex, NumFixed = 1;
 | |
|   switch (BuiltinID) {
 | |
|   default: llvm_unreachable("Unknown overloaded atomic builtin!");
 | |
|   case Builtin::BI__sync_fetch_and_add: 
 | |
|   case Builtin::BI__sync_fetch_and_add_1:
 | |
|   case Builtin::BI__sync_fetch_and_add_2:
 | |
|   case Builtin::BI__sync_fetch_and_add_4:
 | |
|   case Builtin::BI__sync_fetch_and_add_8:
 | |
|   case Builtin::BI__sync_fetch_and_add_16:
 | |
|     BuiltinIndex = 0; 
 | |
|     break;
 | |
|       
 | |
|   case Builtin::BI__sync_fetch_and_sub: 
 | |
|   case Builtin::BI__sync_fetch_and_sub_1:
 | |
|   case Builtin::BI__sync_fetch_and_sub_2:
 | |
|   case Builtin::BI__sync_fetch_and_sub_4:
 | |
|   case Builtin::BI__sync_fetch_and_sub_8:
 | |
|   case Builtin::BI__sync_fetch_and_sub_16:
 | |
|     BuiltinIndex = 1; 
 | |
|     break;
 | |
|       
 | |
|   case Builtin::BI__sync_fetch_and_or:  
 | |
|   case Builtin::BI__sync_fetch_and_or_1:
 | |
|   case Builtin::BI__sync_fetch_and_or_2:
 | |
|   case Builtin::BI__sync_fetch_and_or_4:
 | |
|   case Builtin::BI__sync_fetch_and_or_8:
 | |
|   case Builtin::BI__sync_fetch_and_or_16:
 | |
|     BuiltinIndex = 2; 
 | |
|     break;
 | |
|       
 | |
|   case Builtin::BI__sync_fetch_and_and: 
 | |
|   case Builtin::BI__sync_fetch_and_and_1:
 | |
|   case Builtin::BI__sync_fetch_and_and_2:
 | |
|   case Builtin::BI__sync_fetch_and_and_4:
 | |
|   case Builtin::BI__sync_fetch_and_and_8:
 | |
|   case Builtin::BI__sync_fetch_and_and_16:
 | |
|     BuiltinIndex = 3; 
 | |
|     break;
 | |
| 
 | |
|   case Builtin::BI__sync_fetch_and_xor: 
 | |
|   case Builtin::BI__sync_fetch_and_xor_1:
 | |
|   case Builtin::BI__sync_fetch_and_xor_2:
 | |
|   case Builtin::BI__sync_fetch_and_xor_4:
 | |
|   case Builtin::BI__sync_fetch_and_xor_8:
 | |
|   case Builtin::BI__sync_fetch_and_xor_16:
 | |
|     BuiltinIndex = 4; 
 | |
|     break;
 | |
| 
 | |
|   case Builtin::BI__sync_add_and_fetch: 
 | |
|   case Builtin::BI__sync_add_and_fetch_1:
 | |
|   case Builtin::BI__sync_add_and_fetch_2:
 | |
|   case Builtin::BI__sync_add_and_fetch_4:
 | |
|   case Builtin::BI__sync_add_and_fetch_8:
 | |
|   case Builtin::BI__sync_add_and_fetch_16:
 | |
|     BuiltinIndex = 5; 
 | |
|     break;
 | |
|       
 | |
|   case Builtin::BI__sync_sub_and_fetch: 
 | |
|   case Builtin::BI__sync_sub_and_fetch_1:
 | |
|   case Builtin::BI__sync_sub_and_fetch_2:
 | |
|   case Builtin::BI__sync_sub_and_fetch_4:
 | |
|   case Builtin::BI__sync_sub_and_fetch_8:
 | |
|   case Builtin::BI__sync_sub_and_fetch_16:
 | |
|     BuiltinIndex = 6; 
 | |
|     break;
 | |
|       
 | |
|   case Builtin::BI__sync_and_and_fetch: 
 | |
|   case Builtin::BI__sync_and_and_fetch_1:
 | |
|   case Builtin::BI__sync_and_and_fetch_2:
 | |
|   case Builtin::BI__sync_and_and_fetch_4:
 | |
|   case Builtin::BI__sync_and_and_fetch_8:
 | |
|   case Builtin::BI__sync_and_and_fetch_16:
 | |
|     BuiltinIndex = 7; 
 | |
|     break;
 | |
|       
 | |
|   case Builtin::BI__sync_or_and_fetch:  
 | |
|   case Builtin::BI__sync_or_and_fetch_1:
 | |
|   case Builtin::BI__sync_or_and_fetch_2:
 | |
|   case Builtin::BI__sync_or_and_fetch_4:
 | |
|   case Builtin::BI__sync_or_and_fetch_8:
 | |
|   case Builtin::BI__sync_or_and_fetch_16:
 | |
|     BuiltinIndex = 8; 
 | |
|     break;
 | |
|       
 | |
|   case Builtin::BI__sync_xor_and_fetch: 
 | |
|   case Builtin::BI__sync_xor_and_fetch_1:
 | |
|   case Builtin::BI__sync_xor_and_fetch_2:
 | |
|   case Builtin::BI__sync_xor_and_fetch_4:
 | |
|   case Builtin::BI__sync_xor_and_fetch_8:
 | |
|   case Builtin::BI__sync_xor_and_fetch_16:
 | |
|     BuiltinIndex = 9; 
 | |
|     break;
 | |
| 
 | |
|   case Builtin::BI__sync_val_compare_and_swap:
 | |
|   case Builtin::BI__sync_val_compare_and_swap_1:
 | |
|   case Builtin::BI__sync_val_compare_and_swap_2:
 | |
|   case Builtin::BI__sync_val_compare_and_swap_4:
 | |
|   case Builtin::BI__sync_val_compare_and_swap_8:
 | |
|   case Builtin::BI__sync_val_compare_and_swap_16:
 | |
|     BuiltinIndex = 10;
 | |
|     NumFixed = 2;
 | |
|     break;
 | |
|       
 | |
|   case Builtin::BI__sync_bool_compare_and_swap:
 | |
|   case Builtin::BI__sync_bool_compare_and_swap_1:
 | |
|   case Builtin::BI__sync_bool_compare_and_swap_2:
 | |
|   case Builtin::BI__sync_bool_compare_and_swap_4:
 | |
|   case Builtin::BI__sync_bool_compare_and_swap_8:
 | |
|   case Builtin::BI__sync_bool_compare_and_swap_16:
 | |
|     BuiltinIndex = 11;
 | |
|     NumFixed = 2;
 | |
|     ResultType = Context.BoolTy;
 | |
|     break;
 | |
|       
 | |
|   case Builtin::BI__sync_lock_test_and_set: 
 | |
|   case Builtin::BI__sync_lock_test_and_set_1:
 | |
|   case Builtin::BI__sync_lock_test_and_set_2:
 | |
|   case Builtin::BI__sync_lock_test_and_set_4:
 | |
|   case Builtin::BI__sync_lock_test_and_set_8:
 | |
|   case Builtin::BI__sync_lock_test_and_set_16:
 | |
|     BuiltinIndex = 12; 
 | |
|     break;
 | |
|       
 | |
|   case Builtin::BI__sync_lock_release:
 | |
|   case Builtin::BI__sync_lock_release_1:
 | |
|   case Builtin::BI__sync_lock_release_2:
 | |
|   case Builtin::BI__sync_lock_release_4:
 | |
|   case Builtin::BI__sync_lock_release_8:
 | |
|   case Builtin::BI__sync_lock_release_16:
 | |
|     BuiltinIndex = 13;
 | |
|     NumFixed = 0;
 | |
|     ResultType = Context.VoidTy;
 | |
|     break;
 | |
|       
 | |
|   case Builtin::BI__sync_swap: 
 | |
|   case Builtin::BI__sync_swap_1:
 | |
|   case Builtin::BI__sync_swap_2:
 | |
|   case Builtin::BI__sync_swap_4:
 | |
|   case Builtin::BI__sync_swap_8:
 | |
|   case Builtin::BI__sync_swap_16:
 | |
|     BuiltinIndex = 14; 
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // Now that we know how many fixed arguments we expect, first check that we
 | |
|   // have at least that many.
 | |
|   if (TheCall->getNumArgs() < 1+NumFixed) {
 | |
|     Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
 | |
|       << 0 << 1+NumFixed << TheCall->getNumArgs()
 | |
|       << TheCall->getCallee()->getSourceRange();
 | |
|     return ExprError();
 | |
|   }
 | |
| 
 | |
|   // Get the decl for the concrete builtin from this, we can tell what the
 | |
|   // concrete integer type we should convert to is.
 | |
|   unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
 | |
|   const char *NewBuiltinName = Context.BuiltinInfo.GetName(NewBuiltinID);
 | |
|   FunctionDecl *NewBuiltinDecl;
 | |
|   if (NewBuiltinID == BuiltinID)
 | |
|     NewBuiltinDecl = FDecl;
 | |
|   else {
 | |
|     // Perform builtin lookup to avoid redeclaring it.
 | |
|     DeclarationName DN(&Context.Idents.get(NewBuiltinName));
 | |
|     LookupResult Res(*this, DN, DRE->getLocStart(), LookupOrdinaryName);
 | |
|     LookupName(Res, TUScope, /*AllowBuiltinCreation=*/true);
 | |
|     assert(Res.getFoundDecl());
 | |
|     NewBuiltinDecl = dyn_cast<FunctionDecl>(Res.getFoundDecl());
 | |
|     if (NewBuiltinDecl == 0)
 | |
|       return ExprError();
 | |
|   }
 | |
| 
 | |
|   // The first argument --- the pointer --- has a fixed type; we
 | |
|   // deduce the types of the rest of the arguments accordingly.  Walk
 | |
|   // the remaining arguments, converting them to the deduced value type.
 | |
|   for (unsigned i = 0; i != NumFixed; ++i) {
 | |
|     ExprResult Arg = TheCall->getArg(i+1);
 | |
| 
 | |
|     // GCC does an implicit conversion to the pointer or integer ValType.  This
 | |
|     // can fail in some cases (1i -> int**), check for this error case now.
 | |
|     // Initialize the argument.
 | |
|     InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
 | |
|                                                    ValType, /*consume*/ false);
 | |
|     Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
 | |
|     if (Arg.isInvalid())
 | |
|       return ExprError();
 | |
| 
 | |
|     // Okay, we have something that *can* be converted to the right type.  Check
 | |
|     // to see if there is a potentially weird extension going on here.  This can
 | |
|     // happen when you do an atomic operation on something like an char* and
 | |
|     // pass in 42.  The 42 gets converted to char.  This is even more strange
 | |
|     // for things like 45.123 -> char, etc.
 | |
|     // FIXME: Do this check.
 | |
|     TheCall->setArg(i+1, Arg.take());
 | |
|   }
 | |
| 
 | |
|   ASTContext& Context = this->getASTContext();
 | |
| 
 | |
|   // Create a new DeclRefExpr to refer to the new decl.
 | |
|   DeclRefExpr* NewDRE = DeclRefExpr::Create(
 | |
|       Context,
 | |
|       DRE->getQualifierLoc(),
 | |
|       SourceLocation(),
 | |
|       NewBuiltinDecl,
 | |
|       /*enclosing*/ false,
 | |
|       DRE->getLocation(),
 | |
|       Context.BuiltinFnTy,
 | |
|       DRE->getValueKind());
 | |
| 
 | |
|   // Set the callee in the CallExpr.
 | |
|   // FIXME: This loses syntactic information.
 | |
|   QualType CalleePtrTy = Context.getPointerType(NewBuiltinDecl->getType());
 | |
|   ExprResult PromotedCall = ImpCastExprToType(NewDRE, CalleePtrTy,
 | |
|                                               CK_BuiltinFnToFnPtr);
 | |
|   TheCall->setCallee(PromotedCall.take());
 | |
| 
 | |
|   // Change the result type of the call to match the original value type. This
 | |
|   // is arbitrary, but the codegen for these builtins ins design to handle it
 | |
|   // gracefully.
 | |
|   TheCall->setType(ResultType);
 | |
| 
 | |
|   return TheCallResult;
 | |
| }
 | |
| 
 | |
| /// CheckObjCString - Checks that the argument to the builtin
 | |
| /// CFString constructor is correct
 | |
| /// Note: It might also make sense to do the UTF-16 conversion here (would
 | |
| /// simplify the backend).
 | |
| bool Sema::CheckObjCString(Expr *Arg) {
 | |
|   Arg = Arg->IgnoreParenCasts();
 | |
|   StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
 | |
| 
 | |
|   if (!Literal || !Literal->isAscii()) {
 | |
|     Diag(Arg->getLocStart(), diag::err_cfstring_literal_not_string_constant)
 | |
|       << Arg->getSourceRange();
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (Literal->containsNonAsciiOrNull()) {
 | |
|     StringRef String = Literal->getString();
 | |
|     unsigned NumBytes = String.size();
 | |
|     SmallVector<UTF16, 128> ToBuf(NumBytes);
 | |
|     const UTF8 *FromPtr = (const UTF8 *)String.data();
 | |
|     UTF16 *ToPtr = &ToBuf[0];
 | |
|     
 | |
|     ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
 | |
|                                                  &ToPtr, ToPtr + NumBytes,
 | |
|                                                  strictConversion);
 | |
|     // Check for conversion failure.
 | |
|     if (Result != conversionOK)
 | |
|       Diag(Arg->getLocStart(),
 | |
|            diag::warn_cfstring_truncated) << Arg->getSourceRange();
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// SemaBuiltinVAStart - Check the arguments to __builtin_va_start for validity.
 | |
| /// Emit an error and return true on failure, return false on success.
 | |
| bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
 | |
|   Expr *Fn = TheCall->getCallee();
 | |
|   if (TheCall->getNumArgs() > 2) {
 | |
|     Diag(TheCall->getArg(2)->getLocStart(),
 | |
|          diag::err_typecheck_call_too_many_args)
 | |
|       << 0 /*function call*/ << 2 << TheCall->getNumArgs()
 | |
|       << Fn->getSourceRange()
 | |
|       << SourceRange(TheCall->getArg(2)->getLocStart(),
 | |
|                      (*(TheCall->arg_end()-1))->getLocEnd());
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (TheCall->getNumArgs() < 2) {
 | |
|     return Diag(TheCall->getLocEnd(),
 | |
|       diag::err_typecheck_call_too_few_args_at_least)
 | |
|       << 0 /*function call*/ << 2 << TheCall->getNumArgs();
 | |
|   }
 | |
| 
 | |
|   // Type-check the first argument normally.
 | |
|   if (checkBuiltinArgument(*this, TheCall, 0))
 | |
|     return true;
 | |
| 
 | |
|   // Determine whether the current function is variadic or not.
 | |
|   BlockScopeInfo *CurBlock = getCurBlock();
 | |
|   bool isVariadic;
 | |
|   if (CurBlock)
 | |
|     isVariadic = CurBlock->TheDecl->isVariadic();
 | |
|   else if (FunctionDecl *FD = getCurFunctionDecl())
 | |
|     isVariadic = FD->isVariadic();
 | |
|   else
 | |
|     isVariadic = getCurMethodDecl()->isVariadic();
 | |
| 
 | |
|   if (!isVariadic) {
 | |
|     Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Verify that the second argument to the builtin is the last argument of the
 | |
|   // current function or method.
 | |
|   bool SecondArgIsLastNamedArgument = false;
 | |
|   const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
 | |
| 
 | |
|   // These are valid if SecondArgIsLastNamedArgument is false after the next
 | |
|   // block.
 | |
|   QualType Type;
 | |
|   SourceLocation ParamLoc;
 | |
| 
 | |
|   if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
 | |
|     if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
 | |
|       // FIXME: This isn't correct for methods (results in bogus warning).
 | |
|       // Get the last formal in the current function.
 | |
|       const ParmVarDecl *LastArg;
 | |
|       if (CurBlock)
 | |
|         LastArg = *(CurBlock->TheDecl->param_end()-1);
 | |
|       else if (FunctionDecl *FD = getCurFunctionDecl())
 | |
|         LastArg = *(FD->param_end()-1);
 | |
|       else
 | |
|         LastArg = *(getCurMethodDecl()->param_end()-1);
 | |
|       SecondArgIsLastNamedArgument = PV == LastArg;
 | |
| 
 | |
|       Type = PV->getType();
 | |
|       ParamLoc = PV->getLocation();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!SecondArgIsLastNamedArgument)
 | |
|     Diag(TheCall->getArg(1)->getLocStart(),
 | |
|          diag::warn_second_parameter_of_va_start_not_last_named_argument);
 | |
|   else if (Type->isReferenceType()) {
 | |
|     Diag(Arg->getLocStart(),
 | |
|          diag::warn_va_start_of_reference_type_is_undefined);
 | |
|     Diag(ParamLoc, diag::note_parameter_type) << Type;
 | |
|   }
 | |
| 
 | |
|   TheCall->setType(Context.VoidTy);
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
 | |
| /// friends.  This is declared to take (...), so we have to check everything.
 | |
| bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
 | |
|   if (TheCall->getNumArgs() < 2)
 | |
|     return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
 | |
|       << 0 << 2 << TheCall->getNumArgs()/*function call*/;
 | |
|   if (TheCall->getNumArgs() > 2)
 | |
|     return Diag(TheCall->getArg(2)->getLocStart(),
 | |
|                 diag::err_typecheck_call_too_many_args)
 | |
|       << 0 /*function call*/ << 2 << TheCall->getNumArgs()
 | |
|       << SourceRange(TheCall->getArg(2)->getLocStart(),
 | |
|                      (*(TheCall->arg_end()-1))->getLocEnd());
 | |
| 
 | |
|   ExprResult OrigArg0 = TheCall->getArg(0);
 | |
|   ExprResult OrigArg1 = TheCall->getArg(1);
 | |
| 
 | |
|   // Do standard promotions between the two arguments, returning their common
 | |
|   // type.
 | |
|   QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
 | |
|   if (OrigArg0.isInvalid() || OrigArg1.isInvalid())
 | |
|     return true;
 | |
| 
 | |
|   // Make sure any conversions are pushed back into the call; this is
 | |
|   // type safe since unordered compare builtins are declared as "_Bool
 | |
|   // foo(...)".
 | |
|   TheCall->setArg(0, OrigArg0.get());
 | |
|   TheCall->setArg(1, OrigArg1.get());
 | |
| 
 | |
|   if (OrigArg0.get()->isTypeDependent() || OrigArg1.get()->isTypeDependent())
 | |
|     return false;
 | |
| 
 | |
|   // If the common type isn't a real floating type, then the arguments were
 | |
|   // invalid for this operation.
 | |
|   if (Res.isNull() || !Res->isRealFloatingType())
 | |
|     return Diag(OrigArg0.get()->getLocStart(),
 | |
|                 diag::err_typecheck_call_invalid_ordered_compare)
 | |
|       << OrigArg0.get()->getType() << OrigArg1.get()->getType()
 | |
|       << SourceRange(OrigArg0.get()->getLocStart(), OrigArg1.get()->getLocEnd());
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// SemaBuiltinSemaBuiltinFPClassification - Handle functions like
 | |
| /// __builtin_isnan and friends.  This is declared to take (...), so we have
 | |
| /// to check everything. We expect the last argument to be a floating point
 | |
| /// value.
 | |
| bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) {
 | |
|   if (TheCall->getNumArgs() < NumArgs)
 | |
|     return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
 | |
|       << 0 << NumArgs << TheCall->getNumArgs()/*function call*/;
 | |
|   if (TheCall->getNumArgs() > NumArgs)
 | |
|     return Diag(TheCall->getArg(NumArgs)->getLocStart(),
 | |
|                 diag::err_typecheck_call_too_many_args)
 | |
|       << 0 /*function call*/ << NumArgs << TheCall->getNumArgs()
 | |
|       << SourceRange(TheCall->getArg(NumArgs)->getLocStart(),
 | |
|                      (*(TheCall->arg_end()-1))->getLocEnd());
 | |
| 
 | |
|   Expr *OrigArg = TheCall->getArg(NumArgs-1);
 | |
| 
 | |
|   if (OrigArg->isTypeDependent())
 | |
|     return false;
 | |
| 
 | |
|   // This operation requires a non-_Complex floating-point number.
 | |
|   if (!OrigArg->getType()->isRealFloatingType())
 | |
|     return Diag(OrigArg->getLocStart(),
 | |
|                 diag::err_typecheck_call_invalid_unary_fp)
 | |
|       << OrigArg->getType() << OrigArg->getSourceRange();
 | |
| 
 | |
|   // If this is an implicit conversion from float -> double, remove it.
 | |
|   if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(OrigArg)) {
 | |
|     Expr *CastArg = Cast->getSubExpr();
 | |
|     if (CastArg->getType()->isSpecificBuiltinType(BuiltinType::Float)) {
 | |
|       assert(Cast->getType()->isSpecificBuiltinType(BuiltinType::Double) &&
 | |
|              "promotion from float to double is the only expected cast here");
 | |
|       Cast->setSubExpr(0);
 | |
|       TheCall->setArg(NumArgs-1, CastArg);
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
 | |
| // This is declared to take (...), so we have to check everything.
 | |
| ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
 | |
|   if (TheCall->getNumArgs() < 2)
 | |
|     return ExprError(Diag(TheCall->getLocEnd(),
 | |
|                           diag::err_typecheck_call_too_few_args_at_least)
 | |
|                      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
 | |
|                      << TheCall->getSourceRange());
 | |
| 
 | |
|   // Determine which of the following types of shufflevector we're checking:
 | |
|   // 1) unary, vector mask: (lhs, mask)
 | |
|   // 2) binary, vector mask: (lhs, rhs, mask)
 | |
|   // 3) binary, scalar mask: (lhs, rhs, index, ..., index)
 | |
|   QualType resType = TheCall->getArg(0)->getType();
 | |
|   unsigned numElements = 0;
 | |
| 
 | |
|   if (!TheCall->getArg(0)->isTypeDependent() &&
 | |
|       !TheCall->getArg(1)->isTypeDependent()) {
 | |
|     QualType LHSType = TheCall->getArg(0)->getType();
 | |
|     QualType RHSType = TheCall->getArg(1)->getType();
 | |
| 
 | |
|     if (!LHSType->isVectorType() || !RHSType->isVectorType())
 | |
|       return ExprError(Diag(TheCall->getLocStart(),
 | |
|                             diag::err_shufflevector_non_vector)
 | |
|                        << SourceRange(TheCall->getArg(0)->getLocStart(),
 | |
|                                       TheCall->getArg(1)->getLocEnd()));
 | |
| 
 | |
|     numElements = LHSType->getAs<VectorType>()->getNumElements();
 | |
|     unsigned numResElements = TheCall->getNumArgs() - 2;
 | |
| 
 | |
|     // Check to see if we have a call with 2 vector arguments, the unary shuffle
 | |
|     // with mask.  If so, verify that RHS is an integer vector type with the
 | |
|     // same number of elts as lhs.
 | |
|     if (TheCall->getNumArgs() == 2) {
 | |
|       if (!RHSType->hasIntegerRepresentation() ||
 | |
|           RHSType->getAs<VectorType>()->getNumElements() != numElements)
 | |
|         return ExprError(Diag(TheCall->getLocStart(),
 | |
|                               diag::err_shufflevector_incompatible_vector)
 | |
|                          << SourceRange(TheCall->getArg(1)->getLocStart(),
 | |
|                                         TheCall->getArg(1)->getLocEnd()));
 | |
|     } else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) {
 | |
|       return ExprError(Diag(TheCall->getLocStart(),
 | |
|                             diag::err_shufflevector_incompatible_vector)
 | |
|                        << SourceRange(TheCall->getArg(0)->getLocStart(),
 | |
|                                       TheCall->getArg(1)->getLocEnd()));
 | |
|     } else if (numElements != numResElements) {
 | |
|       QualType eltType = LHSType->getAs<VectorType>()->getElementType();
 | |
|       resType = Context.getVectorType(eltType, numResElements,
 | |
|                                       VectorType::GenericVector);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
 | |
|     if (TheCall->getArg(i)->isTypeDependent() ||
 | |
|         TheCall->getArg(i)->isValueDependent())
 | |
|       continue;
 | |
| 
 | |
|     llvm::APSInt Result(32);
 | |
|     if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context))
 | |
|       return ExprError(Diag(TheCall->getLocStart(),
 | |
|                             diag::err_shufflevector_nonconstant_argument)
 | |
|                        << TheCall->getArg(i)->getSourceRange());
 | |
| 
 | |
|     // Allow -1 which will be translated to undef in the IR.
 | |
|     if (Result.isSigned() && Result.isAllOnesValue())
 | |
|       continue;
 | |
| 
 | |
|     if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
 | |
|       return ExprError(Diag(TheCall->getLocStart(),
 | |
|                             diag::err_shufflevector_argument_too_large)
 | |
|                        << TheCall->getArg(i)->getSourceRange());
 | |
|   }
 | |
| 
 | |
|   SmallVector<Expr*, 32> exprs;
 | |
| 
 | |
|   for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
 | |
|     exprs.push_back(TheCall->getArg(i));
 | |
|     TheCall->setArg(i, 0);
 | |
|   }
 | |
| 
 | |
|   return Owned(new (Context) ShuffleVectorExpr(Context, exprs, resType,
 | |
|                                             TheCall->getCallee()->getLocStart(),
 | |
|                                             TheCall->getRParenLoc()));
 | |
| }
 | |
| 
 | |
| /// SemaConvertVectorExpr - Handle __builtin_convertvector
 | |
| ExprResult Sema::SemaConvertVectorExpr(Expr *E, TypeSourceInfo *TInfo,
 | |
|                                        SourceLocation BuiltinLoc,
 | |
|                                        SourceLocation RParenLoc) {
 | |
|   ExprValueKind VK = VK_RValue;
 | |
|   ExprObjectKind OK = OK_Ordinary;
 | |
|   QualType DstTy = TInfo->getType();
 | |
|   QualType SrcTy = E->getType();
 | |
| 
 | |
|   if (!SrcTy->isVectorType() && !SrcTy->isDependentType())
 | |
|     return ExprError(Diag(BuiltinLoc,
 | |
|                           diag::err_convertvector_non_vector)
 | |
|                      << E->getSourceRange());
 | |
|   if (!DstTy->isVectorType() && !DstTy->isDependentType())
 | |
|     return ExprError(Diag(BuiltinLoc,
 | |
|                           diag::err_convertvector_non_vector_type));
 | |
| 
 | |
|   if (!SrcTy->isDependentType() && !DstTy->isDependentType()) {
 | |
|     unsigned SrcElts = SrcTy->getAs<VectorType>()->getNumElements();
 | |
|     unsigned DstElts = DstTy->getAs<VectorType>()->getNumElements();
 | |
|     if (SrcElts != DstElts)
 | |
|       return ExprError(Diag(BuiltinLoc,
 | |
|                             diag::err_convertvector_incompatible_vector)
 | |
|                        << E->getSourceRange());
 | |
|   }
 | |
| 
 | |
|   return Owned(new (Context) ConvertVectorExpr(E, TInfo, DstTy, VK, OK,
 | |
|                BuiltinLoc, RParenLoc));
 | |
| 
 | |
| }
 | |
| 
 | |
| /// SemaBuiltinPrefetch - Handle __builtin_prefetch.
 | |
| // This is declared to take (const void*, ...) and can take two
 | |
| // optional constant int args.
 | |
| bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
 | |
|   unsigned NumArgs = TheCall->getNumArgs();
 | |
| 
 | |
|   if (NumArgs > 3)
 | |
|     return Diag(TheCall->getLocEnd(),
 | |
|              diag::err_typecheck_call_too_many_args_at_most)
 | |
|              << 0 /*function call*/ << 3 << NumArgs
 | |
|              << TheCall->getSourceRange();
 | |
| 
 | |
|   // Argument 0 is checked for us and the remaining arguments must be
 | |
|   // constant integers.
 | |
|   for (unsigned i = 1; i != NumArgs; ++i) {
 | |
|     Expr *Arg = TheCall->getArg(i);
 | |
| 
 | |
|     // We can't check the value of a dependent argument.
 | |
|     if (Arg->isTypeDependent() || Arg->isValueDependent())
 | |
|       continue;
 | |
| 
 | |
|     llvm::APSInt Result;
 | |
|     if (SemaBuiltinConstantArg(TheCall, i, Result))
 | |
|       return true;
 | |
| 
 | |
|     // FIXME: gcc issues a warning and rewrites these to 0. These
 | |
|     // seems especially odd for the third argument since the default
 | |
|     // is 3.
 | |
|     if (i == 1) {
 | |
|       if (Result.getLimitedValue() > 1)
 | |
|         return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
 | |
|              << "0" << "1" << Arg->getSourceRange();
 | |
|     } else {
 | |
|       if (Result.getLimitedValue() > 3)
 | |
|         return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
 | |
|             << "0" << "3" << Arg->getSourceRange();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr
 | |
| /// TheCall is a constant expression.
 | |
| bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum,
 | |
|                                   llvm::APSInt &Result) {
 | |
|   Expr *Arg = TheCall->getArg(ArgNum);
 | |
|   DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
 | |
|   FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
 | |
|   
 | |
|   if (Arg->isTypeDependent() || Arg->isValueDependent()) return false;
 | |
|   
 | |
|   if (!Arg->isIntegerConstantExpr(Result, Context))
 | |
|     return Diag(TheCall->getLocStart(), diag::err_constant_integer_arg_type)
 | |
|                 << FDecl->getDeclName() <<  Arg->getSourceRange();
 | |
|   
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// SemaBuiltinObjectSize - Handle __builtin_object_size(void *ptr,
 | |
| /// int type). This simply type checks that type is one of the defined
 | |
| /// constants (0-3).
 | |
| // For compatibility check 0-3, llvm only handles 0 and 2.
 | |
| bool Sema::SemaBuiltinObjectSize(CallExpr *TheCall) {
 | |
|   llvm::APSInt Result;
 | |
| 
 | |
|   // We can't check the value of a dependent argument.
 | |
|   if (TheCall->getArg(1)->isTypeDependent() ||
 | |
|       TheCall->getArg(1)->isValueDependent())
 | |
|     return false;
 | |
| 
 | |
|   // Check constant-ness first.
 | |
|   if (SemaBuiltinConstantArg(TheCall, 1, Result))
 | |
|     return true;
 | |
| 
 | |
|   Expr *Arg = TheCall->getArg(1);
 | |
|   if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3) {
 | |
|     return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
 | |
|              << "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
 | |
| /// This checks that val is a constant 1.
 | |
| bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
 | |
|   Expr *Arg = TheCall->getArg(1);
 | |
|   llvm::APSInt Result;
 | |
| 
 | |
|   // TODO: This is less than ideal. Overload this to take a value.
 | |
|   if (SemaBuiltinConstantArg(TheCall, 1, Result))
 | |
|     return true;
 | |
|   
 | |
|   if (Result != 1)
 | |
|     return Diag(TheCall->getLocStart(), diag::err_builtin_longjmp_invalid_val)
 | |
|              << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| enum StringLiteralCheckType {
 | |
|   SLCT_NotALiteral,
 | |
|   SLCT_UncheckedLiteral,
 | |
|   SLCT_CheckedLiteral
 | |
| };
 | |
| }
 | |
| 
 | |
| // Determine if an expression is a string literal or constant string.
 | |
| // If this function returns false on the arguments to a function expecting a
 | |
| // format string, we will usually need to emit a warning.
 | |
| // True string literals are then checked by CheckFormatString.
 | |
| static StringLiteralCheckType
 | |
| checkFormatStringExpr(Sema &S, const Expr *E, ArrayRef<const Expr *> Args,
 | |
|                       bool HasVAListArg, unsigned format_idx,
 | |
|                       unsigned firstDataArg, Sema::FormatStringType Type,
 | |
|                       Sema::VariadicCallType CallType, bool InFunctionCall,
 | |
|                       llvm::SmallBitVector &CheckedVarArgs) {
 | |
|  tryAgain:
 | |
|   if (E->isTypeDependent() || E->isValueDependent())
 | |
|     return SLCT_NotALiteral;
 | |
| 
 | |
|   E = E->IgnoreParenCasts();
 | |
| 
 | |
|   if (E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull))
 | |
|     // Technically -Wformat-nonliteral does not warn about this case.
 | |
|     // The behavior of printf and friends in this case is implementation
 | |
|     // dependent.  Ideally if the format string cannot be null then
 | |
|     // it should have a 'nonnull' attribute in the function prototype.
 | |
|     return SLCT_UncheckedLiteral;
 | |
| 
 | |
|   switch (E->getStmtClass()) {
 | |
|   case Stmt::BinaryConditionalOperatorClass:
 | |
|   case Stmt::ConditionalOperatorClass: {
 | |
|     // The expression is a literal if both sub-expressions were, and it was
 | |
|     // completely checked only if both sub-expressions were checked.
 | |
|     const AbstractConditionalOperator *C =
 | |
|         cast<AbstractConditionalOperator>(E);
 | |
|     StringLiteralCheckType Left =
 | |
|         checkFormatStringExpr(S, C->getTrueExpr(), Args,
 | |
|                               HasVAListArg, format_idx, firstDataArg,
 | |
|                               Type, CallType, InFunctionCall, CheckedVarArgs);
 | |
|     if (Left == SLCT_NotALiteral)
 | |
|       return SLCT_NotALiteral;
 | |
|     StringLiteralCheckType Right =
 | |
|         checkFormatStringExpr(S, C->getFalseExpr(), Args,
 | |
|                               HasVAListArg, format_idx, firstDataArg,
 | |
|                               Type, CallType, InFunctionCall, CheckedVarArgs);
 | |
|     return Left < Right ? Left : Right;
 | |
|   }
 | |
| 
 | |
|   case Stmt::ImplicitCastExprClass: {
 | |
|     E = cast<ImplicitCastExpr>(E)->getSubExpr();
 | |
|     goto tryAgain;
 | |
|   }
 | |
| 
 | |
|   case Stmt::OpaqueValueExprClass:
 | |
|     if (const Expr *src = cast<OpaqueValueExpr>(E)->getSourceExpr()) {
 | |
|       E = src;
 | |
|       goto tryAgain;
 | |
|     }
 | |
|     return SLCT_NotALiteral;
 | |
| 
 | |
|   case Stmt::PredefinedExprClass:
 | |
|     // While __func__, etc., are technically not string literals, they
 | |
|     // cannot contain format specifiers and thus are not a security
 | |
|     // liability.
 | |
|     return SLCT_UncheckedLiteral;
 | |
|       
 | |
|   case Stmt::DeclRefExprClass: {
 | |
|     const DeclRefExpr *DR = cast<DeclRefExpr>(E);
 | |
| 
 | |
|     // As an exception, do not flag errors for variables binding to
 | |
|     // const string literals.
 | |
|     if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
 | |
|       bool isConstant = false;
 | |
|       QualType T = DR->getType();
 | |
| 
 | |
|       if (const ArrayType *AT = S.Context.getAsArrayType(T)) {
 | |
|         isConstant = AT->getElementType().isConstant(S.Context);
 | |
|       } else if (const PointerType *PT = T->getAs<PointerType>()) {
 | |
|         isConstant = T.isConstant(S.Context) &&
 | |
|                      PT->getPointeeType().isConstant(S.Context);
 | |
|       } else if (T->isObjCObjectPointerType()) {
 | |
|         // In ObjC, there is usually no "const ObjectPointer" type,
 | |
|         // so don't check if the pointee type is constant.
 | |
|         isConstant = T.isConstant(S.Context);
 | |
|       }
 | |
| 
 | |
|       if (isConstant) {
 | |
|         if (const Expr *Init = VD->getAnyInitializer()) {
 | |
|           // Look through initializers like const char c[] = { "foo" }
 | |
|           if (const InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) {
 | |
|             if (InitList->isStringLiteralInit())
 | |
|               Init = InitList->getInit(0)->IgnoreParenImpCasts();
 | |
|           }
 | |
|           return checkFormatStringExpr(S, Init, Args,
 | |
|                                        HasVAListArg, format_idx,
 | |
|                                        firstDataArg, Type, CallType,
 | |
|                                        /*InFunctionCall*/false, CheckedVarArgs);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // For vprintf* functions (i.e., HasVAListArg==true), we add a
 | |
|       // special check to see if the format string is a function parameter
 | |
|       // of the function calling the printf function.  If the function
 | |
|       // has an attribute indicating it is a printf-like function, then we
 | |
|       // should suppress warnings concerning non-literals being used in a call
 | |
|       // to a vprintf function.  For example:
 | |
|       //
 | |
|       // void
 | |
|       // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){
 | |
|       //      va_list ap;
 | |
|       //      va_start(ap, fmt);
 | |
|       //      vprintf(fmt, ap);  // Do NOT emit a warning about "fmt".
 | |
|       //      ...
 | |
|       // }
 | |
|       if (HasVAListArg) {
 | |
|         if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(VD)) {
 | |
|           if (const NamedDecl *ND = dyn_cast<NamedDecl>(PV->getDeclContext())) {
 | |
|             int PVIndex = PV->getFunctionScopeIndex() + 1;
 | |
|             for (specific_attr_iterator<FormatAttr>
 | |
|                  i = ND->specific_attr_begin<FormatAttr>(),
 | |
|                  e = ND->specific_attr_end<FormatAttr>(); i != e ; ++i) {
 | |
|               FormatAttr *PVFormat = *i;
 | |
|               // adjust for implicit parameter
 | |
|               if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
 | |
|                 if (MD->isInstance())
 | |
|                   ++PVIndex;
 | |
|               // We also check if the formats are compatible.
 | |
|               // We can't pass a 'scanf' string to a 'printf' function.
 | |
|               if (PVIndex == PVFormat->getFormatIdx() &&
 | |
|                   Type == S.GetFormatStringType(PVFormat))
 | |
|                 return SLCT_UncheckedLiteral;
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     return SLCT_NotALiteral;
 | |
|   }
 | |
| 
 | |
|   case Stmt::CallExprClass:
 | |
|   case Stmt::CXXMemberCallExprClass: {
 | |
|     const CallExpr *CE = cast<CallExpr>(E);
 | |
|     if (const NamedDecl *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl())) {
 | |
|       if (const FormatArgAttr *FA = ND->getAttr<FormatArgAttr>()) {
 | |
|         unsigned ArgIndex = FA->getFormatIdx();
 | |
|         if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
 | |
|           if (MD->isInstance())
 | |
|             --ArgIndex;
 | |
|         const Expr *Arg = CE->getArg(ArgIndex - 1);
 | |
| 
 | |
|         return checkFormatStringExpr(S, Arg, Args,
 | |
|                                      HasVAListArg, format_idx, firstDataArg,
 | |
|                                      Type, CallType, InFunctionCall,
 | |
|                                      CheckedVarArgs);
 | |
|       } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
 | |
|         unsigned BuiltinID = FD->getBuiltinID();
 | |
|         if (BuiltinID == Builtin::BI__builtin___CFStringMakeConstantString ||
 | |
|             BuiltinID == Builtin::BI__builtin___NSStringMakeConstantString) {
 | |
|           const Expr *Arg = CE->getArg(0);
 | |
|           return checkFormatStringExpr(S, Arg, Args,
 | |
|                                        HasVAListArg, format_idx,
 | |
|                                        firstDataArg, Type, CallType,
 | |
|                                        InFunctionCall, CheckedVarArgs);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     return SLCT_NotALiteral;
 | |
|   }
 | |
|       
 | |
|   case Stmt::ObjCMessageExprClass: {
 | |
|     const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(E);
 | |
|     if (const ObjCMethodDecl *MDecl = ME->getMethodDecl()) {
 | |
|       if (const NamedDecl *ND = dyn_cast<NamedDecl>(MDecl)) {
 | |
|         if (const FormatArgAttr *FA = ND->getAttr<FormatArgAttr>()) {
 | |
|           unsigned ArgIndex = FA->getFormatIdx();
 | |
|           if (ArgIndex <= ME->getNumArgs()) {
 | |
|             const Expr *Arg = ME->getArg(ArgIndex-1);
 | |
|             return checkFormatStringExpr(S, Arg, Args,
 | |
|                                          HasVAListArg, format_idx,
 | |
|                                          firstDataArg, Type, CallType,
 | |
|                                          InFunctionCall, CheckedVarArgs);
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     return SLCT_NotALiteral;
 | |
|   }
 | |
|       
 | |
|   case Stmt::ObjCStringLiteralClass:
 | |
|   case Stmt::StringLiteralClass: {
 | |
|     const StringLiteral *StrE = NULL;
 | |
| 
 | |
|     if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
 | |
|       StrE = ObjCFExpr->getString();
 | |
|     else
 | |
|       StrE = cast<StringLiteral>(E);
 | |
| 
 | |
|     if (StrE) {
 | |
|       S.CheckFormatString(StrE, E, Args, HasVAListArg, format_idx, firstDataArg,
 | |
|                           Type, InFunctionCall, CallType, CheckedVarArgs);
 | |
|       return SLCT_CheckedLiteral;
 | |
|     }
 | |
| 
 | |
|     return SLCT_NotALiteral;
 | |
|   }
 | |
| 
 | |
|   default:
 | |
|     return SLCT_NotALiteral;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void
 | |
| Sema::CheckNonNullArguments(const NonNullAttr *NonNull,
 | |
|                             const Expr * const *ExprArgs,
 | |
|                             SourceLocation CallSiteLoc) {
 | |
|   for (NonNullAttr::args_iterator i = NonNull->args_begin(),
 | |
|                                   e = NonNull->args_end();
 | |
|        i != e; ++i) {
 | |
|     const Expr *ArgExpr = ExprArgs[*i];
 | |
| 
 | |
|     // As a special case, transparent unions initialized with zero are
 | |
|     // considered null for the purposes of the nonnull attribute.
 | |
|     if (const RecordType *UT = ArgExpr->getType()->getAsUnionType()) {
 | |
|       if (UT->getDecl()->hasAttr<TransparentUnionAttr>())
 | |
|         if (const CompoundLiteralExpr *CLE =
 | |
|             dyn_cast<CompoundLiteralExpr>(ArgExpr))
 | |
|           if (const InitListExpr *ILE =
 | |
|               dyn_cast<InitListExpr>(CLE->getInitializer()))
 | |
|             ArgExpr = ILE->getInit(0);
 | |
|     }
 | |
| 
 | |
|     bool Result;
 | |
|     if (ArgExpr->EvaluateAsBooleanCondition(Result, Context) && !Result)
 | |
|       Diag(CallSiteLoc, diag::warn_null_arg) << ArgExpr->getSourceRange();
 | |
|   }
 | |
| }
 | |
| 
 | |
| Sema::FormatStringType Sema::GetFormatStringType(const FormatAttr *Format) {
 | |
|   return llvm::StringSwitch<FormatStringType>(Format->getType()->getName())
 | |
|   .Case("scanf", FST_Scanf)
 | |
|   .Cases("printf", "printf0", FST_Printf)
 | |
|   .Cases("NSString", "CFString", FST_NSString)
 | |
|   .Case("strftime", FST_Strftime)
 | |
|   .Case("strfmon", FST_Strfmon)
 | |
|   .Cases("kprintf", "cmn_err", "vcmn_err", "zcmn_err", FST_Kprintf)
 | |
|   .Default(FST_Unknown);
 | |
| }
 | |
| 
 | |
| /// CheckFormatArguments - Check calls to printf and scanf (and similar
 | |
| /// functions) for correct use of format strings.
 | |
| /// Returns true if a format string has been fully checked.
 | |
| bool Sema::CheckFormatArguments(const FormatAttr *Format,
 | |
|                                 ArrayRef<const Expr *> Args,
 | |
|                                 bool IsCXXMember,
 | |
|                                 VariadicCallType CallType,
 | |
|                                 SourceLocation Loc, SourceRange Range,
 | |
|                                 llvm::SmallBitVector &CheckedVarArgs) {
 | |
|   FormatStringInfo FSI;
 | |
|   if (getFormatStringInfo(Format, IsCXXMember, &FSI))
 | |
|     return CheckFormatArguments(Args, FSI.HasVAListArg, FSI.FormatIdx,
 | |
|                                 FSI.FirstDataArg, GetFormatStringType(Format),
 | |
|                                 CallType, Loc, Range, CheckedVarArgs);
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool Sema::CheckFormatArguments(ArrayRef<const Expr *> Args,
 | |
|                                 bool HasVAListArg, unsigned format_idx,
 | |
|                                 unsigned firstDataArg, FormatStringType Type,
 | |
|                                 VariadicCallType CallType,
 | |
|                                 SourceLocation Loc, SourceRange Range,
 | |
|                                 llvm::SmallBitVector &CheckedVarArgs) {
 | |
|   // CHECK: printf/scanf-like function is called with no format string.
 | |
|   if (format_idx >= Args.size()) {
 | |
|     Diag(Loc, diag::warn_missing_format_string) << Range;
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   const Expr *OrigFormatExpr = Args[format_idx]->IgnoreParenCasts();
 | |
| 
 | |
|   // CHECK: format string is not a string literal.
 | |
|   //
 | |
|   // Dynamically generated format strings are difficult to
 | |
|   // automatically vet at compile time.  Requiring that format strings
 | |
|   // are string literals: (1) permits the checking of format strings by
 | |
|   // the compiler and thereby (2) can practically remove the source of
 | |
|   // many format string exploits.
 | |
| 
 | |
|   // Format string can be either ObjC string (e.g. @"%d") or
 | |
|   // C string (e.g. "%d")
 | |
|   // ObjC string uses the same format specifiers as C string, so we can use
 | |
|   // the same format string checking logic for both ObjC and C strings.
 | |
|   StringLiteralCheckType CT =
 | |
|       checkFormatStringExpr(*this, OrigFormatExpr, Args, HasVAListArg,
 | |
|                             format_idx, firstDataArg, Type, CallType,
 | |
|                             /*IsFunctionCall*/true, CheckedVarArgs);
 | |
|   if (CT != SLCT_NotALiteral)
 | |
|     // Literal format string found, check done!
 | |
|     return CT == SLCT_CheckedLiteral;
 | |
| 
 | |
|   // Strftime is particular as it always uses a single 'time' argument,
 | |
|   // so it is safe to pass a non-literal string.
 | |
|   if (Type == FST_Strftime)
 | |
|     return false;
 | |
| 
 | |
|   // Do not emit diag when the string param is a macro expansion and the
 | |
|   // format is either NSString or CFString. This is a hack to prevent
 | |
|   // diag when using the NSLocalizedString and CFCopyLocalizedString macros
 | |
|   // which are usually used in place of NS and CF string literals.
 | |
|   if (Type == FST_NSString &&
 | |
|       SourceMgr.isInSystemMacro(Args[format_idx]->getLocStart()))
 | |
|     return false;
 | |
| 
 | |
|   // If there are no arguments specified, warn with -Wformat-security, otherwise
 | |
|   // warn only with -Wformat-nonliteral.
 | |
|   if (Args.size() == firstDataArg)
 | |
|     Diag(Args[format_idx]->getLocStart(),
 | |
|          diag::warn_format_nonliteral_noargs)
 | |
|       << OrigFormatExpr->getSourceRange();
 | |
|   else
 | |
|     Diag(Args[format_idx]->getLocStart(),
 | |
|          diag::warn_format_nonliteral)
 | |
|            << OrigFormatExpr->getSourceRange();
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| class CheckFormatHandler : public analyze_format_string::FormatStringHandler {
 | |
| protected:
 | |
|   Sema &S;
 | |
|   const StringLiteral *FExpr;
 | |
|   const Expr *OrigFormatExpr;
 | |
|   const unsigned FirstDataArg;
 | |
|   const unsigned NumDataArgs;
 | |
|   const char *Beg; // Start of format string.
 | |
|   const bool HasVAListArg;
 | |
|   ArrayRef<const Expr *> Args;
 | |
|   unsigned FormatIdx;
 | |
|   llvm::SmallBitVector CoveredArgs;
 | |
|   bool usesPositionalArgs;
 | |
|   bool atFirstArg;
 | |
|   bool inFunctionCall;
 | |
|   Sema::VariadicCallType CallType;
 | |
|   llvm::SmallBitVector &CheckedVarArgs;
 | |
| public:
 | |
|   CheckFormatHandler(Sema &s, const StringLiteral *fexpr,
 | |
|                      const Expr *origFormatExpr, unsigned firstDataArg,
 | |
|                      unsigned numDataArgs, const char *beg, bool hasVAListArg,
 | |
|                      ArrayRef<const Expr *> Args,
 | |
|                      unsigned formatIdx, bool inFunctionCall,
 | |
|                      Sema::VariadicCallType callType,
 | |
|                      llvm::SmallBitVector &CheckedVarArgs)
 | |
|     : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr),
 | |
|       FirstDataArg(firstDataArg), NumDataArgs(numDataArgs),
 | |
|       Beg(beg), HasVAListArg(hasVAListArg),
 | |
|       Args(Args), FormatIdx(formatIdx),
 | |
|       usesPositionalArgs(false), atFirstArg(true),
 | |
|       inFunctionCall(inFunctionCall), CallType(callType),
 | |
|       CheckedVarArgs(CheckedVarArgs) {
 | |
|     CoveredArgs.resize(numDataArgs);
 | |
|     CoveredArgs.reset();
 | |
|   }
 | |
| 
 | |
|   void DoneProcessing();
 | |
| 
 | |
|   void HandleIncompleteSpecifier(const char *startSpecifier,
 | |
|                                  unsigned specifierLen);
 | |
| 
 | |
|   void HandleInvalidLengthModifier(
 | |
|       const analyze_format_string::FormatSpecifier &FS,
 | |
|       const analyze_format_string::ConversionSpecifier &CS,
 | |
|       const char *startSpecifier, unsigned specifierLen, unsigned DiagID);
 | |
| 
 | |
|   void HandleNonStandardLengthModifier(
 | |
|       const analyze_format_string::FormatSpecifier &FS,
 | |
|       const char *startSpecifier, unsigned specifierLen);
 | |
| 
 | |
|   void HandleNonStandardConversionSpecifier(
 | |
|       const analyze_format_string::ConversionSpecifier &CS,
 | |
|       const char *startSpecifier, unsigned specifierLen);
 | |
| 
 | |
|   virtual void HandlePosition(const char *startPos, unsigned posLen);
 | |
| 
 | |
|   virtual void HandleInvalidPosition(const char *startSpecifier,
 | |
|                                      unsigned specifierLen,
 | |
|                                      analyze_format_string::PositionContext p);
 | |
| 
 | |
|   virtual void HandleZeroPosition(const char *startPos, unsigned posLen);
 | |
| 
 | |
|   void HandleNullChar(const char *nullCharacter);
 | |
| 
 | |
|   template <typename Range>
 | |
|   static void EmitFormatDiagnostic(Sema &S, bool inFunctionCall,
 | |
|                                    const Expr *ArgumentExpr,
 | |
|                                    PartialDiagnostic PDiag,
 | |
|                                    SourceLocation StringLoc,
 | |
|                                    bool IsStringLocation, Range StringRange,
 | |
|                                    ArrayRef<FixItHint> Fixit = None);
 | |
| 
 | |
| protected:
 | |
|   bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc,
 | |
|                                         const char *startSpec,
 | |
|                                         unsigned specifierLen,
 | |
|                                         const char *csStart, unsigned csLen);
 | |
| 
 | |
|   void HandlePositionalNonpositionalArgs(SourceLocation Loc,
 | |
|                                          const char *startSpec,
 | |
|                                          unsigned specifierLen);
 | |
|   
 | |
|   SourceRange getFormatStringRange();
 | |
|   CharSourceRange getSpecifierRange(const char *startSpecifier,
 | |
|                                     unsigned specifierLen);
 | |
|   SourceLocation getLocationOfByte(const char *x);
 | |
| 
 | |
|   const Expr *getDataArg(unsigned i) const;
 | |
|   
 | |
|   bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS,
 | |
|                     const analyze_format_string::ConversionSpecifier &CS,
 | |
|                     const char *startSpecifier, unsigned specifierLen,
 | |
|                     unsigned argIndex);
 | |
| 
 | |
|   template <typename Range>
 | |
|   void EmitFormatDiagnostic(PartialDiagnostic PDiag, SourceLocation StringLoc,
 | |
|                             bool IsStringLocation, Range StringRange,
 | |
|                             ArrayRef<FixItHint> Fixit = None);
 | |
| 
 | |
|   void CheckPositionalAndNonpositionalArgs(
 | |
|       const analyze_format_string::FormatSpecifier *FS);
 | |
| };
 | |
| }
 | |
| 
 | |
| SourceRange CheckFormatHandler::getFormatStringRange() {
 | |
|   return OrigFormatExpr->getSourceRange();
 | |
| }
 | |
| 
 | |
| CharSourceRange CheckFormatHandler::
 | |
| getSpecifierRange(const char *startSpecifier, unsigned specifierLen) {
 | |
|   SourceLocation Start = getLocationOfByte(startSpecifier);
 | |
|   SourceLocation End   = getLocationOfByte(startSpecifier + specifierLen - 1);
 | |
| 
 | |
|   // Advance the end SourceLocation by one due to half-open ranges.
 | |
|   End = End.getLocWithOffset(1);
 | |
| 
 | |
|   return CharSourceRange::getCharRange(Start, End);
 | |
| }
 | |
| 
 | |
| SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) {
 | |
|   return S.getLocationOfStringLiteralByte(FExpr, x - Beg);
 | |
| }
 | |
| 
 | |
| void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier,
 | |
|                                                    unsigned specifierLen){
 | |
|   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_incomplete_specifier),
 | |
|                        getLocationOfByte(startSpecifier),
 | |
|                        /*IsStringLocation*/true,
 | |
|                        getSpecifierRange(startSpecifier, specifierLen));
 | |
| }
 | |
| 
 | |
| void CheckFormatHandler::HandleInvalidLengthModifier(
 | |
|     const analyze_format_string::FormatSpecifier &FS,
 | |
|     const analyze_format_string::ConversionSpecifier &CS,
 | |
|     const char *startSpecifier, unsigned specifierLen, unsigned DiagID) {
 | |
|   using namespace analyze_format_string;
 | |
| 
 | |
|   const LengthModifier &LM = FS.getLengthModifier();
 | |
|   CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
 | |
| 
 | |
|   // See if we know how to fix this length modifier.
 | |
|   Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
 | |
|   if (FixedLM) {
 | |
|     EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(),
 | |
|                          getLocationOfByte(LM.getStart()),
 | |
|                          /*IsStringLocation*/true,
 | |
|                          getSpecifierRange(startSpecifier, specifierLen));
 | |
| 
 | |
|     S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
 | |
|       << FixedLM->toString()
 | |
|       << FixItHint::CreateReplacement(LMRange, FixedLM->toString());
 | |
| 
 | |
|   } else {
 | |
|     FixItHint Hint;
 | |
|     if (DiagID == diag::warn_format_nonsensical_length)
 | |
|       Hint = FixItHint::CreateRemoval(LMRange);
 | |
| 
 | |
|     EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(),
 | |
|                          getLocationOfByte(LM.getStart()),
 | |
|                          /*IsStringLocation*/true,
 | |
|                          getSpecifierRange(startSpecifier, specifierLen),
 | |
|                          Hint);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void CheckFormatHandler::HandleNonStandardLengthModifier(
 | |
|     const analyze_format_string::FormatSpecifier &FS,
 | |
|     const char *startSpecifier, unsigned specifierLen) {
 | |
|   using namespace analyze_format_string;
 | |
| 
 | |
|   const LengthModifier &LM = FS.getLengthModifier();
 | |
|   CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
 | |
| 
 | |
|   // See if we know how to fix this length modifier.
 | |
|   Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
 | |
|   if (FixedLM) {
 | |
|     EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
 | |
|                            << LM.toString() << 0,
 | |
|                          getLocationOfByte(LM.getStart()),
 | |
|                          /*IsStringLocation*/true,
 | |
|                          getSpecifierRange(startSpecifier, specifierLen));
 | |
| 
 | |
|     S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
 | |
|       << FixedLM->toString()
 | |
|       << FixItHint::CreateReplacement(LMRange, FixedLM->toString());
 | |
| 
 | |
|   } else {
 | |
|     EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
 | |
|                            << LM.toString() << 0,
 | |
|                          getLocationOfByte(LM.getStart()),
 | |
|                          /*IsStringLocation*/true,
 | |
|                          getSpecifierRange(startSpecifier, specifierLen));
 | |
|   }
 | |
| }
 | |
| 
 | |
| void CheckFormatHandler::HandleNonStandardConversionSpecifier(
 | |
|     const analyze_format_string::ConversionSpecifier &CS,
 | |
|     const char *startSpecifier, unsigned specifierLen) {
 | |
|   using namespace analyze_format_string;
 | |
| 
 | |
|   // See if we know how to fix this conversion specifier.
 | |
|   Optional<ConversionSpecifier> FixedCS = CS.getStandardSpecifier();
 | |
|   if (FixedCS) {
 | |
|     EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
 | |
|                           << CS.toString() << /*conversion specifier*/1,
 | |
|                          getLocationOfByte(CS.getStart()),
 | |
|                          /*IsStringLocation*/true,
 | |
|                          getSpecifierRange(startSpecifier, specifierLen));
 | |
| 
 | |
|     CharSourceRange CSRange = getSpecifierRange(CS.getStart(), CS.getLength());
 | |
|     S.Diag(getLocationOfByte(CS.getStart()), diag::note_format_fix_specifier)
 | |
|       << FixedCS->toString()
 | |
|       << FixItHint::CreateReplacement(CSRange, FixedCS->toString());
 | |
|   } else {
 | |
|     EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
 | |
|                           << CS.toString() << /*conversion specifier*/1,
 | |
|                          getLocationOfByte(CS.getStart()),
 | |
|                          /*IsStringLocation*/true,
 | |
|                          getSpecifierRange(startSpecifier, specifierLen));
 | |
|   }
 | |
| }
 | |
| 
 | |
| void CheckFormatHandler::HandlePosition(const char *startPos,
 | |
|                                         unsigned posLen) {
 | |
|   EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard_positional_arg),
 | |
|                                getLocationOfByte(startPos),
 | |
|                                /*IsStringLocation*/true,
 | |
|                                getSpecifierRange(startPos, posLen));
 | |
| }
 | |
| 
 | |
| void
 | |
| CheckFormatHandler::HandleInvalidPosition(const char *startPos, unsigned posLen,
 | |
|                                      analyze_format_string::PositionContext p) {
 | |
|   EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_positional_specifier)
 | |
|                          << (unsigned) p,
 | |
|                        getLocationOfByte(startPos), /*IsStringLocation*/true,
 | |
|                        getSpecifierRange(startPos, posLen));
 | |
| }
 | |
| 
 | |
| void CheckFormatHandler::HandleZeroPosition(const char *startPos,
 | |
|                                             unsigned posLen) {
 | |
|   EmitFormatDiagnostic(S.PDiag(diag::warn_format_zero_positional_specifier),
 | |
|                                getLocationOfByte(startPos),
 | |
|                                /*IsStringLocation*/true,
 | |
|                                getSpecifierRange(startPos, posLen));
 | |
| }
 | |
| 
 | |
| void CheckFormatHandler::HandleNullChar(const char *nullCharacter) {
 | |
|   if (!isa<ObjCStringLiteral>(OrigFormatExpr)) {
 | |
|     // The presence of a null character is likely an error.
 | |
|     EmitFormatDiagnostic(
 | |
|       S.PDiag(diag::warn_printf_format_string_contains_null_char),
 | |
|       getLocationOfByte(nullCharacter), /*IsStringLocation*/true,
 | |
|       getFormatStringRange());
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Note that this may return NULL if there was an error parsing or building
 | |
| // one of the argument expressions.
 | |
| const Expr *CheckFormatHandler::getDataArg(unsigned i) const {
 | |
|   return Args[FirstDataArg + i];
 | |
| }
 | |
| 
 | |
| void CheckFormatHandler::DoneProcessing() {
 | |
|     // Does the number of data arguments exceed the number of
 | |
|     // format conversions in the format string?
 | |
|   if (!HasVAListArg) {
 | |
|       // Find any arguments that weren't covered.
 | |
|     CoveredArgs.flip();
 | |
|     signed notCoveredArg = CoveredArgs.find_first();
 | |
|     if (notCoveredArg >= 0) {
 | |
|       assert((unsigned)notCoveredArg < NumDataArgs);
 | |
|       if (const Expr *E = getDataArg((unsigned) notCoveredArg)) {
 | |
|         SourceLocation Loc = E->getLocStart();
 | |
|         if (!S.getSourceManager().isInSystemMacro(Loc)) {
 | |
|           EmitFormatDiagnostic(S.PDiag(diag::warn_printf_data_arg_not_used),
 | |
|                                Loc, /*IsStringLocation*/false,
 | |
|                                getFormatStringRange());
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool
 | |
| CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex,
 | |
|                                                      SourceLocation Loc,
 | |
|                                                      const char *startSpec,
 | |
|                                                      unsigned specifierLen,
 | |
|                                                      const char *csStart,
 | |
|                                                      unsigned csLen) {
 | |
|   
 | |
|   bool keepGoing = true;
 | |
|   if (argIndex < NumDataArgs) {
 | |
|     // Consider the argument coverered, even though the specifier doesn't
 | |
|     // make sense.
 | |
|     CoveredArgs.set(argIndex);
 | |
|   }
 | |
|   else {
 | |
|     // If argIndex exceeds the number of data arguments we
 | |
|     // don't issue a warning because that is just a cascade of warnings (and
 | |
|     // they may have intended '%%' anyway). We don't want to continue processing
 | |
|     // the format string after this point, however, as we will like just get
 | |
|     // gibberish when trying to match arguments.
 | |
|     keepGoing = false;
 | |
|   }
 | |
|   
 | |
|   EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_conversion)
 | |
|                          << StringRef(csStart, csLen),
 | |
|                        Loc, /*IsStringLocation*/true,
 | |
|                        getSpecifierRange(startSpec, specifierLen));
 | |
|   
 | |
|   return keepGoing;
 | |
| }
 | |
| 
 | |
| void
 | |
| CheckFormatHandler::HandlePositionalNonpositionalArgs(SourceLocation Loc,
 | |
|                                                       const char *startSpec,
 | |
|                                                       unsigned specifierLen) {
 | |
|   EmitFormatDiagnostic(
 | |
|     S.PDiag(diag::warn_format_mix_positional_nonpositional_args),
 | |
|     Loc, /*isStringLoc*/true, getSpecifierRange(startSpec, specifierLen));
 | |
| }
 | |
| 
 | |
| bool
 | |
| CheckFormatHandler::CheckNumArgs(
 | |
|   const analyze_format_string::FormatSpecifier &FS,
 | |
|   const analyze_format_string::ConversionSpecifier &CS,
 | |
|   const char *startSpecifier, unsigned specifierLen, unsigned argIndex) {
 | |
| 
 | |
|   if (argIndex >= NumDataArgs) {
 | |
|     PartialDiagnostic PDiag = FS.usesPositionalArg()
 | |
|       ? (S.PDiag(diag::warn_printf_positional_arg_exceeds_data_args)
 | |
|            << (argIndex+1) << NumDataArgs)
 | |
|       : S.PDiag(diag::warn_printf_insufficient_data_args);
 | |
|     EmitFormatDiagnostic(
 | |
|       PDiag, getLocationOfByte(CS.getStart()), /*IsStringLocation*/true,
 | |
|       getSpecifierRange(startSpecifier, specifierLen));
 | |
|     return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| template<typename Range>
 | |
| void CheckFormatHandler::EmitFormatDiagnostic(PartialDiagnostic PDiag,
 | |
|                                               SourceLocation Loc,
 | |
|                                               bool IsStringLocation,
 | |
|                                               Range StringRange,
 | |
|                                               ArrayRef<FixItHint> FixIt) {
 | |
|   EmitFormatDiagnostic(S, inFunctionCall, Args[FormatIdx], PDiag,
 | |
|                        Loc, IsStringLocation, StringRange, FixIt);
 | |
| }
 | |
| 
 | |
| /// \brief If the format string is not within the funcion call, emit a note
 | |
| /// so that the function call and string are in diagnostic messages.
 | |
| ///
 | |
| /// \param InFunctionCall if true, the format string is within the function
 | |
| /// call and only one diagnostic message will be produced.  Otherwise, an
 | |
| /// extra note will be emitted pointing to location of the format string.
 | |
| ///
 | |
| /// \param ArgumentExpr the expression that is passed as the format string
 | |
| /// argument in the function call.  Used for getting locations when two
 | |
| /// diagnostics are emitted.
 | |
| ///
 | |
| /// \param PDiag the callee should already have provided any strings for the
 | |
| /// diagnostic message.  This function only adds locations and fixits
 | |
| /// to diagnostics.
 | |
| ///
 | |
| /// \param Loc primary location for diagnostic.  If two diagnostics are
 | |
| /// required, one will be at Loc and a new SourceLocation will be created for
 | |
| /// the other one.
 | |
| ///
 | |
| /// \param IsStringLocation if true, Loc points to the format string should be
 | |
| /// used for the note.  Otherwise, Loc points to the argument list and will
 | |
| /// be used with PDiag.
 | |
| ///
 | |
| /// \param StringRange some or all of the string to highlight.  This is
 | |
| /// templated so it can accept either a CharSourceRange or a SourceRange.
 | |
| ///
 | |
| /// \param FixIt optional fix it hint for the format string.
 | |
| template<typename Range>
 | |
| void CheckFormatHandler::EmitFormatDiagnostic(Sema &S, bool InFunctionCall,
 | |
|                                               const Expr *ArgumentExpr,
 | |
|                                               PartialDiagnostic PDiag,
 | |
|                                               SourceLocation Loc,
 | |
|                                               bool IsStringLocation,
 | |
|                                               Range StringRange,
 | |
|                                               ArrayRef<FixItHint> FixIt) {
 | |
|   if (InFunctionCall) {
 | |
|     const Sema::SemaDiagnosticBuilder &D = S.Diag(Loc, PDiag);
 | |
|     D << StringRange;
 | |
|     for (ArrayRef<FixItHint>::iterator I = FixIt.begin(), E = FixIt.end();
 | |
|          I != E; ++I) {
 | |
|       D << *I;
 | |
|     }
 | |
|   } else {
 | |
|     S.Diag(IsStringLocation ? ArgumentExpr->getExprLoc() : Loc, PDiag)
 | |
|       << ArgumentExpr->getSourceRange();
 | |
| 
 | |
|     const Sema::SemaDiagnosticBuilder &Note =
 | |
|       S.Diag(IsStringLocation ? Loc : StringRange.getBegin(),
 | |
|              diag::note_format_string_defined);
 | |
| 
 | |
|     Note << StringRange;
 | |
|     for (ArrayRef<FixItHint>::iterator I = FixIt.begin(), E = FixIt.end();
 | |
|          I != E; ++I) {
 | |
|       Note << *I;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| //===--- CHECK: Printf format string checking ------------------------------===//
 | |
| 
 | |
| namespace {
 | |
| class CheckPrintfHandler : public CheckFormatHandler {
 | |
|   bool ObjCContext;
 | |
| public:
 | |
|   CheckPrintfHandler(Sema &s, const StringLiteral *fexpr,
 | |
|                      const Expr *origFormatExpr, unsigned firstDataArg,
 | |
|                      unsigned numDataArgs, bool isObjC,
 | |
|                      const char *beg, bool hasVAListArg,
 | |
|                      ArrayRef<const Expr *> Args,
 | |
|                      unsigned formatIdx, bool inFunctionCall,
 | |
|                      Sema::VariadicCallType CallType,
 | |
|                      llvm::SmallBitVector &CheckedVarArgs)
 | |
|     : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
 | |
|                          numDataArgs, beg, hasVAListArg, Args,
 | |
|                          formatIdx, inFunctionCall, CallType, CheckedVarArgs),
 | |
|       ObjCContext(isObjC)
 | |
|   {}
 | |
| 
 | |
|   
 | |
|   bool HandleInvalidPrintfConversionSpecifier(
 | |
|                                       const analyze_printf::PrintfSpecifier &FS,
 | |
|                                       const char *startSpecifier,
 | |
|                                       unsigned specifierLen);
 | |
|   
 | |
|   bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
 | |
|                              const char *startSpecifier,
 | |
|                              unsigned specifierLen);
 | |
|   bool checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
 | |
|                        const char *StartSpecifier,
 | |
|                        unsigned SpecifierLen,
 | |
|                        const Expr *E);
 | |
| 
 | |
|   bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k,
 | |
|                     const char *startSpecifier, unsigned specifierLen);
 | |
|   void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS,
 | |
|                            const analyze_printf::OptionalAmount &Amt,
 | |
|                            unsigned type,
 | |
|                            const char *startSpecifier, unsigned specifierLen);
 | |
|   void HandleFlag(const analyze_printf::PrintfSpecifier &FS,
 | |
|                   const analyze_printf::OptionalFlag &flag,
 | |
|                   const char *startSpecifier, unsigned specifierLen);
 | |
|   void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS,
 | |
|                          const analyze_printf::OptionalFlag &ignoredFlag,
 | |
|                          const analyze_printf::OptionalFlag &flag,
 | |
|                          const char *startSpecifier, unsigned specifierLen);
 | |
|   bool checkForCStrMembers(const analyze_printf::ArgType &AT,
 | |
|                            const Expr *E, const CharSourceRange &CSR);
 | |
| 
 | |
| };  
 | |
| }
 | |
| 
 | |
| bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier(
 | |
|                                       const analyze_printf::PrintfSpecifier &FS,
 | |
|                                       const char *startSpecifier,
 | |
|                                       unsigned specifierLen) {
 | |
|   const analyze_printf::PrintfConversionSpecifier &CS =
 | |
|     FS.getConversionSpecifier();
 | |
|   
 | |
|   return HandleInvalidConversionSpecifier(FS.getArgIndex(),
 | |
|                                           getLocationOfByte(CS.getStart()),
 | |
|                                           startSpecifier, specifierLen,
 | |
|                                           CS.getStart(), CS.getLength());
 | |
| }
 | |
| 
 | |
| bool CheckPrintfHandler::HandleAmount(
 | |
|                                const analyze_format_string::OptionalAmount &Amt,
 | |
|                                unsigned k, const char *startSpecifier,
 | |
|                                unsigned specifierLen) {
 | |
| 
 | |
|   if (Amt.hasDataArgument()) {
 | |
|     if (!HasVAListArg) {
 | |
|       unsigned argIndex = Amt.getArgIndex();
 | |
|       if (argIndex >= NumDataArgs) {
 | |
|         EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_missing_arg)
 | |
|                                << k,
 | |
|                              getLocationOfByte(Amt.getStart()),
 | |
|                              /*IsStringLocation*/true,
 | |
|                              getSpecifierRange(startSpecifier, specifierLen));
 | |
|         // Don't do any more checking.  We will just emit
 | |
|         // spurious errors.
 | |
|         return false;
 | |
|       }
 | |
| 
 | |
|       // Type check the data argument.  It should be an 'int'.
 | |
|       // Although not in conformance with C99, we also allow the argument to be
 | |
|       // an 'unsigned int' as that is a reasonably safe case.  GCC also
 | |
|       // doesn't emit a warning for that case.
 | |
|       CoveredArgs.set(argIndex);
 | |
|       const Expr *Arg = getDataArg(argIndex);
 | |
|       if (!Arg)
 | |
|         return false;
 | |
| 
 | |
|       QualType T = Arg->getType();
 | |
| 
 | |
|       const analyze_printf::ArgType &AT = Amt.getArgType(S.Context);
 | |
|       assert(AT.isValid());
 | |
| 
 | |
|       if (!AT.matchesType(S.Context, T)) {
 | |
|         EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_wrong_type)
 | |
|                                << k << AT.getRepresentativeTypeName(S.Context)
 | |
|                                << T << Arg->getSourceRange(),
 | |
|                              getLocationOfByte(Amt.getStart()),
 | |
|                              /*IsStringLocation*/true,
 | |
|                              getSpecifierRange(startSpecifier, specifierLen));
 | |
|         // Don't do any more checking.  We will just emit
 | |
|         // spurious errors.
 | |
|         return false;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void CheckPrintfHandler::HandleInvalidAmount(
 | |
|                                       const analyze_printf::PrintfSpecifier &FS,
 | |
|                                       const analyze_printf::OptionalAmount &Amt,
 | |
|                                       unsigned type,
 | |
|                                       const char *startSpecifier,
 | |
|                                       unsigned specifierLen) {
 | |
|   const analyze_printf::PrintfConversionSpecifier &CS =
 | |
|     FS.getConversionSpecifier();
 | |
| 
 | |
|   FixItHint fixit =
 | |
|     Amt.getHowSpecified() == analyze_printf::OptionalAmount::Constant
 | |
|       ? FixItHint::CreateRemoval(getSpecifierRange(Amt.getStart(),
 | |
|                                  Amt.getConstantLength()))
 | |
|       : FixItHint();
 | |
| 
 | |
|   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_optional_amount)
 | |
|                          << type << CS.toString(),
 | |
|                        getLocationOfByte(Amt.getStart()),
 | |
|                        /*IsStringLocation*/true,
 | |
|                        getSpecifierRange(startSpecifier, specifierLen),
 | |
|                        fixit);
 | |
| }
 | |
| 
 | |
| void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS,
 | |
|                                     const analyze_printf::OptionalFlag &flag,
 | |
|                                     const char *startSpecifier,
 | |
|                                     unsigned specifierLen) {
 | |
|   // Warn about pointless flag with a fixit removal.
 | |
|   const analyze_printf::PrintfConversionSpecifier &CS =
 | |
|     FS.getConversionSpecifier();
 | |
|   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_flag)
 | |
|                          << flag.toString() << CS.toString(),
 | |
|                        getLocationOfByte(flag.getPosition()),
 | |
|                        /*IsStringLocation*/true,
 | |
|                        getSpecifierRange(startSpecifier, specifierLen),
 | |
|                        FixItHint::CreateRemoval(
 | |
|                          getSpecifierRange(flag.getPosition(), 1)));
 | |
| }
 | |
| 
 | |
| void CheckPrintfHandler::HandleIgnoredFlag(
 | |
|                                 const analyze_printf::PrintfSpecifier &FS,
 | |
|                                 const analyze_printf::OptionalFlag &ignoredFlag,
 | |
|                                 const analyze_printf::OptionalFlag &flag,
 | |
|                                 const char *startSpecifier,
 | |
|                                 unsigned specifierLen) {
 | |
|   // Warn about ignored flag with a fixit removal.
 | |
|   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_ignored_flag)
 | |
|                          << ignoredFlag.toString() << flag.toString(),
 | |
|                        getLocationOfByte(ignoredFlag.getPosition()),
 | |
|                        /*IsStringLocation*/true,
 | |
|                        getSpecifierRange(startSpecifier, specifierLen),
 | |
|                        FixItHint::CreateRemoval(
 | |
|                          getSpecifierRange(ignoredFlag.getPosition(), 1)));
 | |
| }
 | |
| 
 | |
| // Determines if the specified is a C++ class or struct containing
 | |
| // a member with the specified name and kind (e.g. a CXXMethodDecl named
 | |
| // "c_str()").
 | |
| template<typename MemberKind>
 | |
| static llvm::SmallPtrSet<MemberKind*, 1>
 | |
| CXXRecordMembersNamed(StringRef Name, Sema &S, QualType Ty) {
 | |
|   const RecordType *RT = Ty->getAs<RecordType>();
 | |
|   llvm::SmallPtrSet<MemberKind*, 1> Results;
 | |
| 
 | |
|   if (!RT)
 | |
|     return Results;
 | |
|   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
 | |
|   if (!RD)
 | |
|     return Results;
 | |
| 
 | |
|   LookupResult R(S, &S.PP.getIdentifierTable().get(Name), SourceLocation(),
 | |
|                  Sema::LookupMemberName);
 | |
| 
 | |
|   // We just need to include all members of the right kind turned up by the
 | |
|   // filter, at this point.
 | |
|   if (S.LookupQualifiedName(R, RT->getDecl()))
 | |
|     for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
 | |
|       NamedDecl *decl = (*I)->getUnderlyingDecl();
 | |
|       if (MemberKind *FK = dyn_cast<MemberKind>(decl))
 | |
|         Results.insert(FK);
 | |
|     }
 | |
|   return Results;
 | |
| }
 | |
| 
 | |
| // Check if a (w)string was passed when a (w)char* was needed, and offer a
 | |
| // better diagnostic if so. AT is assumed to be valid.
 | |
| // Returns true when a c_str() conversion method is found.
 | |
| bool CheckPrintfHandler::checkForCStrMembers(
 | |
|     const analyze_printf::ArgType &AT, const Expr *E,
 | |
|     const CharSourceRange &CSR) {
 | |
|   typedef llvm::SmallPtrSet<CXXMethodDecl*, 1> MethodSet;
 | |
| 
 | |
|   MethodSet Results =
 | |
|       CXXRecordMembersNamed<CXXMethodDecl>("c_str", S, E->getType());
 | |
| 
 | |
|   for (MethodSet::iterator MI = Results.begin(), ME = Results.end();
 | |
|        MI != ME; ++MI) {
 | |
|     const CXXMethodDecl *Method = *MI;
 | |
|     if (Method->getNumParams() == 0 &&
 | |
|           AT.matchesType(S.Context, Method->getResultType())) {
 | |
|       // FIXME: Suggest parens if the expression needs them.
 | |
|       SourceLocation EndLoc =
 | |
|           S.getPreprocessor().getLocForEndOfToken(E->getLocEnd());
 | |
|       S.Diag(E->getLocStart(), diag::note_printf_c_str)
 | |
|           << "c_str()"
 | |
|           << FixItHint::CreateInsertion(EndLoc, ".c_str()");
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool
 | |
| CheckPrintfHandler::HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier
 | |
|                                             &FS,
 | |
|                                           const char *startSpecifier,
 | |
|                                           unsigned specifierLen) {
 | |
| 
 | |
|   using namespace analyze_format_string;
 | |
|   using namespace analyze_printf;  
 | |
|   const PrintfConversionSpecifier &CS = FS.getConversionSpecifier();
 | |
| 
 | |
|   if (FS.consumesDataArgument()) {
 | |
|     if (atFirstArg) {
 | |
|         atFirstArg = false;
 | |
|         usesPositionalArgs = FS.usesPositionalArg();
 | |
|     }
 | |
|     else if (usesPositionalArgs != FS.usesPositionalArg()) {
 | |
|       HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
 | |
|                                         startSpecifier, specifierLen);
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // First check if the field width, precision, and conversion specifier
 | |
|   // have matching data arguments.
 | |
|   if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0,
 | |
|                     startSpecifier, specifierLen)) {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (!HandleAmount(FS.getPrecision(), /* precision */ 1,
 | |
|                     startSpecifier, specifierLen)) {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (!CS.consumesDataArgument()) {
 | |
|     // FIXME: Technically specifying a precision or field width here
 | |
|     // makes no sense.  Worth issuing a warning at some point.
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Consume the argument.
 | |
|   unsigned argIndex = FS.getArgIndex();
 | |
|   if (argIndex < NumDataArgs) {
 | |
|     // The check to see if the argIndex is valid will come later.
 | |
|     // We set the bit here because we may exit early from this
 | |
|     // function if we encounter some other error.
 | |
|     CoveredArgs.set(argIndex);
 | |
|   }
 | |
| 
 | |
|   // Check for using an Objective-C specific conversion specifier
 | |
|   // in a non-ObjC literal.
 | |
|   if (!ObjCContext && CS.isObjCArg()) {
 | |
|     return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
 | |
|                                                   specifierLen);
 | |
|   }
 | |
| 
 | |
|   // Check for invalid use of field width
 | |
|   if (!FS.hasValidFieldWidth()) {
 | |
|     HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0,
 | |
|         startSpecifier, specifierLen);
 | |
|   }
 | |
| 
 | |
|   // Check for invalid use of precision
 | |
|   if (!FS.hasValidPrecision()) {
 | |
|     HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1,
 | |
|         startSpecifier, specifierLen);
 | |
|   }
 | |
| 
 | |
|   // Check each flag does not conflict with any other component.
 | |
|   if (!FS.hasValidThousandsGroupingPrefix())
 | |
|     HandleFlag(FS, FS.hasThousandsGrouping(), startSpecifier, specifierLen);
 | |
|   if (!FS.hasValidLeadingZeros())
 | |
|     HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen);
 | |
|   if (!FS.hasValidPlusPrefix())
 | |
|     HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen);
 | |
|   if (!FS.hasValidSpacePrefix())
 | |
|     HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen);
 | |
|   if (!FS.hasValidAlternativeForm())
 | |
|     HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen);
 | |
|   if (!FS.hasValidLeftJustified())
 | |
|     HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen);
 | |
| 
 | |
|   // Check that flags are not ignored by another flag
 | |
|   if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+'
 | |
|     HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(),
 | |
|         startSpecifier, specifierLen);
 | |
|   if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-'
 | |
|     HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(),
 | |
|             startSpecifier, specifierLen);
 | |
| 
 | |
|   // Check the length modifier is valid with the given conversion specifier.
 | |
|   if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo()))
 | |
|     HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
 | |
|                                 diag::warn_format_nonsensical_length);
 | |
|   else if (!FS.hasStandardLengthModifier())
 | |
|     HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen);
 | |
|   else if (!FS.hasStandardLengthConversionCombination())
 | |
|     HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
 | |
|                                 diag::warn_format_non_standard_conversion_spec);
 | |
| 
 | |
|   if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
 | |
|     HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
 | |
| 
 | |
|   // The remaining checks depend on the data arguments.
 | |
|   if (HasVAListArg)
 | |
|     return true;
 | |
| 
 | |
|   if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
 | |
|     return false;
 | |
| 
 | |
|   const Expr *Arg = getDataArg(argIndex);
 | |
|   if (!Arg)
 | |
|     return true;
 | |
| 
 | |
|   return checkFormatExpr(FS, startSpecifier, specifierLen, Arg);
 | |
| }
 | |
| 
 | |
| static bool requiresParensToAddCast(const Expr *E) {
 | |
|   // FIXME: We should have a general way to reason about operator
 | |
|   // precedence and whether parens are actually needed here.
 | |
|   // Take care of a few common cases where they aren't.
 | |
|   const Expr *Inside = E->IgnoreImpCasts();
 | |
|   if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(Inside))
 | |
|     Inside = POE->getSyntacticForm()->IgnoreImpCasts();
 | |
| 
 | |
|   switch (Inside->getStmtClass()) {
 | |
|   case Stmt::ArraySubscriptExprClass:
 | |
|   case Stmt::CallExprClass:
 | |
|   case Stmt::CharacterLiteralClass:
 | |
|   case Stmt::CXXBoolLiteralExprClass:
 | |
|   case Stmt::DeclRefExprClass:
 | |
|   case Stmt::FloatingLiteralClass:
 | |
|   case Stmt::IntegerLiteralClass:
 | |
|   case Stmt::MemberExprClass:
 | |
|   case Stmt::ObjCArrayLiteralClass:
 | |
|   case Stmt::ObjCBoolLiteralExprClass:
 | |
|   case Stmt::ObjCBoxedExprClass:
 | |
|   case Stmt::ObjCDictionaryLiteralClass:
 | |
|   case Stmt::ObjCEncodeExprClass:
 | |
|   case Stmt::ObjCIvarRefExprClass:
 | |
|   case Stmt::ObjCMessageExprClass:
 | |
|   case Stmt::ObjCPropertyRefExprClass:
 | |
|   case Stmt::ObjCStringLiteralClass:
 | |
|   case Stmt::ObjCSubscriptRefExprClass:
 | |
|   case Stmt::ParenExprClass:
 | |
|   case Stmt::StringLiteralClass:
 | |
|   case Stmt::UnaryOperatorClass:
 | |
|     return false;
 | |
|   default:
 | |
|     return true;
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool
 | |
| CheckPrintfHandler::checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
 | |
|                                     const char *StartSpecifier,
 | |
|                                     unsigned SpecifierLen,
 | |
|                                     const Expr *E) {
 | |
|   using namespace analyze_format_string;
 | |
|   using namespace analyze_printf;
 | |
|   // Now type check the data expression that matches the
 | |
|   // format specifier.
 | |
|   const analyze_printf::ArgType &AT = FS.getArgType(S.Context,
 | |
|                                                     ObjCContext);
 | |
|   if (!AT.isValid())
 | |
|     return true;
 | |
| 
 | |
|   QualType ExprTy = E->getType();
 | |
|   while (const TypeOfExprType *TET = dyn_cast<TypeOfExprType>(ExprTy)) {
 | |
|     ExprTy = TET->getUnderlyingExpr()->getType();
 | |
|   }
 | |
| 
 | |
|   if (AT.matchesType(S.Context, ExprTy))
 | |
|     return true;
 | |
| 
 | |
|   // Look through argument promotions for our error message's reported type.
 | |
|   // This includes the integral and floating promotions, but excludes array
 | |
|   // and function pointer decay; seeing that an argument intended to be a
 | |
|   // string has type 'char [6]' is probably more confusing than 'char *'.
 | |
|   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
 | |
|     if (ICE->getCastKind() == CK_IntegralCast ||
 | |
|         ICE->getCastKind() == CK_FloatingCast) {
 | |
|       E = ICE->getSubExpr();
 | |
|       ExprTy = E->getType();
 | |
| 
 | |
|       // Check if we didn't match because of an implicit cast from a 'char'
 | |
|       // or 'short' to an 'int'.  This is done because printf is a varargs
 | |
|       // function.
 | |
|       if (ICE->getType() == S.Context.IntTy ||
 | |
|           ICE->getType() == S.Context.UnsignedIntTy) {
 | |
|         // All further checking is done on the subexpression.
 | |
|         if (AT.matchesType(S.Context, ExprTy))
 | |
|           return true;
 | |
|       }
 | |
|     }
 | |
|   } else if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) {
 | |
|     // Special case for 'a', which has type 'int' in C.
 | |
|     // Note, however, that we do /not/ want to treat multibyte constants like
 | |
|     // 'MooV' as characters! This form is deprecated but still exists.
 | |
|     if (ExprTy == S.Context.IntTy)
 | |
|       if (llvm::isUIntN(S.Context.getCharWidth(), CL->getValue()))
 | |
|         ExprTy = S.Context.CharTy;
 | |
|   }
 | |
| 
 | |
|   // %C in an Objective-C context prints a unichar, not a wchar_t.
 | |
|   // If the argument is an integer of some kind, believe the %C and suggest
 | |
|   // a cast instead of changing the conversion specifier.
 | |
|   QualType IntendedTy = ExprTy;
 | |
|   if (ObjCContext &&
 | |
|       FS.getConversionSpecifier().getKind() == ConversionSpecifier::CArg) {
 | |
|     if (ExprTy->isIntegralOrUnscopedEnumerationType() &&
 | |
|         !ExprTy->isCharType()) {
 | |
|       // 'unichar' is defined as a typedef of unsigned short, but we should
 | |
|       // prefer using the typedef if it is visible.
 | |
|       IntendedTy = S.Context.UnsignedShortTy;
 | |
| 
 | |
|       // While we are here, check if the value is an IntegerLiteral that happens
 | |
|       // to be within the valid range.
 | |
|       if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E)) {
 | |
|         const llvm::APInt &V = IL->getValue();
 | |
|         if (V.getActiveBits() <= S.Context.getTypeSize(IntendedTy))
 | |
|           return true;
 | |
|       }
 | |
| 
 | |
|       LookupResult Result(S, &S.Context.Idents.get("unichar"), E->getLocStart(),
 | |
|                           Sema::LookupOrdinaryName);
 | |
|       if (S.LookupName(Result, S.getCurScope())) {
 | |
|         NamedDecl *ND = Result.getFoundDecl();
 | |
|         if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(ND))
 | |
|           if (TD->getUnderlyingType() == IntendedTy)
 | |
|             IntendedTy = S.Context.getTypedefType(TD);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Special-case some of Darwin's platform-independence types by suggesting
 | |
|   // casts to primitive types that are known to be large enough.
 | |
|   bool ShouldNotPrintDirectly = false;
 | |
|   if (S.Context.getTargetInfo().getTriple().isOSDarwin()) {
 | |
|     // Use a 'while' to peel off layers of typedefs.
 | |
|     QualType TyTy = IntendedTy;
 | |
|     while (const TypedefType *UserTy = TyTy->getAs<TypedefType>()) {
 | |
|       StringRef Name = UserTy->getDecl()->getName();
 | |
|       QualType CastTy = llvm::StringSwitch<QualType>(Name)
 | |
|         .Case("NSInteger", S.Context.LongTy)
 | |
|         .Case("NSUInteger", S.Context.UnsignedLongTy)
 | |
|         .Case("SInt32", S.Context.IntTy)
 | |
|         .Case("UInt32", S.Context.UnsignedIntTy)
 | |
|         .Default(QualType());
 | |
| 
 | |
|       if (!CastTy.isNull()) {
 | |
|         ShouldNotPrintDirectly = true;
 | |
|         IntendedTy = CastTy;
 | |
|         break;
 | |
|       }
 | |
|       TyTy = UserTy->desugar();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // We may be able to offer a FixItHint if it is a supported type.
 | |
|   PrintfSpecifier fixedFS = FS;
 | |
|   bool success = fixedFS.fixType(IntendedTy, S.getLangOpts(),
 | |
|                                  S.Context, ObjCContext);
 | |
| 
 | |
|   if (success) {
 | |
|     // Get the fix string from the fixed format specifier
 | |
|     SmallString<16> buf;
 | |
|     llvm::raw_svector_ostream os(buf);
 | |
|     fixedFS.toString(os);
 | |
| 
 | |
|     CharSourceRange SpecRange = getSpecifierRange(StartSpecifier, SpecifierLen);
 | |
| 
 | |
|     if (IntendedTy == ExprTy) {
 | |
|       // In this case, the specifier is wrong and should be changed to match
 | |
|       // the argument.
 | |
|       EmitFormatDiagnostic(
 | |
|         S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
 | |
|           << AT.getRepresentativeTypeName(S.Context) << IntendedTy
 | |
|           << E->getSourceRange(),
 | |
|         E->getLocStart(),
 | |
|         /*IsStringLocation*/false,
 | |
|         SpecRange,
 | |
|         FixItHint::CreateReplacement(SpecRange, os.str()));
 | |
| 
 | |
|     } else {
 | |
|       // The canonical type for formatting this value is different from the
 | |
|       // actual type of the expression. (This occurs, for example, with Darwin's
 | |
|       // NSInteger on 32-bit platforms, where it is typedef'd as 'int', but
 | |
|       // should be printed as 'long' for 64-bit compatibility.)
 | |
|       // Rather than emitting a normal format/argument mismatch, we want to
 | |
|       // add a cast to the recommended type (and correct the format string
 | |
|       // if necessary).
 | |
|       SmallString<16> CastBuf;
 | |
|       llvm::raw_svector_ostream CastFix(CastBuf);
 | |
|       CastFix << "(";
 | |
|       IntendedTy.print(CastFix, S.Context.getPrintingPolicy());
 | |
|       CastFix << ")";
 | |
| 
 | |
|       SmallVector<FixItHint,4> Hints;
 | |
|       if (!AT.matchesType(S.Context, IntendedTy))
 | |
|         Hints.push_back(FixItHint::CreateReplacement(SpecRange, os.str()));
 | |
| 
 | |
|       if (const CStyleCastExpr *CCast = dyn_cast<CStyleCastExpr>(E)) {
 | |
|         // If there's already a cast present, just replace it.
 | |
|         SourceRange CastRange(CCast->getLParenLoc(), CCast->getRParenLoc());
 | |
|         Hints.push_back(FixItHint::CreateReplacement(CastRange, CastFix.str()));
 | |
| 
 | |
|       } else if (!requiresParensToAddCast(E)) {
 | |
|         // If the expression has high enough precedence,
 | |
|         // just write the C-style cast.
 | |
|         Hints.push_back(FixItHint::CreateInsertion(E->getLocStart(),
 | |
|                                                    CastFix.str()));
 | |
|       } else {
 | |
|         // Otherwise, add parens around the expression as well as the cast.
 | |
|         CastFix << "(";
 | |
|         Hints.push_back(FixItHint::CreateInsertion(E->getLocStart(),
 | |
|                                                    CastFix.str()));
 | |
| 
 | |
|         SourceLocation After = S.PP.getLocForEndOfToken(E->getLocEnd());
 | |
|         Hints.push_back(FixItHint::CreateInsertion(After, ")"));
 | |
|       }
 | |
| 
 | |
|       if (ShouldNotPrintDirectly) {
 | |
|         // The expression has a type that should not be printed directly.
 | |
|         // We extract the name from the typedef because we don't want to show
 | |
|         // the underlying type in the diagnostic.
 | |
|         StringRef Name = cast<TypedefType>(ExprTy)->getDecl()->getName();
 | |
| 
 | |
|         EmitFormatDiagnostic(S.PDiag(diag::warn_format_argument_needs_cast)
 | |
|                                << Name << IntendedTy
 | |
|                                << E->getSourceRange(),
 | |
|                              E->getLocStart(), /*IsStringLocation=*/false,
 | |
|                              SpecRange, Hints);
 | |
|       } else {
 | |
|         // In this case, the expression could be printed using a different
 | |
|         // specifier, but we've decided that the specifier is probably correct 
 | |
|         // and we should cast instead. Just use the normal warning message.
 | |
|         EmitFormatDiagnostic(
 | |
|           S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
 | |
|             << AT.getRepresentativeTypeName(S.Context) << ExprTy
 | |
|             << E->getSourceRange(),
 | |
|           E->getLocStart(), /*IsStringLocation*/false,
 | |
|           SpecRange, Hints);
 | |
|       }
 | |
|     }
 | |
|   } else {
 | |
|     const CharSourceRange &CSR = getSpecifierRange(StartSpecifier,
 | |
|                                                    SpecifierLen);
 | |
|     // Since the warning for passing non-POD types to variadic functions
 | |
|     // was deferred until now, we emit a warning for non-POD
 | |
|     // arguments here.
 | |
|     switch (S.isValidVarArgType(ExprTy)) {
 | |
|     case Sema::VAK_Valid:
 | |
|     case Sema::VAK_ValidInCXX11:
 | |
|       EmitFormatDiagnostic(
 | |
|         S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
 | |
|           << AT.getRepresentativeTypeName(S.Context) << ExprTy
 | |
|           << CSR
 | |
|           << E->getSourceRange(),
 | |
|         E->getLocStart(), /*IsStringLocation*/false, CSR);
 | |
|       break;
 | |
| 
 | |
|     case Sema::VAK_Undefined:
 | |
|       EmitFormatDiagnostic(
 | |
|         S.PDiag(diag::warn_non_pod_vararg_with_format_string)
 | |
|           << S.getLangOpts().CPlusPlus11
 | |
|           << ExprTy
 | |
|           << CallType
 | |
|           << AT.getRepresentativeTypeName(S.Context)
 | |
|           << CSR
 | |
|           << E->getSourceRange(),
 | |
|         E->getLocStart(), /*IsStringLocation*/false, CSR);
 | |
|       checkForCStrMembers(AT, E, CSR);
 | |
|       break;
 | |
| 
 | |
|     case Sema::VAK_Invalid:
 | |
|       if (ExprTy->isObjCObjectType())
 | |
|         EmitFormatDiagnostic(
 | |
|           S.PDiag(diag::err_cannot_pass_objc_interface_to_vararg_format)
 | |
|             << S.getLangOpts().CPlusPlus11
 | |
|             << ExprTy
 | |
|             << CallType
 | |
|             << AT.getRepresentativeTypeName(S.Context)
 | |
|             << CSR
 | |
|             << E->getSourceRange(),
 | |
|           E->getLocStart(), /*IsStringLocation*/false, CSR);
 | |
|       else
 | |
|         // FIXME: If this is an initializer list, suggest removing the braces
 | |
|         // or inserting a cast to the target type.
 | |
|         S.Diag(E->getLocStart(), diag::err_cannot_pass_to_vararg_format)
 | |
|           << isa<InitListExpr>(E) << ExprTy << CallType
 | |
|           << AT.getRepresentativeTypeName(S.Context)
 | |
|           << E->getSourceRange();
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     assert(FirstDataArg + FS.getArgIndex() < CheckedVarArgs.size() &&
 | |
|            "format string specifier index out of range");
 | |
|     CheckedVarArgs[FirstDataArg + FS.getArgIndex()] = true;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| //===--- CHECK: Scanf format string checking ------------------------------===//
 | |
| 
 | |
| namespace {  
 | |
| class CheckScanfHandler : public CheckFormatHandler {
 | |
| public:
 | |
|   CheckScanfHandler(Sema &s, const StringLiteral *fexpr,
 | |
|                     const Expr *origFormatExpr, unsigned firstDataArg,
 | |
|                     unsigned numDataArgs, const char *beg, bool hasVAListArg,
 | |
|                     ArrayRef<const Expr *> Args,
 | |
|                     unsigned formatIdx, bool inFunctionCall,
 | |
|                     Sema::VariadicCallType CallType,
 | |
|                     llvm::SmallBitVector &CheckedVarArgs)
 | |
|     : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
 | |
|                          numDataArgs, beg, hasVAListArg,
 | |
|                          Args, formatIdx, inFunctionCall, CallType,
 | |
|                          CheckedVarArgs)
 | |
|   {}
 | |
|   
 | |
|   bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS,
 | |
|                             const char *startSpecifier,
 | |
|                             unsigned specifierLen);
 | |
|   
 | |
|   bool HandleInvalidScanfConversionSpecifier(
 | |
|           const analyze_scanf::ScanfSpecifier &FS,
 | |
|           const char *startSpecifier,
 | |
|           unsigned specifierLen);
 | |
| 
 | |
|   void HandleIncompleteScanList(const char *start, const char *end);
 | |
| };
 | |
| }
 | |
| 
 | |
| void CheckScanfHandler::HandleIncompleteScanList(const char *start,
 | |
|                                                  const char *end) {
 | |
|   EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_scanlist_incomplete),
 | |
|                        getLocationOfByte(end), /*IsStringLocation*/true,
 | |
|                        getSpecifierRange(start, end - start));
 | |
| }
 | |
| 
 | |
| bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier(
 | |
|                                         const analyze_scanf::ScanfSpecifier &FS,
 | |
|                                         const char *startSpecifier,
 | |
|                                         unsigned specifierLen) {
 | |
| 
 | |
|   const analyze_scanf::ScanfConversionSpecifier &CS =
 | |
|     FS.getConversionSpecifier();
 | |
| 
 | |
|   return HandleInvalidConversionSpecifier(FS.getArgIndex(),
 | |
|                                           getLocationOfByte(CS.getStart()),
 | |
|                                           startSpecifier, specifierLen,
 | |
|                                           CS.getStart(), CS.getLength());
 | |
| }
 | |
| 
 | |
| bool CheckScanfHandler::HandleScanfSpecifier(
 | |
|                                        const analyze_scanf::ScanfSpecifier &FS,
 | |
|                                        const char *startSpecifier,
 | |
|                                        unsigned specifierLen) {
 | |
|   
 | |
|   using namespace analyze_scanf;
 | |
|   using namespace analyze_format_string;  
 | |
| 
 | |
|   const ScanfConversionSpecifier &CS = FS.getConversionSpecifier();
 | |
| 
 | |
|   // Handle case where '%' and '*' don't consume an argument.  These shouldn't
 | |
|   // be used to decide if we are using positional arguments consistently.
 | |
|   if (FS.consumesDataArgument()) {
 | |
|     if (atFirstArg) {
 | |
|       atFirstArg = false;
 | |
|       usesPositionalArgs = FS.usesPositionalArg();
 | |
|     }
 | |
|     else if (usesPositionalArgs != FS.usesPositionalArg()) {
 | |
|       HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
 | |
|                                         startSpecifier, specifierLen);
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Check if the field with is non-zero.
 | |
|   const OptionalAmount &Amt = FS.getFieldWidth();
 | |
|   if (Amt.getHowSpecified() == OptionalAmount::Constant) {
 | |
|     if (Amt.getConstantAmount() == 0) {
 | |
|       const CharSourceRange &R = getSpecifierRange(Amt.getStart(),
 | |
|                                                    Amt.getConstantLength());
 | |
|       EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_nonzero_width),
 | |
|                            getLocationOfByte(Amt.getStart()),
 | |
|                            /*IsStringLocation*/true, R,
 | |
|                            FixItHint::CreateRemoval(R));
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   if (!FS.consumesDataArgument()) {
 | |
|     // FIXME: Technically specifying a precision or field width here
 | |
|     // makes no sense.  Worth issuing a warning at some point.
 | |
|     return true;
 | |
|   }
 | |
|   
 | |
|   // Consume the argument.
 | |
|   unsigned argIndex = FS.getArgIndex();
 | |
|   if (argIndex < NumDataArgs) {
 | |
|       // The check to see if the argIndex is valid will come later.
 | |
|       // We set the bit here because we may exit early from this
 | |
|       // function if we encounter some other error.
 | |
|     CoveredArgs.set(argIndex);
 | |
|   }
 | |
|   
 | |
|   // Check the length modifier is valid with the given conversion specifier.
 | |
|   if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo()))
 | |
|     HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
 | |
|                                 diag::warn_format_nonsensical_length);
 | |
|   else if (!FS.hasStandardLengthModifier())
 | |
|     HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen);
 | |
|   else if (!FS.hasStandardLengthConversionCombination())
 | |
|     HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
 | |
|                                 diag::warn_format_non_standard_conversion_spec);
 | |
| 
 | |
|   if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
 | |
|     HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
 | |
| 
 | |
|   // The remaining checks depend on the data arguments.
 | |
|   if (HasVAListArg)
 | |
|     return true;
 | |
|   
 | |
|   if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
 | |
|     return false;
 | |
|   
 | |
|   // Check that the argument type matches the format specifier.
 | |
|   const Expr *Ex = getDataArg(argIndex);
 | |
|   if (!Ex)
 | |
|     return true;
 | |
| 
 | |
|   const analyze_format_string::ArgType &AT = FS.getArgType(S.Context);
 | |
|   if (AT.isValid() && !AT.matchesType(S.Context, Ex->getType())) {
 | |
|     ScanfSpecifier fixedFS = FS;
 | |
|     bool success = fixedFS.fixType(Ex->getType(), S.getLangOpts(),
 | |
|                                    S.Context);
 | |
| 
 | |
|     if (success) {
 | |
|       // Get the fix string from the fixed format specifier.
 | |
|       SmallString<128> buf;
 | |
|       llvm::raw_svector_ostream os(buf);
 | |
|       fixedFS.toString(os);
 | |
| 
 | |
|       EmitFormatDiagnostic(
 | |
|         S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
 | |
|           << AT.getRepresentativeTypeName(S.Context) << Ex->getType()
 | |
|           << Ex->getSourceRange(),
 | |
|         Ex->getLocStart(),
 | |
|         /*IsStringLocation*/false,
 | |
|         getSpecifierRange(startSpecifier, specifierLen),
 | |
|         FixItHint::CreateReplacement(
 | |
|           getSpecifierRange(startSpecifier, specifierLen),
 | |
|           os.str()));
 | |
|     } else {
 | |
|       EmitFormatDiagnostic(
 | |
|         S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
 | |
|           << AT.getRepresentativeTypeName(S.Context) << Ex->getType()
 | |
|           << Ex->getSourceRange(),
 | |
|         Ex->getLocStart(),
 | |
|         /*IsStringLocation*/false,
 | |
|         getSpecifierRange(startSpecifier, specifierLen));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void Sema::CheckFormatString(const StringLiteral *FExpr,
 | |
|                              const Expr *OrigFormatExpr,
 | |
|                              ArrayRef<const Expr *> Args,
 | |
|                              bool HasVAListArg, unsigned format_idx,
 | |
|                              unsigned firstDataArg, FormatStringType Type,
 | |
|                              bool inFunctionCall, VariadicCallType CallType,
 | |
|                              llvm::SmallBitVector &CheckedVarArgs) {
 | |
|   
 | |
|   // CHECK: is the format string a wide literal?
 | |
|   if (!FExpr->isAscii() && !FExpr->isUTF8()) {
 | |
|     CheckFormatHandler::EmitFormatDiagnostic(
 | |
|       *this, inFunctionCall, Args[format_idx],
 | |
|       PDiag(diag::warn_format_string_is_wide_literal), FExpr->getLocStart(),
 | |
|       /*IsStringLocation*/true, OrigFormatExpr->getSourceRange());
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   // Str - The format string.  NOTE: this is NOT null-terminated!
 | |
|   StringRef StrRef = FExpr->getString();
 | |
|   const char *Str = StrRef.data();
 | |
|   unsigned StrLen = StrRef.size();
 | |
|   const unsigned numDataArgs = Args.size() - firstDataArg;
 | |
|   
 | |
|   // CHECK: empty format string?
 | |
|   if (StrLen == 0 && numDataArgs > 0) {
 | |
|     CheckFormatHandler::EmitFormatDiagnostic(
 | |
|       *this, inFunctionCall, Args[format_idx],
 | |
|       PDiag(diag::warn_empty_format_string), FExpr->getLocStart(),
 | |
|       /*IsStringLocation*/true, OrigFormatExpr->getSourceRange());
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   if (Type == FST_Printf || Type == FST_NSString) {
 | |
|     CheckPrintfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
 | |
|                          numDataArgs, (Type == FST_NSString),
 | |
|                          Str, HasVAListArg, Args, format_idx,
 | |
|                          inFunctionCall, CallType, CheckedVarArgs);
 | |
|   
 | |
|     if (!analyze_format_string::ParsePrintfString(H, Str, Str + StrLen,
 | |
|                                                   getLangOpts(),
 | |
|                                                   Context.getTargetInfo()))
 | |
|       H.DoneProcessing();
 | |
|   } else if (Type == FST_Scanf) {
 | |
|     CheckScanfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg, numDataArgs,
 | |
|                         Str, HasVAListArg, Args, format_idx,
 | |
|                         inFunctionCall, CallType, CheckedVarArgs);
 | |
|     
 | |
|     if (!analyze_format_string::ParseScanfString(H, Str, Str + StrLen,
 | |
|                                                  getLangOpts(),
 | |
|                                                  Context.getTargetInfo()))
 | |
|       H.DoneProcessing();
 | |
|   } // TODO: handle other formats
 | |
| }
 | |
| 
 | |
| //===--- CHECK: Standard memory functions ---------------------------------===//
 | |
| 
 | |
| /// \brief Determine whether the given type is a dynamic class type (e.g.,
 | |
| /// whether it has a vtable).
 | |
| static bool isDynamicClassType(QualType T) {
 | |
|   if (CXXRecordDecl *Record = T->getAsCXXRecordDecl())
 | |
|     if (CXXRecordDecl *Definition = Record->getDefinition())
 | |
|       if (Definition->isDynamicClass())
 | |
|         return true;
 | |
|   
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// \brief If E is a sizeof expression, returns its argument expression,
 | |
| /// otherwise returns NULL.
 | |
| static const Expr *getSizeOfExprArg(const Expr* E) {
 | |
|   if (const UnaryExprOrTypeTraitExpr *SizeOf =
 | |
|       dyn_cast<UnaryExprOrTypeTraitExpr>(E))
 | |
|     if (SizeOf->getKind() == clang::UETT_SizeOf && !SizeOf->isArgumentType())
 | |
|       return SizeOf->getArgumentExpr()->IgnoreParenImpCasts();
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// \brief If E is a sizeof expression, returns its argument type.
 | |
| static QualType getSizeOfArgType(const Expr* E) {
 | |
|   if (const UnaryExprOrTypeTraitExpr *SizeOf =
 | |
|       dyn_cast<UnaryExprOrTypeTraitExpr>(E))
 | |
|     if (SizeOf->getKind() == clang::UETT_SizeOf)
 | |
|       return SizeOf->getTypeOfArgument();
 | |
| 
 | |
|   return QualType();
 | |
| }
 | |
| 
 | |
| /// \brief Check for dangerous or invalid arguments to memset().
 | |
| ///
 | |
| /// This issues warnings on known problematic, dangerous or unspecified
 | |
| /// arguments to the standard 'memset', 'memcpy', 'memmove', and 'memcmp'
 | |
| /// function calls.
 | |
| ///
 | |
| /// \param Call The call expression to diagnose.
 | |
| void Sema::CheckMemaccessArguments(const CallExpr *Call,
 | |
|                                    unsigned BId,
 | |
|                                    IdentifierInfo *FnName) {
 | |
|   assert(BId != 0);
 | |
| 
 | |
|   // It is possible to have a non-standard definition of memset.  Validate
 | |
|   // we have enough arguments, and if not, abort further checking.
 | |
|   unsigned ExpectedNumArgs = (BId == Builtin::BIstrndup ? 2 : 3);
 | |
|   if (Call->getNumArgs() < ExpectedNumArgs)
 | |
|     return;
 | |
| 
 | |
|   unsigned LastArg = (BId == Builtin::BImemset ||
 | |
|                       BId == Builtin::BIstrndup ? 1 : 2);
 | |
|   unsigned LenArg = (BId == Builtin::BIstrndup ? 1 : 2);
 | |
|   const Expr *LenExpr = Call->getArg(LenArg)->IgnoreParenImpCasts();
 | |
| 
 | |
|   // We have special checking when the length is a sizeof expression.
 | |
|   QualType SizeOfArgTy = getSizeOfArgType(LenExpr);
 | |
|   const Expr *SizeOfArg = getSizeOfExprArg(LenExpr);
 | |
|   llvm::FoldingSetNodeID SizeOfArgID;
 | |
| 
 | |
|   for (unsigned ArgIdx = 0; ArgIdx != LastArg; ++ArgIdx) {
 | |
|     const Expr *Dest = Call->getArg(ArgIdx)->IgnoreParenImpCasts();
 | |
|     SourceRange ArgRange = Call->getArg(ArgIdx)->getSourceRange();
 | |
| 
 | |
|     QualType DestTy = Dest->getType();
 | |
|     if (const PointerType *DestPtrTy = DestTy->getAs<PointerType>()) {
 | |
|       QualType PointeeTy = DestPtrTy->getPointeeType();
 | |
| 
 | |
|       // Never warn about void type pointers. This can be used to suppress
 | |
|       // false positives.
 | |
|       if (PointeeTy->isVoidType())
 | |
|         continue;
 | |
| 
 | |
|       // Catch "memset(p, 0, sizeof(p))" -- needs to be sizeof(*p). Do this by
 | |
|       // actually comparing the expressions for equality. Because computing the
 | |
|       // expression IDs can be expensive, we only do this if the diagnostic is
 | |
|       // enabled.
 | |
|       if (SizeOfArg &&
 | |
|           Diags.getDiagnosticLevel(diag::warn_sizeof_pointer_expr_memaccess,
 | |
|                                    SizeOfArg->getExprLoc())) {
 | |
|         // We only compute IDs for expressions if the warning is enabled, and
 | |
|         // cache the sizeof arg's ID.
 | |
|         if (SizeOfArgID == llvm::FoldingSetNodeID())
 | |
|           SizeOfArg->Profile(SizeOfArgID, Context, true);
 | |
|         llvm::FoldingSetNodeID DestID;
 | |
|         Dest->Profile(DestID, Context, true);
 | |
|         if (DestID == SizeOfArgID) {
 | |
|           // TODO: For strncpy() and friends, this could suggest sizeof(dst)
 | |
|           //       over sizeof(src) as well.
 | |
|           unsigned ActionIdx = 0; // Default is to suggest dereferencing.
 | |
|           StringRef ReadableName = FnName->getName();
 | |
| 
 | |
|           if (const UnaryOperator *UnaryOp = dyn_cast<UnaryOperator>(Dest))
 | |
|             if (UnaryOp->getOpcode() == UO_AddrOf)
 | |
|               ActionIdx = 1; // If its an address-of operator, just remove it.
 | |
|           if (!PointeeTy->isIncompleteType() &&
 | |
|               (Context.getTypeSize(PointeeTy) == Context.getCharWidth()))
 | |
|             ActionIdx = 2; // If the pointee's size is sizeof(char),
 | |
|                            // suggest an explicit length.
 | |
| 
 | |
|           // If the function is defined as a builtin macro, do not show macro
 | |
|           // expansion.
 | |
|           SourceLocation SL = SizeOfArg->getExprLoc();
 | |
|           SourceRange DSR = Dest->getSourceRange();
 | |
|           SourceRange SSR = SizeOfArg->getSourceRange();
 | |
|           SourceManager &SM  = PP.getSourceManager();
 | |
| 
 | |
|           if (SM.isMacroArgExpansion(SL)) {
 | |
|             ReadableName = Lexer::getImmediateMacroName(SL, SM, LangOpts);
 | |
|             SL = SM.getSpellingLoc(SL);
 | |
|             DSR = SourceRange(SM.getSpellingLoc(DSR.getBegin()),
 | |
|                              SM.getSpellingLoc(DSR.getEnd()));
 | |
|             SSR = SourceRange(SM.getSpellingLoc(SSR.getBegin()),
 | |
|                              SM.getSpellingLoc(SSR.getEnd()));
 | |
|           }
 | |
| 
 | |
|           DiagRuntimeBehavior(SL, SizeOfArg,
 | |
|                               PDiag(diag::warn_sizeof_pointer_expr_memaccess)
 | |
|                                 << ReadableName
 | |
|                                 << PointeeTy
 | |
|                                 << DestTy
 | |
|                                 << DSR
 | |
|                                 << SSR);
 | |
|           DiagRuntimeBehavior(SL, SizeOfArg,
 | |
|                          PDiag(diag::warn_sizeof_pointer_expr_memaccess_note)
 | |
|                                 << ActionIdx
 | |
|                                 << SSR);
 | |
| 
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Also check for cases where the sizeof argument is the exact same
 | |
|       // type as the memory argument, and where it points to a user-defined
 | |
|       // record type.
 | |
|       if (SizeOfArgTy != QualType()) {
 | |
|         if (PointeeTy->isRecordType() &&
 | |
|             Context.typesAreCompatible(SizeOfArgTy, DestTy)) {
 | |
|           DiagRuntimeBehavior(LenExpr->getExprLoc(), Dest,
 | |
|                               PDiag(diag::warn_sizeof_pointer_type_memaccess)
 | |
|                                 << FnName << SizeOfArgTy << ArgIdx
 | |
|                                 << PointeeTy << Dest->getSourceRange()
 | |
|                                 << LenExpr->getSourceRange());
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Always complain about dynamic classes.
 | |
|       if (isDynamicClassType(PointeeTy)) {
 | |
| 
 | |
|         unsigned OperationType = 0;
 | |
|         // "overwritten" if we're warning about the destination for any call
 | |
|         // but memcmp; otherwise a verb appropriate to the call.
 | |
|         if (ArgIdx != 0 || BId == Builtin::BImemcmp) {
 | |
|           if (BId == Builtin::BImemcpy)
 | |
|             OperationType = 1;
 | |
|           else if(BId == Builtin::BImemmove)
 | |
|             OperationType = 2;
 | |
|           else if (BId == Builtin::BImemcmp)
 | |
|             OperationType = 3;
 | |
|         }
 | |
|           
 | |
|         DiagRuntimeBehavior(
 | |
|           Dest->getExprLoc(), Dest,
 | |
|           PDiag(diag::warn_dyn_class_memaccess)
 | |
|             << (BId == Builtin::BImemcmp ? ArgIdx + 2 : ArgIdx)
 | |
|             << FnName << PointeeTy
 | |
|             << OperationType
 | |
|             << Call->getCallee()->getSourceRange());
 | |
|       } else if (PointeeTy.hasNonTrivialObjCLifetime() &&
 | |
|                BId != Builtin::BImemset)
 | |
|         DiagRuntimeBehavior(
 | |
|           Dest->getExprLoc(), Dest,
 | |
|           PDiag(diag::warn_arc_object_memaccess)
 | |
|             << ArgIdx << FnName << PointeeTy
 | |
|             << Call->getCallee()->getSourceRange());
 | |
|       else
 | |
|         continue;
 | |
| 
 | |
|       DiagRuntimeBehavior(
 | |
|         Dest->getExprLoc(), Dest,
 | |
|         PDiag(diag::note_bad_memaccess_silence)
 | |
|           << FixItHint::CreateInsertion(ArgRange.getBegin(), "(void*)"));
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| // A little helper routine: ignore addition and subtraction of integer literals.
 | |
| // This intentionally does not ignore all integer constant expressions because
 | |
| // we don't want to remove sizeof().
 | |
| static const Expr *ignoreLiteralAdditions(const Expr *Ex, ASTContext &Ctx) {
 | |
|   Ex = Ex->IgnoreParenCasts();
 | |
| 
 | |
|   for (;;) {
 | |
|     const BinaryOperator * BO = dyn_cast<BinaryOperator>(Ex);
 | |
|     if (!BO || !BO->isAdditiveOp())
 | |
|       break;
 | |
| 
 | |
|     const Expr *RHS = BO->getRHS()->IgnoreParenCasts();
 | |
|     const Expr *LHS = BO->getLHS()->IgnoreParenCasts();
 | |
|     
 | |
|     if (isa<IntegerLiteral>(RHS))
 | |
|       Ex = LHS;
 | |
|     else if (isa<IntegerLiteral>(LHS))
 | |
|       Ex = RHS;
 | |
|     else
 | |
|       break;
 | |
|   }
 | |
| 
 | |
|   return Ex;
 | |
| }
 | |
| 
 | |
| static bool isConstantSizeArrayWithMoreThanOneElement(QualType Ty,
 | |
|                                                       ASTContext &Context) {
 | |
|   // Only handle constant-sized or VLAs, but not flexible members.
 | |
|   if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(Ty)) {
 | |
|     // Only issue the FIXIT for arrays of size > 1.
 | |
|     if (CAT->getSize().getSExtValue() <= 1)
 | |
|       return false;
 | |
|   } else if (!Ty->isVariableArrayType()) {
 | |
|     return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Warn if the user has made the 'size' argument to strlcpy or strlcat
 | |
| // be the size of the source, instead of the destination.
 | |
| void Sema::CheckStrlcpycatArguments(const CallExpr *Call,
 | |
|                                     IdentifierInfo *FnName) {
 | |
| 
 | |
|   // Don't crash if the user has the wrong number of arguments
 | |
|   if (Call->getNumArgs() != 3)
 | |
|     return;
 | |
| 
 | |
|   const Expr *SrcArg = ignoreLiteralAdditions(Call->getArg(1), Context);
 | |
|   const Expr *SizeArg = ignoreLiteralAdditions(Call->getArg(2), Context);
 | |
|   const Expr *CompareWithSrc = NULL;
 | |
|   
 | |
|   // Look for 'strlcpy(dst, x, sizeof(x))'
 | |
|   if (const Expr *Ex = getSizeOfExprArg(SizeArg))
 | |
|     CompareWithSrc = Ex;
 | |
|   else {
 | |
|     // Look for 'strlcpy(dst, x, strlen(x))'
 | |
|     if (const CallExpr *SizeCall = dyn_cast<CallExpr>(SizeArg)) {
 | |
|       if (SizeCall->isBuiltinCall() == Builtin::BIstrlen
 | |
|           && SizeCall->getNumArgs() == 1)
 | |
|         CompareWithSrc = ignoreLiteralAdditions(SizeCall->getArg(0), Context);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!CompareWithSrc)
 | |
|     return;
 | |
| 
 | |
|   // Determine if the argument to sizeof/strlen is equal to the source
 | |
|   // argument.  In principle there's all kinds of things you could do
 | |
|   // here, for instance creating an == expression and evaluating it with
 | |
|   // EvaluateAsBooleanCondition, but this uses a more direct technique:
 | |
|   const DeclRefExpr *SrcArgDRE = dyn_cast<DeclRefExpr>(SrcArg);
 | |
|   if (!SrcArgDRE)
 | |
|     return;
 | |
|   
 | |
|   const DeclRefExpr *CompareWithSrcDRE = dyn_cast<DeclRefExpr>(CompareWithSrc);
 | |
|   if (!CompareWithSrcDRE || 
 | |
|       SrcArgDRE->getDecl() != CompareWithSrcDRE->getDecl())
 | |
|     return;
 | |
|   
 | |
|   const Expr *OriginalSizeArg = Call->getArg(2);
 | |
|   Diag(CompareWithSrcDRE->getLocStart(), diag::warn_strlcpycat_wrong_size)
 | |
|     << OriginalSizeArg->getSourceRange() << FnName;
 | |
|   
 | |
|   // Output a FIXIT hint if the destination is an array (rather than a
 | |
|   // pointer to an array).  This could be enhanced to handle some
 | |
|   // pointers if we know the actual size, like if DstArg is 'array+2'
 | |
|   // we could say 'sizeof(array)-2'.
 | |
|   const Expr *DstArg = Call->getArg(0)->IgnoreParenImpCasts();
 | |
|   if (!isConstantSizeArrayWithMoreThanOneElement(DstArg->getType(), Context))
 | |
|     return;
 | |
| 
 | |
|   SmallString<128> sizeString;
 | |
|   llvm::raw_svector_ostream OS(sizeString);
 | |
|   OS << "sizeof(";
 | |
|   DstArg->printPretty(OS, 0, getPrintingPolicy());
 | |
|   OS << ")";
 | |
|   
 | |
|   Diag(OriginalSizeArg->getLocStart(), diag::note_strlcpycat_wrong_size)
 | |
|     << FixItHint::CreateReplacement(OriginalSizeArg->getSourceRange(),
 | |
|                                     OS.str());
 | |
| }
 | |
| 
 | |
| /// Check if two expressions refer to the same declaration.
 | |
| static bool referToTheSameDecl(const Expr *E1, const Expr *E2) {
 | |
|   if (const DeclRefExpr *D1 = dyn_cast_or_null<DeclRefExpr>(E1))
 | |
|     if (const DeclRefExpr *D2 = dyn_cast_or_null<DeclRefExpr>(E2))
 | |
|       return D1->getDecl() == D2->getDecl();
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static const Expr *getStrlenExprArg(const Expr *E) {
 | |
|   if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
 | |
|     const FunctionDecl *FD = CE->getDirectCallee();
 | |
|     if (!FD || FD->getMemoryFunctionKind() != Builtin::BIstrlen)
 | |
|       return 0;
 | |
|     return CE->getArg(0)->IgnoreParenCasts();
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| // Warn on anti-patterns as the 'size' argument to strncat.
 | |
| // The correct size argument should look like following:
 | |
| //   strncat(dst, src, sizeof(dst) - strlen(dest) - 1);
 | |
| void Sema::CheckStrncatArguments(const CallExpr *CE,
 | |
|                                  IdentifierInfo *FnName) {
 | |
|   // Don't crash if the user has the wrong number of arguments.
 | |
|   if (CE->getNumArgs() < 3)
 | |
|     return;
 | |
|   const Expr *DstArg = CE->getArg(0)->IgnoreParenCasts();
 | |
|   const Expr *SrcArg = CE->getArg(1)->IgnoreParenCasts();
 | |
|   const Expr *LenArg = CE->getArg(2)->IgnoreParenCasts();
 | |
| 
 | |
|   // Identify common expressions, which are wrongly used as the size argument
 | |
|   // to strncat and may lead to buffer overflows.
 | |
|   unsigned PatternType = 0;
 | |
|   if (const Expr *SizeOfArg = getSizeOfExprArg(LenArg)) {
 | |
|     // - sizeof(dst)
 | |
|     if (referToTheSameDecl(SizeOfArg, DstArg))
 | |
|       PatternType = 1;
 | |
|     // - sizeof(src)
 | |
|     else if (referToTheSameDecl(SizeOfArg, SrcArg))
 | |
|       PatternType = 2;
 | |
|   } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(LenArg)) {
 | |
|     if (BE->getOpcode() == BO_Sub) {
 | |
|       const Expr *L = BE->getLHS()->IgnoreParenCasts();
 | |
|       const Expr *R = BE->getRHS()->IgnoreParenCasts();
 | |
|       // - sizeof(dst) - strlen(dst)
 | |
|       if (referToTheSameDecl(DstArg, getSizeOfExprArg(L)) &&
 | |
|           referToTheSameDecl(DstArg, getStrlenExprArg(R)))
 | |
|         PatternType = 1;
 | |
|       // - sizeof(src) - (anything)
 | |
|       else if (referToTheSameDecl(SrcArg, getSizeOfExprArg(L)))
 | |
|         PatternType = 2;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (PatternType == 0)
 | |
|     return;
 | |
| 
 | |
|   // Generate the diagnostic.
 | |
|   SourceLocation SL = LenArg->getLocStart();
 | |
|   SourceRange SR = LenArg->getSourceRange();
 | |
|   SourceManager &SM  = PP.getSourceManager();
 | |
| 
 | |
|   // If the function is defined as a builtin macro, do not show macro expansion.
 | |
|   if (SM.isMacroArgExpansion(SL)) {
 | |
|     SL = SM.getSpellingLoc(SL);
 | |
|     SR = SourceRange(SM.getSpellingLoc(SR.getBegin()),
 | |
|                      SM.getSpellingLoc(SR.getEnd()));
 | |
|   }
 | |
| 
 | |
|   // Check if the destination is an array (rather than a pointer to an array).
 | |
|   QualType DstTy = DstArg->getType();
 | |
|   bool isKnownSizeArray = isConstantSizeArrayWithMoreThanOneElement(DstTy,
 | |
|                                                                     Context);
 | |
|   if (!isKnownSizeArray) {
 | |
|     if (PatternType == 1)
 | |
|       Diag(SL, diag::warn_strncat_wrong_size) << SR;
 | |
|     else
 | |
|       Diag(SL, diag::warn_strncat_src_size) << SR;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (PatternType == 1)
 | |
|     Diag(SL, diag::warn_strncat_large_size) << SR;
 | |
|   else
 | |
|     Diag(SL, diag::warn_strncat_src_size) << SR;
 | |
| 
 | |
|   SmallString<128> sizeString;
 | |
|   llvm::raw_svector_ostream OS(sizeString);
 | |
|   OS << "sizeof(";
 | |
|   DstArg->printPretty(OS, 0, getPrintingPolicy());
 | |
|   OS << ") - ";
 | |
|   OS << "strlen(";
 | |
|   DstArg->printPretty(OS, 0, getPrintingPolicy());
 | |
|   OS << ") - 1";
 | |
| 
 | |
|   Diag(SL, diag::note_strncat_wrong_size)
 | |
|     << FixItHint::CreateReplacement(SR, OS.str());
 | |
| }
 | |
| 
 | |
| //===--- CHECK: Return Address of Stack Variable --------------------------===//
 | |
| 
 | |
| static Expr *EvalVal(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars,
 | |
|                      Decl *ParentDecl);
 | |
| static Expr *EvalAddr(Expr* E, SmallVectorImpl<DeclRefExpr *> &refVars,
 | |
|                       Decl *ParentDecl);
 | |
| 
 | |
| /// CheckReturnStackAddr - Check if a return statement returns the address
 | |
| ///   of a stack variable.
 | |
| void
 | |
| Sema::CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
 | |
|                            SourceLocation ReturnLoc) {
 | |
| 
 | |
|   Expr *stackE = 0;
 | |
|   SmallVector<DeclRefExpr *, 8> refVars;
 | |
| 
 | |
|   // Perform checking for returned stack addresses, local blocks,
 | |
|   // label addresses or references to temporaries.
 | |
|   if (lhsType->isPointerType() ||
 | |
|       (!getLangOpts().ObjCAutoRefCount && lhsType->isBlockPointerType())) {
 | |
|     stackE = EvalAddr(RetValExp, refVars, /*ParentDecl=*/0);
 | |
|   } else if (lhsType->isReferenceType()) {
 | |
|     stackE = EvalVal(RetValExp, refVars, /*ParentDecl=*/0);
 | |
|   }
 | |
| 
 | |
|   if (stackE == 0)
 | |
|     return; // Nothing suspicious was found.
 | |
| 
 | |
|   SourceLocation diagLoc;
 | |
|   SourceRange diagRange;
 | |
|   if (refVars.empty()) {
 | |
|     diagLoc = stackE->getLocStart();
 | |
|     diagRange = stackE->getSourceRange();
 | |
|   } else {
 | |
|     // We followed through a reference variable. 'stackE' contains the
 | |
|     // problematic expression but we will warn at the return statement pointing
 | |
|     // at the reference variable. We will later display the "trail" of
 | |
|     // reference variables using notes.
 | |
|     diagLoc = refVars[0]->getLocStart();
 | |
|     diagRange = refVars[0]->getSourceRange();
 | |
|   }
 | |
| 
 | |
|   if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(stackE)) { //address of local var.
 | |
|     Diag(diagLoc, lhsType->isReferenceType() ? diag::warn_ret_stack_ref
 | |
|                                              : diag::warn_ret_stack_addr)
 | |
|      << DR->getDecl()->getDeclName() << diagRange;
 | |
|   } else if (isa<BlockExpr>(stackE)) { // local block.
 | |
|     Diag(diagLoc, diag::err_ret_local_block) << diagRange;
 | |
|   } else if (isa<AddrLabelExpr>(stackE)) { // address of label.
 | |
|     Diag(diagLoc, diag::warn_ret_addr_label) << diagRange;
 | |
|   } else { // local temporary.
 | |
|     Diag(diagLoc, lhsType->isReferenceType() ? diag::warn_ret_local_temp_ref
 | |
|                                              : diag::warn_ret_local_temp_addr)
 | |
|      << diagRange;
 | |
|   }
 | |
| 
 | |
|   // Display the "trail" of reference variables that we followed until we
 | |
|   // found the problematic expression using notes.
 | |
|   for (unsigned i = 0, e = refVars.size(); i != e; ++i) {
 | |
|     VarDecl *VD = cast<VarDecl>(refVars[i]->getDecl());
 | |
|     // If this var binds to another reference var, show the range of the next
 | |
|     // var, otherwise the var binds to the problematic expression, in which case
 | |
|     // show the range of the expression.
 | |
|     SourceRange range = (i < e-1) ? refVars[i+1]->getSourceRange()
 | |
|                                   : stackE->getSourceRange();
 | |
|     Diag(VD->getLocation(), diag::note_ref_var_local_bind)
 | |
|       << VD->getDeclName() << range;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
 | |
| ///  check if the expression in a return statement evaluates to an address
 | |
| ///  to a location on the stack, a local block, an address of a label, or a
 | |
| ///  reference to local temporary. The recursion is used to traverse the
 | |
| ///  AST of the return expression, with recursion backtracking when we
 | |
| ///  encounter a subexpression that (1) clearly does not lead to one of the
 | |
| ///  above problematic expressions (2) is something we cannot determine leads to
 | |
| ///  a problematic expression based on such local checking.
 | |
| ///
 | |
| ///  Both EvalAddr and EvalVal follow through reference variables to evaluate
 | |
| ///  the expression that they point to. Such variables are added to the
 | |
| ///  'refVars' vector so that we know what the reference variable "trail" was.
 | |
| ///
 | |
| ///  EvalAddr processes expressions that are pointers that are used as
 | |
| ///  references (and not L-values).  EvalVal handles all other values.
 | |
| ///  At the base case of the recursion is a check for the above problematic
 | |
| ///  expressions.
 | |
| ///
 | |
| ///  This implementation handles:
 | |
| ///
 | |
| ///   * pointer-to-pointer casts
 | |
| ///   * implicit conversions from array references to pointers
 | |
| ///   * taking the address of fields
 | |
| ///   * arbitrary interplay between "&" and "*" operators
 | |
| ///   * pointer arithmetic from an address of a stack variable
 | |
| ///   * taking the address of an array element where the array is on the stack
 | |
| static Expr *EvalAddr(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars,
 | |
|                       Decl *ParentDecl) {
 | |
|   if (E->isTypeDependent())
 | |
|     return NULL;
 | |
| 
 | |
|   // We should only be called for evaluating pointer expressions.
 | |
|   assert((E->getType()->isAnyPointerType() ||
 | |
|           E->getType()->isBlockPointerType() ||
 | |
|           E->getType()->isObjCQualifiedIdType()) &&
 | |
|          "EvalAddr only works on pointers");
 | |
| 
 | |
|   E = E->IgnoreParens();
 | |
| 
 | |
|   // Our "symbolic interpreter" is just a dispatch off the currently
 | |
|   // viewed AST node.  We then recursively traverse the AST by calling
 | |
|   // EvalAddr and EvalVal appropriately.
 | |
|   switch (E->getStmtClass()) {
 | |
|   case Stmt::DeclRefExprClass: {
 | |
|     DeclRefExpr *DR = cast<DeclRefExpr>(E);
 | |
| 
 | |
|     if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
 | |
|       // If this is a reference variable, follow through to the expression that
 | |
|       // it points to.
 | |
|       if (V->hasLocalStorage() &&
 | |
|           V->getType()->isReferenceType() && V->hasInit()) {
 | |
|         // Add the reference variable to the "trail".
 | |
|         refVars.push_back(DR);
 | |
|         return EvalAddr(V->getInit(), refVars, ParentDecl);
 | |
|       }
 | |
| 
 | |
|     return NULL;
 | |
|   }
 | |
| 
 | |
|   case Stmt::UnaryOperatorClass: {
 | |
|     // The only unary operator that make sense to handle here
 | |
|     // is AddrOf.  All others don't make sense as pointers.
 | |
|     UnaryOperator *U = cast<UnaryOperator>(E);
 | |
| 
 | |
|     if (U->getOpcode() == UO_AddrOf)
 | |
|       return EvalVal(U->getSubExpr(), refVars, ParentDecl);
 | |
|     else
 | |
|       return NULL;
 | |
|   }
 | |
| 
 | |
|   case Stmt::BinaryOperatorClass: {
 | |
|     // Handle pointer arithmetic.  All other binary operators are not valid
 | |
|     // in this context.
 | |
|     BinaryOperator *B = cast<BinaryOperator>(E);
 | |
|     BinaryOperatorKind op = B->getOpcode();
 | |
| 
 | |
|     if (op != BO_Add && op != BO_Sub)
 | |
|       return NULL;
 | |
| 
 | |
|     Expr *Base = B->getLHS();
 | |
| 
 | |
|     // Determine which argument is the real pointer base.  It could be
 | |
|     // the RHS argument instead of the LHS.
 | |
|     if (!Base->getType()->isPointerType()) Base = B->getRHS();
 | |
| 
 | |
|     assert (Base->getType()->isPointerType());
 | |
|     return EvalAddr(Base, refVars, ParentDecl);
 | |
|   }
 | |
| 
 | |
|   // For conditional operators we need to see if either the LHS or RHS are
 | |
|   // valid DeclRefExpr*s.  If one of them is valid, we return it.
 | |
|   case Stmt::ConditionalOperatorClass: {
 | |
|     ConditionalOperator *C = cast<ConditionalOperator>(E);
 | |
| 
 | |
|     // Handle the GNU extension for missing LHS.
 | |
|     if (Expr *lhsExpr = C->getLHS()) {
 | |
|     // In C++, we can have a throw-expression, which has 'void' type.
 | |
|       if (!lhsExpr->getType()->isVoidType())
 | |
|         if (Expr* LHS = EvalAddr(lhsExpr, refVars, ParentDecl))
 | |
|           return LHS;
 | |
|     }
 | |
| 
 | |
|     // In C++, we can have a throw-expression, which has 'void' type.
 | |
|     if (C->getRHS()->getType()->isVoidType())
 | |
|       return NULL;
 | |
| 
 | |
|     return EvalAddr(C->getRHS(), refVars, ParentDecl);
 | |
|   }
 | |
|   
 | |
|   case Stmt::BlockExprClass:
 | |
|     if (cast<BlockExpr>(E)->getBlockDecl()->hasCaptures())
 | |
|       return E; // local block.
 | |
|     return NULL;
 | |
| 
 | |
|   case Stmt::AddrLabelExprClass:
 | |
|     return E; // address of label.
 | |
| 
 | |
|   case Stmt::ExprWithCleanupsClass:
 | |
|     return EvalAddr(cast<ExprWithCleanups>(E)->getSubExpr(), refVars,
 | |
|                     ParentDecl);
 | |
| 
 | |
|   // For casts, we need to handle conversions from arrays to
 | |
|   // pointer values, and pointer-to-pointer conversions.
 | |
|   case Stmt::ImplicitCastExprClass:
 | |
|   case Stmt::CStyleCastExprClass:
 | |
|   case Stmt::CXXFunctionalCastExprClass:
 | |
|   case Stmt::ObjCBridgedCastExprClass:
 | |
|   case Stmt::CXXStaticCastExprClass:
 | |
|   case Stmt::CXXDynamicCastExprClass:
 | |
|   case Stmt::CXXConstCastExprClass:
 | |
|   case Stmt::CXXReinterpretCastExprClass: {
 | |
|     Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
 | |
|     switch (cast<CastExpr>(E)->getCastKind()) {
 | |
|     case CK_BitCast:
 | |
|     case CK_LValueToRValue:
 | |
|     case CK_NoOp:
 | |
|     case CK_BaseToDerived:
 | |
|     case CK_DerivedToBase:
 | |
|     case CK_UncheckedDerivedToBase:
 | |
|     case CK_Dynamic:
 | |
|     case CK_CPointerToObjCPointerCast:
 | |
|     case CK_BlockPointerToObjCPointerCast:
 | |
|     case CK_AnyPointerToBlockPointerCast:
 | |
|       return EvalAddr(SubExpr, refVars, ParentDecl);
 | |
| 
 | |
|     case CK_ArrayToPointerDecay:
 | |
|       return EvalVal(SubExpr, refVars, ParentDecl);
 | |
| 
 | |
|     default:
 | |
|       return 0;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   case Stmt::MaterializeTemporaryExprClass:
 | |
|     if (Expr *Result = EvalAddr(
 | |
|                          cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr(),
 | |
|                                 refVars, ParentDecl))
 | |
|       return Result;
 | |
|       
 | |
|     return E;
 | |
|       
 | |
|   // Everything else: we simply don't reason about them.
 | |
|   default:
 | |
|     return NULL;
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| ///  EvalVal - This function is complements EvalAddr in the mutual recursion.
 | |
| ///   See the comments for EvalAddr for more details.
 | |
| static Expr *EvalVal(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars,
 | |
|                      Decl *ParentDecl) {
 | |
| do {
 | |
|   // We should only be called for evaluating non-pointer expressions, or
 | |
|   // expressions with a pointer type that are not used as references but instead
 | |
|   // are l-values (e.g., DeclRefExpr with a pointer type).
 | |
| 
 | |
|   // Our "symbolic interpreter" is just a dispatch off the currently
 | |
|   // viewed AST node.  We then recursively traverse the AST by calling
 | |
|   // EvalAddr and EvalVal appropriately.
 | |
| 
 | |
|   E = E->IgnoreParens();
 | |
|   switch (E->getStmtClass()) {
 | |
|   case Stmt::ImplicitCastExprClass: {
 | |
|     ImplicitCastExpr *IE = cast<ImplicitCastExpr>(E);
 | |
|     if (IE->getValueKind() == VK_LValue) {
 | |
|       E = IE->getSubExpr();
 | |
|       continue;
 | |
|     }
 | |
|     return NULL;
 | |
|   }
 | |
| 
 | |
|   case Stmt::ExprWithCleanupsClass:
 | |
|     return EvalVal(cast<ExprWithCleanups>(E)->getSubExpr(), refVars,ParentDecl);
 | |
| 
 | |
|   case Stmt::DeclRefExprClass: {
 | |
|     // When we hit a DeclRefExpr we are looking at code that refers to a
 | |
|     // variable's name. If it's not a reference variable we check if it has
 | |
|     // local storage within the function, and if so, return the expression.
 | |
|     DeclRefExpr *DR = cast<DeclRefExpr>(E);
 | |
| 
 | |
|     if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl())) {
 | |
|       // Check if it refers to itself, e.g. "int& i = i;".
 | |
|       if (V == ParentDecl)
 | |
|         return DR;
 | |
| 
 | |
|       if (V->hasLocalStorage()) {
 | |
|         if (!V->getType()->isReferenceType())
 | |
|           return DR;
 | |
| 
 | |
|         // Reference variable, follow through to the expression that
 | |
|         // it points to.
 | |
|         if (V->hasInit()) {
 | |
|           // Add the reference variable to the "trail".
 | |
|           refVars.push_back(DR);
 | |
|           return EvalVal(V->getInit(), refVars, V);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     return NULL;
 | |
|   }
 | |
| 
 | |
|   case Stmt::UnaryOperatorClass: {
 | |
|     // The only unary operator that make sense to handle here
 | |
|     // is Deref.  All others don't resolve to a "name."  This includes
 | |
|     // handling all sorts of rvalues passed to a unary operator.
 | |
|     UnaryOperator *U = cast<UnaryOperator>(E);
 | |
| 
 | |
|     if (U->getOpcode() == UO_Deref)
 | |
|       return EvalAddr(U->getSubExpr(), refVars, ParentDecl);
 | |
| 
 | |
|     return NULL;
 | |
|   }
 | |
| 
 | |
|   case Stmt::ArraySubscriptExprClass: {
 | |
|     // Array subscripts are potential references to data on the stack.  We
 | |
|     // retrieve the DeclRefExpr* for the array variable if it indeed
 | |
|     // has local storage.
 | |
|     return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase(), refVars,ParentDecl);
 | |
|   }
 | |
| 
 | |
|   case Stmt::ConditionalOperatorClass: {
 | |
|     // For conditional operators we need to see if either the LHS or RHS are
 | |
|     // non-NULL Expr's.  If one is non-NULL, we return it.
 | |
|     ConditionalOperator *C = cast<ConditionalOperator>(E);
 | |
| 
 | |
|     // Handle the GNU extension for missing LHS.
 | |
|     if (Expr *lhsExpr = C->getLHS())
 | |
|       if (Expr *LHS = EvalVal(lhsExpr, refVars, ParentDecl))
 | |
|         return LHS;
 | |
| 
 | |
|     return EvalVal(C->getRHS(), refVars, ParentDecl);
 | |
|   }
 | |
| 
 | |
|   // Accesses to members are potential references to data on the stack.
 | |
|   case Stmt::MemberExprClass: {
 | |
|     MemberExpr *M = cast<MemberExpr>(E);
 | |
| 
 | |
|     // Check for indirect access.  We only want direct field accesses.
 | |
|     if (M->isArrow())
 | |
|       return NULL;
 | |
| 
 | |
|     // Check whether the member type is itself a reference, in which case
 | |
|     // we're not going to refer to the member, but to what the member refers to.
 | |
|     if (M->getMemberDecl()->getType()->isReferenceType())
 | |
|       return NULL;
 | |
| 
 | |
|     return EvalVal(M->getBase(), refVars, ParentDecl);
 | |
|   }
 | |
| 
 | |
|   case Stmt::MaterializeTemporaryExprClass:
 | |
|     if (Expr *Result = EvalVal(
 | |
|                           cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr(),
 | |
|                                refVars, ParentDecl))
 | |
|       return Result;
 | |
|       
 | |
|     return E;
 | |
| 
 | |
|   default:
 | |
|     // Check that we don't return or take the address of a reference to a
 | |
|     // temporary. This is only useful in C++.
 | |
|     if (!E->isTypeDependent() && E->isRValue())
 | |
|       return E;
 | |
| 
 | |
|     // Everything else: we simply don't reason about them.
 | |
|     return NULL;
 | |
|   }
 | |
| } while (true);
 | |
| }
 | |
| 
 | |
| //===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
 | |
| 
 | |
| /// Check for comparisons of floating point operands using != and ==.
 | |
| /// Issue a warning if these are no self-comparisons, as they are not likely
 | |
| /// to do what the programmer intended.
 | |
| void Sema::CheckFloatComparison(SourceLocation Loc, Expr* LHS, Expr *RHS) {
 | |
|   Expr* LeftExprSansParen = LHS->IgnoreParenImpCasts();
 | |
|   Expr* RightExprSansParen = RHS->IgnoreParenImpCasts();
 | |
| 
 | |
|   // Special case: check for x == x (which is OK).
 | |
|   // Do not emit warnings for such cases.
 | |
|   if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
 | |
|     if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
 | |
|       if (DRL->getDecl() == DRR->getDecl())
 | |
|         return;
 | |
| 
 | |
| 
 | |
|   // Special case: check for comparisons against literals that can be exactly
 | |
|   //  represented by APFloat.  In such cases, do not emit a warning.  This
 | |
|   //  is a heuristic: often comparison against such literals are used to
 | |
|   //  detect if a value in a variable has not changed.  This clearly can
 | |
|   //  lead to false negatives.
 | |
|   if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
 | |
|     if (FLL->isExact())
 | |
|       return;
 | |
|   } else
 | |
|     if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen))
 | |
|       if (FLR->isExact())
 | |
|         return;
 | |
| 
 | |
|   // Check for comparisons with builtin types.
 | |
|   if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
 | |
|     if (CL->isBuiltinCall())
 | |
|       return;
 | |
| 
 | |
|   if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
 | |
|     if (CR->isBuiltinCall())
 | |
|       return;
 | |
| 
 | |
|   // Emit the diagnostic.
 | |
|   Diag(Loc, diag::warn_floatingpoint_eq)
 | |
|     << LHS->getSourceRange() << RHS->getSourceRange();
 | |
| }
 | |
| 
 | |
| //===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===//
 | |
| //===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===//
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| /// Structure recording the 'active' range of an integer-valued
 | |
| /// expression.
 | |
| struct IntRange {
 | |
|   /// The number of bits active in the int.
 | |
|   unsigned Width;
 | |
| 
 | |
|   /// True if the int is known not to have negative values.
 | |
|   bool NonNegative;
 | |
| 
 | |
|   IntRange(unsigned Width, bool NonNegative)
 | |
|     : Width(Width), NonNegative(NonNegative)
 | |
|   {}
 | |
| 
 | |
|   /// Returns the range of the bool type.
 | |
|   static IntRange forBoolType() {
 | |
|     return IntRange(1, true);
 | |
|   }
 | |
| 
 | |
|   /// Returns the range of an opaque value of the given integral type.
 | |
|   static IntRange forValueOfType(ASTContext &C, QualType T) {
 | |
|     return forValueOfCanonicalType(C,
 | |
|                           T->getCanonicalTypeInternal().getTypePtr());
 | |
|   }
 | |
| 
 | |
|   /// Returns the range of an opaque value of a canonical integral type.
 | |
|   static IntRange forValueOfCanonicalType(ASTContext &C, const Type *T) {
 | |
|     assert(T->isCanonicalUnqualified());
 | |
| 
 | |
|     if (const VectorType *VT = dyn_cast<VectorType>(T))
 | |
|       T = VT->getElementType().getTypePtr();
 | |
|     if (const ComplexType *CT = dyn_cast<ComplexType>(T))
 | |
|       T = CT->getElementType().getTypePtr();
 | |
| 
 | |
|     // For enum types, use the known bit width of the enumerators.
 | |
|     if (const EnumType *ET = dyn_cast<EnumType>(T)) {
 | |
|       EnumDecl *Enum = ET->getDecl();
 | |
|       if (!Enum->isCompleteDefinition())
 | |
|         return IntRange(C.getIntWidth(QualType(T, 0)), false);
 | |
| 
 | |
|       unsigned NumPositive = Enum->getNumPositiveBits();
 | |
|       unsigned NumNegative = Enum->getNumNegativeBits();
 | |
| 
 | |
|       if (NumNegative == 0)
 | |
|         return IntRange(NumPositive, true/*NonNegative*/);
 | |
|       else
 | |
|         return IntRange(std::max(NumPositive + 1, NumNegative),
 | |
|                         false/*NonNegative*/);
 | |
|     }
 | |
| 
 | |
|     const BuiltinType *BT = cast<BuiltinType>(T);
 | |
|     assert(BT->isInteger());
 | |
| 
 | |
|     return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
 | |
|   }
 | |
| 
 | |
|   /// Returns the "target" range of a canonical integral type, i.e.
 | |
|   /// the range of values expressible in the type.
 | |
|   ///
 | |
|   /// This matches forValueOfCanonicalType except that enums have the
 | |
|   /// full range of their type, not the range of their enumerators.
 | |
|   static IntRange forTargetOfCanonicalType(ASTContext &C, const Type *T) {
 | |
|     assert(T->isCanonicalUnqualified());
 | |
| 
 | |
|     if (const VectorType *VT = dyn_cast<VectorType>(T))
 | |
|       T = VT->getElementType().getTypePtr();
 | |
|     if (const ComplexType *CT = dyn_cast<ComplexType>(T))
 | |
|       T = CT->getElementType().getTypePtr();
 | |
|     if (const EnumType *ET = dyn_cast<EnumType>(T))
 | |
|       T = C.getCanonicalType(ET->getDecl()->getIntegerType()).getTypePtr();
 | |
| 
 | |
|     const BuiltinType *BT = cast<BuiltinType>(T);
 | |
|     assert(BT->isInteger());
 | |
| 
 | |
|     return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
 | |
|   }
 | |
| 
 | |
|   /// Returns the supremum of two ranges: i.e. their conservative merge.
 | |
|   static IntRange join(IntRange L, IntRange R) {
 | |
|     return IntRange(std::max(L.Width, R.Width),
 | |
|                     L.NonNegative && R.NonNegative);
 | |
|   }
 | |
| 
 | |
|   /// Returns the infinum of two ranges: i.e. their aggressive merge.
 | |
|   static IntRange meet(IntRange L, IntRange R) {
 | |
|     return IntRange(std::min(L.Width, R.Width),
 | |
|                     L.NonNegative || R.NonNegative);
 | |
|   }
 | |
| };
 | |
| 
 | |
| static IntRange GetValueRange(ASTContext &C, llvm::APSInt &value,
 | |
|                               unsigned MaxWidth) {
 | |
|   if (value.isSigned() && value.isNegative())
 | |
|     return IntRange(value.getMinSignedBits(), false);
 | |
| 
 | |
|   if (value.getBitWidth() > MaxWidth)
 | |
|     value = value.trunc(MaxWidth);
 | |
| 
 | |
|   // isNonNegative() just checks the sign bit without considering
 | |
|   // signedness.
 | |
|   return IntRange(value.getActiveBits(), true);
 | |
| }
 | |
| 
 | |
| static IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty,
 | |
|                               unsigned MaxWidth) {
 | |
|   if (result.isInt())
 | |
|     return GetValueRange(C, result.getInt(), MaxWidth);
 | |
| 
 | |
|   if (result.isVector()) {
 | |
|     IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth);
 | |
|     for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) {
 | |
|       IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth);
 | |
|       R = IntRange::join(R, El);
 | |
|     }
 | |
|     return R;
 | |
|   }
 | |
| 
 | |
|   if (result.isComplexInt()) {
 | |
|     IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth);
 | |
|     IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth);
 | |
|     return IntRange::join(R, I);
 | |
|   }
 | |
| 
 | |
|   // This can happen with lossless casts to intptr_t of "based" lvalues.
 | |
|   // Assume it might use arbitrary bits.
 | |
|   // FIXME: The only reason we need to pass the type in here is to get
 | |
|   // the sign right on this one case.  It would be nice if APValue
 | |
|   // preserved this.
 | |
|   assert(result.isLValue() || result.isAddrLabelDiff());
 | |
|   return IntRange(MaxWidth, Ty->isUnsignedIntegerOrEnumerationType());
 | |
| }
 | |
| 
 | |
| static QualType GetExprType(Expr *E) {
 | |
|   QualType Ty = E->getType();
 | |
|   if (const AtomicType *AtomicRHS = Ty->getAs<AtomicType>())
 | |
|     Ty = AtomicRHS->getValueType();
 | |
|   return Ty;
 | |
| }
 | |
| 
 | |
| /// Pseudo-evaluate the given integer expression, estimating the
 | |
| /// range of values it might take.
 | |
| ///
 | |
| /// \param MaxWidth - the width to which the value will be truncated
 | |
| static IntRange GetExprRange(ASTContext &C, Expr *E, unsigned MaxWidth) {
 | |
|   E = E->IgnoreParens();
 | |
| 
 | |
|   // Try a full evaluation first.
 | |
|   Expr::EvalResult result;
 | |
|   if (E->EvaluateAsRValue(result, C))
 | |
|     return GetValueRange(C, result.Val, GetExprType(E), MaxWidth);
 | |
| 
 | |
|   // I think we only want to look through implicit casts here; if the
 | |
|   // user has an explicit widening cast, we should treat the value as
 | |
|   // being of the new, wider type.
 | |
|   if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) {
 | |
|     if (CE->getCastKind() == CK_NoOp || CE->getCastKind() == CK_LValueToRValue)
 | |
|       return GetExprRange(C, CE->getSubExpr(), MaxWidth);
 | |
| 
 | |
|     IntRange OutputTypeRange = IntRange::forValueOfType(C, GetExprType(CE));
 | |
| 
 | |
|     bool isIntegerCast = (CE->getCastKind() == CK_IntegralCast);
 | |
| 
 | |
|     // Assume that non-integer casts can span the full range of the type.
 | |
|     if (!isIntegerCast)
 | |
|       return OutputTypeRange;
 | |
| 
 | |
|     IntRange SubRange
 | |
|       = GetExprRange(C, CE->getSubExpr(),
 | |
|                      std::min(MaxWidth, OutputTypeRange.Width));
 | |
| 
 | |
|     // Bail out if the subexpr's range is as wide as the cast type.
 | |
|     if (SubRange.Width >= OutputTypeRange.Width)
 | |
|       return OutputTypeRange;
 | |
| 
 | |
|     // Otherwise, we take the smaller width, and we're non-negative if
 | |
|     // either the output type or the subexpr is.
 | |
|     return IntRange(SubRange.Width,
 | |
|                     SubRange.NonNegative || OutputTypeRange.NonNegative);
 | |
|   }
 | |
| 
 | |
|   if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
 | |
|     // If we can fold the condition, just take that operand.
 | |
|     bool CondResult;
 | |
|     if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C))
 | |
|       return GetExprRange(C, CondResult ? CO->getTrueExpr()
 | |
|                                         : CO->getFalseExpr(),
 | |
|                           MaxWidth);
 | |
| 
 | |
|     // Otherwise, conservatively merge.
 | |
|     IntRange L = GetExprRange(C, CO->getTrueExpr(), MaxWidth);
 | |
|     IntRange R = GetExprRange(C, CO->getFalseExpr(), MaxWidth);
 | |
|     return IntRange::join(L, R);
 | |
|   }
 | |
| 
 | |
|   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
 | |
|     switch (BO->getOpcode()) {
 | |
| 
 | |
|     // Boolean-valued operations are single-bit and positive.
 | |
|     case BO_LAnd:
 | |
|     case BO_LOr:
 | |
|     case BO_LT:
 | |
|     case BO_GT:
 | |
|     case BO_LE:
 | |
|     case BO_GE:
 | |
|     case BO_EQ:
 | |
|     case BO_NE:
 | |
|       return IntRange::forBoolType();
 | |
| 
 | |
|     // The type of the assignments is the type of the LHS, so the RHS
 | |
|     // is not necessarily the same type.
 | |
|     case BO_MulAssign:
 | |
|     case BO_DivAssign:
 | |
|     case BO_RemAssign:
 | |
|     case BO_AddAssign:
 | |
|     case BO_SubAssign:
 | |
|     case BO_XorAssign:
 | |
|     case BO_OrAssign:
 | |
|       // TODO: bitfields?
 | |
|       return IntRange::forValueOfType(C, GetExprType(E));
 | |
| 
 | |
|     // Simple assignments just pass through the RHS, which will have
 | |
|     // been coerced to the LHS type.
 | |
|     case BO_Assign:
 | |
|       // TODO: bitfields?
 | |
|       return GetExprRange(C, BO->getRHS(), MaxWidth);
 | |
| 
 | |
|     // Operations with opaque sources are black-listed.
 | |
|     case BO_PtrMemD:
 | |
|     case BO_PtrMemI:
 | |
|       return IntRange::forValueOfType(C, GetExprType(E));
 | |
| 
 | |
|     // Bitwise-and uses the *infinum* of the two source ranges.
 | |
|     case BO_And:
 | |
|     case BO_AndAssign:
 | |
|       return IntRange::meet(GetExprRange(C, BO->getLHS(), MaxWidth),
 | |
|                             GetExprRange(C, BO->getRHS(), MaxWidth));
 | |
| 
 | |
|     // Left shift gets black-listed based on a judgement call.
 | |
|     case BO_Shl:
 | |
|       // ...except that we want to treat '1 << (blah)' as logically
 | |
|       // positive.  It's an important idiom.
 | |
|       if (IntegerLiteral *I
 | |
|             = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) {
 | |
|         if (I->getValue() == 1) {
 | |
|           IntRange R = IntRange::forValueOfType(C, GetExprType(E));
 | |
|           return IntRange(R.Width, /*NonNegative*/ true);
 | |
|         }
 | |
|       }
 | |
|       // fallthrough
 | |
| 
 | |
|     case BO_ShlAssign:
 | |
|       return IntRange::forValueOfType(C, GetExprType(E));
 | |
| 
 | |
|     // Right shift by a constant can narrow its left argument.
 | |
|     case BO_Shr:
 | |
|     case BO_ShrAssign: {
 | |
|       IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
 | |
| 
 | |
|       // If the shift amount is a positive constant, drop the width by
 | |
|       // that much.
 | |
|       llvm::APSInt shift;
 | |
|       if (BO->getRHS()->isIntegerConstantExpr(shift, C) &&
 | |
|           shift.isNonNegative()) {
 | |
|         unsigned zext = shift.getZExtValue();
 | |
|         if (zext >= L.Width)
 | |
|           L.Width = (L.NonNegative ? 0 : 1);
 | |
|         else
 | |
|           L.Width -= zext;
 | |
|       }
 | |
| 
 | |
|       return L;
 | |
|     }
 | |
| 
 | |
|     // Comma acts as its right operand.
 | |
|     case BO_Comma:
 | |
|       return GetExprRange(C, BO->getRHS(), MaxWidth);
 | |
| 
 | |
|     // Black-list pointer subtractions.
 | |
|     case BO_Sub:
 | |
|       if (BO->getLHS()->getType()->isPointerType())
 | |
|         return IntRange::forValueOfType(C, GetExprType(E));
 | |
|       break;
 | |
| 
 | |
|     // The width of a division result is mostly determined by the size
 | |
|     // of the LHS.
 | |
|     case BO_Div: {
 | |
|       // Don't 'pre-truncate' the operands.
 | |
|       unsigned opWidth = C.getIntWidth(GetExprType(E));
 | |
|       IntRange L = GetExprRange(C, BO->getLHS(), opWidth);
 | |
| 
 | |
|       // If the divisor is constant, use that.
 | |
|       llvm::APSInt divisor;
 | |
|       if (BO->getRHS()->isIntegerConstantExpr(divisor, C)) {
 | |
|         unsigned log2 = divisor.logBase2(); // floor(log_2(divisor))
 | |
|         if (log2 >= L.Width)
 | |
|           L.Width = (L.NonNegative ? 0 : 1);
 | |
|         else
 | |
|           L.Width = std::min(L.Width - log2, MaxWidth);
 | |
|         return L;
 | |
|       }
 | |
| 
 | |
|       // Otherwise, just use the LHS's width.
 | |
|       IntRange R = GetExprRange(C, BO->getRHS(), opWidth);
 | |
|       return IntRange(L.Width, L.NonNegative && R.NonNegative);
 | |
|     }
 | |
| 
 | |
|     // The result of a remainder can't be larger than the result of
 | |
|     // either side.
 | |
|     case BO_Rem: {
 | |
|       // Don't 'pre-truncate' the operands.
 | |
|       unsigned opWidth = C.getIntWidth(GetExprType(E));
 | |
|       IntRange L = GetExprRange(C, BO->getLHS(), opWidth);
 | |
|       IntRange R = GetExprRange(C, BO->getRHS(), opWidth);
 | |
| 
 | |
|       IntRange meet = IntRange::meet(L, R);
 | |
|       meet.Width = std::min(meet.Width, MaxWidth);
 | |
|       return meet;
 | |
|     }
 | |
| 
 | |
|     // The default behavior is okay for these.
 | |
|     case BO_Mul:
 | |
|     case BO_Add:
 | |
|     case BO_Xor:
 | |
|     case BO_Or:
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     // The default case is to treat the operation as if it were closed
 | |
|     // on the narrowest type that encompasses both operands.
 | |
|     IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
 | |
|     IntRange R = GetExprRange(C, BO->getRHS(), MaxWidth);
 | |
|     return IntRange::join(L, R);
 | |
|   }
 | |
| 
 | |
|   if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
 | |
|     switch (UO->getOpcode()) {
 | |
|     // Boolean-valued operations are white-listed.
 | |
|     case UO_LNot:
 | |
|       return IntRange::forBoolType();
 | |
| 
 | |
|     // Operations with opaque sources are black-listed.
 | |
|     case UO_Deref:
 | |
|     case UO_AddrOf: // should be impossible
 | |
|       return IntRange::forValueOfType(C, GetExprType(E));
 | |
| 
 | |
|     default:
 | |
|       return GetExprRange(C, UO->getSubExpr(), MaxWidth);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E))
 | |
|     return GetExprRange(C, OVE->getSourceExpr(), MaxWidth);
 | |
| 
 | |
|   if (FieldDecl *BitField = E->getSourceBitField())
 | |
|     return IntRange(BitField->getBitWidthValue(C),
 | |
|                     BitField->getType()->isUnsignedIntegerOrEnumerationType());
 | |
| 
 | |
|   return IntRange::forValueOfType(C, GetExprType(E));
 | |
| }
 | |
| 
 | |
| static IntRange GetExprRange(ASTContext &C, Expr *E) {
 | |
|   return GetExprRange(C, E, C.getIntWidth(GetExprType(E)));
 | |
| }
 | |
| 
 | |
| /// Checks whether the given value, which currently has the given
 | |
| /// source semantics, has the same value when coerced through the
 | |
| /// target semantics.
 | |
| static bool IsSameFloatAfterCast(const llvm::APFloat &value,
 | |
|                                  const llvm::fltSemantics &Src,
 | |
|                                  const llvm::fltSemantics &Tgt) {
 | |
|   llvm::APFloat truncated = value;
 | |
| 
 | |
|   bool ignored;
 | |
|   truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
 | |
|   truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
 | |
| 
 | |
|   return truncated.bitwiseIsEqual(value);
 | |
| }
 | |
| 
 | |
| /// Checks whether the given value, which currently has the given
 | |
| /// source semantics, has the same value when coerced through the
 | |
| /// target semantics.
 | |
| ///
 | |
| /// The value might be a vector of floats (or a complex number).
 | |
| static bool IsSameFloatAfterCast(const APValue &value,
 | |
|                                  const llvm::fltSemantics &Src,
 | |
|                                  const llvm::fltSemantics &Tgt) {
 | |
|   if (value.isFloat())
 | |
|     return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
 | |
| 
 | |
|   if (value.isVector()) {
 | |
|     for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
 | |
|       if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
 | |
|         return false;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   assert(value.isComplexFloat());
 | |
|   return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
 | |
|           IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
 | |
| }
 | |
| 
 | |
| static void AnalyzeImplicitConversions(Sema &S, Expr *E, SourceLocation CC);
 | |
| 
 | |
| static bool IsZero(Sema &S, Expr *E) {
 | |
|   // Suppress cases where we are comparing against an enum constant.
 | |
|   if (const DeclRefExpr *DR =
 | |
|       dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
 | |
|     if (isa<EnumConstantDecl>(DR->getDecl()))
 | |
|       return false;
 | |
| 
 | |
|   // Suppress cases where the '0' value is expanded from a macro.
 | |
|   if (E->getLocStart().isMacroID())
 | |
|     return false;
 | |
| 
 | |
|   llvm::APSInt Value;
 | |
|   return E->isIntegerConstantExpr(Value, S.Context) && Value == 0;
 | |
| }
 | |
| 
 | |
| static bool HasEnumType(Expr *E) {
 | |
|   // Strip off implicit integral promotions.
 | |
|   while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
 | |
|     if (ICE->getCastKind() != CK_IntegralCast &&
 | |
|         ICE->getCastKind() != CK_NoOp)
 | |
|       break;
 | |
|     E = ICE->getSubExpr();
 | |
|   }
 | |
| 
 | |
|   return E->getType()->isEnumeralType();
 | |
| }
 | |
| 
 | |
| static void CheckTrivialUnsignedComparison(Sema &S, BinaryOperator *E) {
 | |
|   // Disable warning in template instantiations.
 | |
|   if (!S.ActiveTemplateInstantiations.empty())
 | |
|     return;
 | |
| 
 | |
|   BinaryOperatorKind op = E->getOpcode();
 | |
|   if (E->isValueDependent())
 | |
|     return;
 | |
| 
 | |
|   if (op == BO_LT && IsZero(S, E->getRHS())) {
 | |
|     S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
 | |
|       << "< 0" << "false" << HasEnumType(E->getLHS())
 | |
|       << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
 | |
|   } else if (op == BO_GE && IsZero(S, E->getRHS())) {
 | |
|     S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
 | |
|       << ">= 0" << "true" << HasEnumType(E->getLHS())
 | |
|       << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
 | |
|   } else if (op == BO_GT && IsZero(S, E->getLHS())) {
 | |
|     S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
 | |
|       << "0 >" << "false" << HasEnumType(E->getRHS())
 | |
|       << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
 | |
|   } else if (op == BO_LE && IsZero(S, E->getLHS())) {
 | |
|     S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
 | |
|       << "0 <=" << "true" << HasEnumType(E->getRHS())
 | |
|       << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
 | |
|   }
 | |
| }
 | |
| 
 | |
| static void DiagnoseOutOfRangeComparison(Sema &S, BinaryOperator *E,
 | |
|                                          Expr *Constant, Expr *Other,
 | |
|                                          llvm::APSInt Value,
 | |
|                                          bool RhsConstant) {
 | |
|   // Disable warning in template instantiations.
 | |
|   if (!S.ActiveTemplateInstantiations.empty())
 | |
|     return;
 | |
| 
 | |
|   // 0 values are handled later by CheckTrivialUnsignedComparison().
 | |
|   if (Value == 0)
 | |
|     return;
 | |
| 
 | |
|   BinaryOperatorKind op = E->getOpcode();
 | |
|   QualType OtherT = Other->getType();
 | |
|   QualType ConstantT = Constant->getType();
 | |
|   QualType CommonT = E->getLHS()->getType();
 | |
|   if (S.Context.hasSameUnqualifiedType(OtherT, ConstantT))
 | |
|     return;
 | |
|   assert((OtherT->isIntegerType() && ConstantT->isIntegerType())
 | |
|          && "comparison with non-integer type");
 | |
| 
 | |
|   bool ConstantSigned = ConstantT->isSignedIntegerType();
 | |
|   bool CommonSigned = CommonT->isSignedIntegerType();
 | |
| 
 | |
|   bool EqualityOnly = false;
 | |
| 
 | |
|   // TODO: Investigate using GetExprRange() to get tighter bounds on
 | |
|   // on the bit ranges.
 | |
|   IntRange OtherRange = IntRange::forValueOfType(S.Context, OtherT);
 | |
|   unsigned OtherWidth = OtherRange.Width;
 | |
|   
 | |
|   if (CommonSigned) {
 | |
|     // The common type is signed, therefore no signed to unsigned conversion.
 | |
|     if (!OtherRange.NonNegative) {
 | |
|       // Check that the constant is representable in type OtherT.
 | |
|       if (ConstantSigned) {
 | |
|         if (OtherWidth >= Value.getMinSignedBits())
 | |
|           return;
 | |
|       } else { // !ConstantSigned
 | |
|         if (OtherWidth >= Value.getActiveBits() + 1)
 | |
|           return;
 | |
|       }
 | |
|     } else { // !OtherSigned
 | |
|       // Check that the constant is representable in type OtherT.
 | |
|       // Negative values are out of range.
 | |
|       if (ConstantSigned) {
 | |
|         if (Value.isNonNegative() && OtherWidth >= Value.getActiveBits())
 | |
|           return;
 | |
|       } else { // !ConstantSigned
 | |
|         if (OtherWidth >= Value.getActiveBits())
 | |
|           return;
 | |
|       }
 | |
|     }
 | |
|   } else {  // !CommonSigned
 | |
|     if (OtherRange.NonNegative) {
 | |
|       if (OtherWidth >= Value.getActiveBits())
 | |
|         return;
 | |
|     } else if (!OtherRange.NonNegative && !ConstantSigned) {
 | |
|       // Check to see if the constant is representable in OtherT.
 | |
|       if (OtherWidth > Value.getActiveBits())
 | |
|         return;
 | |
|       // Check to see if the constant is equivalent to a negative value
 | |
|       // cast to CommonT.
 | |
|       if (S.Context.getIntWidth(ConstantT) == S.Context.getIntWidth(CommonT) &&
 | |
|           Value.isNegative() && Value.getMinSignedBits() <= OtherWidth)
 | |
|         return;
 | |
|       // The constant value rests between values that OtherT can represent after
 | |
|       // conversion.  Relational comparison still works, but equality
 | |
|       // comparisons will be tautological.
 | |
|       EqualityOnly = true;
 | |
|     } else { // OtherSigned && ConstantSigned
 | |
|       assert(0 && "Two signed types converted to unsigned types.");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   bool PositiveConstant = !ConstantSigned || Value.isNonNegative();
 | |
| 
 | |
|   bool IsTrue = true;
 | |
|   if (op == BO_EQ || op == BO_NE) {
 | |
|     IsTrue = op == BO_NE;
 | |
|   } else if (EqualityOnly) {
 | |
|     return;
 | |
|   } else if (RhsConstant) {
 | |
|     if (op == BO_GT || op == BO_GE)
 | |
|       IsTrue = !PositiveConstant;
 | |
|     else // op == BO_LT || op == BO_LE
 | |
|       IsTrue = PositiveConstant;
 | |
|   } else {
 | |
|     if (op == BO_LT || op == BO_LE)
 | |
|       IsTrue = !PositiveConstant;
 | |
|     else // op == BO_GT || op == BO_GE
 | |
|       IsTrue = PositiveConstant;
 | |
|   }
 | |
| 
 | |
|   // If this is a comparison to an enum constant, include that
 | |
|   // constant in the diagnostic.
 | |
|   const EnumConstantDecl *ED = 0;
 | |
|   if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Constant))
 | |
|     ED = dyn_cast<EnumConstantDecl>(DR->getDecl());
 | |
| 
 | |
|   SmallString<64> PrettySourceValue;
 | |
|   llvm::raw_svector_ostream OS(PrettySourceValue);
 | |
|   if (ED)
 | |
|     OS << '\'' << *ED << "' (" << Value << ")";
 | |
|   else
 | |
|     OS << Value;
 | |
| 
 | |
|   S.Diag(E->getOperatorLoc(), diag::warn_out_of_range_compare)
 | |
|       << OS.str() << OtherT << IsTrue
 | |
|       << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
 | |
| }
 | |
| 
 | |
| /// Analyze the operands of the given comparison.  Implements the
 | |
| /// fallback case from AnalyzeComparison.
 | |
| static void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) {
 | |
|   AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
 | |
|   AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
 | |
| }
 | |
| 
 | |
| /// \brief Implements -Wsign-compare.
 | |
| ///
 | |
| /// \param E the binary operator to check for warnings
 | |
| static void AnalyzeComparison(Sema &S, BinaryOperator *E) {
 | |
|   // The type the comparison is being performed in.
 | |
|   QualType T = E->getLHS()->getType();
 | |
|   assert(S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType())
 | |
|          && "comparison with mismatched types");
 | |
|   if (E->isValueDependent())
 | |
|     return AnalyzeImpConvsInComparison(S, E);
 | |
| 
 | |
|   Expr *LHS = E->getLHS()->IgnoreParenImpCasts();
 | |
|   Expr *RHS = E->getRHS()->IgnoreParenImpCasts();
 | |
|   
 | |
|   bool IsComparisonConstant = false;
 | |
|   
 | |
|   // Check whether an integer constant comparison results in a value
 | |
|   // of 'true' or 'false'.
 | |
|   if (T->isIntegralType(S.Context)) {
 | |
|     llvm::APSInt RHSValue;
 | |
|     bool IsRHSIntegralLiteral = 
 | |
|       RHS->isIntegerConstantExpr(RHSValue, S.Context);
 | |
|     llvm::APSInt LHSValue;
 | |
|     bool IsLHSIntegralLiteral = 
 | |
|       LHS->isIntegerConstantExpr(LHSValue, S.Context);
 | |
|     if (IsRHSIntegralLiteral && !IsLHSIntegralLiteral)
 | |
|         DiagnoseOutOfRangeComparison(S, E, RHS, LHS, RHSValue, true);
 | |
|     else if (!IsRHSIntegralLiteral && IsLHSIntegralLiteral)
 | |
|       DiagnoseOutOfRangeComparison(S, E, LHS, RHS, LHSValue, false);
 | |
|     else
 | |
|       IsComparisonConstant = 
 | |
|         (IsRHSIntegralLiteral && IsLHSIntegralLiteral);
 | |
|   } else if (!T->hasUnsignedIntegerRepresentation())
 | |
|       IsComparisonConstant = E->isIntegerConstantExpr(S.Context);
 | |
|   
 | |
|   // We don't do anything special if this isn't an unsigned integral
 | |
|   // comparison:  we're only interested in integral comparisons, and
 | |
|   // signed comparisons only happen in cases we don't care to warn about.
 | |
|   //
 | |
|   // We also don't care about value-dependent expressions or expressions
 | |
|   // whose result is a constant.
 | |
|   if (!T->hasUnsignedIntegerRepresentation() || IsComparisonConstant)
 | |
|     return AnalyzeImpConvsInComparison(S, E);
 | |
|   
 | |
|   // Check to see if one of the (unmodified) operands is of different
 | |
|   // signedness.
 | |
|   Expr *signedOperand, *unsignedOperand;
 | |
|   if (LHS->getType()->hasSignedIntegerRepresentation()) {
 | |
|     assert(!RHS->getType()->hasSignedIntegerRepresentation() &&
 | |
|            "unsigned comparison between two signed integer expressions?");
 | |
|     signedOperand = LHS;
 | |
|     unsignedOperand = RHS;
 | |
|   } else if (RHS->getType()->hasSignedIntegerRepresentation()) {
 | |
|     signedOperand = RHS;
 | |
|     unsignedOperand = LHS;
 | |
|   } else {
 | |
|     CheckTrivialUnsignedComparison(S, E);
 | |
|     return AnalyzeImpConvsInComparison(S, E);
 | |
|   }
 | |
| 
 | |
|   // Otherwise, calculate the effective range of the signed operand.
 | |
|   IntRange signedRange = GetExprRange(S.Context, signedOperand);
 | |
| 
 | |
|   // Go ahead and analyze implicit conversions in the operands.  Note
 | |
|   // that we skip the implicit conversions on both sides.
 | |
|   AnalyzeImplicitConversions(S, LHS, E->getOperatorLoc());
 | |
|   AnalyzeImplicitConversions(S, RHS, E->getOperatorLoc());
 | |
| 
 | |
|   // If the signed range is non-negative, -Wsign-compare won't fire,
 | |
|   // but we should still check for comparisons which are always true
 | |
|   // or false.
 | |
|   if (signedRange.NonNegative)
 | |
|     return CheckTrivialUnsignedComparison(S, E);
 | |
| 
 | |
|   // For (in)equality comparisons, if the unsigned operand is a
 | |
|   // constant which cannot collide with a overflowed signed operand,
 | |
|   // then reinterpreting the signed operand as unsigned will not
 | |
|   // change the result of the comparison.
 | |
|   if (E->isEqualityOp()) {
 | |
|     unsigned comparisonWidth = S.Context.getIntWidth(T);
 | |
|     IntRange unsignedRange = GetExprRange(S.Context, unsignedOperand);
 | |
| 
 | |
|     // We should never be unable to prove that the unsigned operand is
 | |
|     // non-negative.
 | |
|     assert(unsignedRange.NonNegative && "unsigned range includes negative?");
 | |
| 
 | |
|     if (unsignedRange.Width < comparisonWidth)
 | |
|       return;
 | |
|   }
 | |
| 
 | |
|   S.DiagRuntimeBehavior(E->getOperatorLoc(), E,
 | |
|     S.PDiag(diag::warn_mixed_sign_comparison)
 | |
|       << LHS->getType() << RHS->getType()
 | |
|       << LHS->getSourceRange() << RHS->getSourceRange());
 | |
| }
 | |
| 
 | |
| /// Analyzes an attempt to assign the given value to a bitfield.
 | |
| ///
 | |
| /// Returns true if there was something fishy about the attempt.
 | |
| static bool AnalyzeBitFieldAssignment(Sema &S, FieldDecl *Bitfield, Expr *Init,
 | |
|                                       SourceLocation InitLoc) {
 | |
|   assert(Bitfield->isBitField());
 | |
|   if (Bitfield->isInvalidDecl())
 | |
|     return false;
 | |
| 
 | |
|   // White-list bool bitfields.
 | |
|   if (Bitfield->getType()->isBooleanType())
 | |
|     return false;
 | |
| 
 | |
|   // Ignore value- or type-dependent expressions.
 | |
|   if (Bitfield->getBitWidth()->isValueDependent() ||
 | |
|       Bitfield->getBitWidth()->isTypeDependent() ||
 | |
|       Init->isValueDependent() ||
 | |
|       Init->isTypeDependent())
 | |
|     return false;
 | |
| 
 | |
|   Expr *OriginalInit = Init->IgnoreParenImpCasts();
 | |
| 
 | |
|   llvm::APSInt Value;
 | |
|   if (!OriginalInit->EvaluateAsInt(Value, S.Context, Expr::SE_AllowSideEffects))
 | |
|     return false;
 | |
| 
 | |
|   unsigned OriginalWidth = Value.getBitWidth();
 | |
|   unsigned FieldWidth = Bitfield->getBitWidthValue(S.Context);
 | |
| 
 | |
|   if (OriginalWidth <= FieldWidth)
 | |
|     return false;
 | |
| 
 | |
|   // Compute the value which the bitfield will contain.
 | |
|   llvm::APSInt TruncatedValue = Value.trunc(FieldWidth);
 | |
|   TruncatedValue.setIsSigned(Bitfield->getType()->isSignedIntegerType());
 | |
| 
 | |
|   // Check whether the stored value is equal to the original value.
 | |
|   TruncatedValue = TruncatedValue.extend(OriginalWidth);
 | |
|   if (llvm::APSInt::isSameValue(Value, TruncatedValue))
 | |
|     return false;
 | |
| 
 | |
|   // Special-case bitfields of width 1: booleans are naturally 0/1, and
 | |
|   // therefore don't strictly fit into a signed bitfield of width 1.
 | |
|   if (FieldWidth == 1 && Value == 1)
 | |
|     return false;
 | |
| 
 | |
|   std::string PrettyValue = Value.toString(10);
 | |
|   std::string PrettyTrunc = TruncatedValue.toString(10);
 | |
| 
 | |
|   S.Diag(InitLoc, diag::warn_impcast_bitfield_precision_constant)
 | |
|     << PrettyValue << PrettyTrunc << OriginalInit->getType()
 | |
|     << Init->getSourceRange();
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Analyze the given simple or compound assignment for warning-worthy
 | |
| /// operations.
 | |
| static void AnalyzeAssignment(Sema &S, BinaryOperator *E) {
 | |
|   // Just recurse on the LHS.
 | |
|   AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
 | |
| 
 | |
|   // We want to recurse on the RHS as normal unless we're assigning to
 | |
|   // a bitfield.
 | |
|   if (FieldDecl *Bitfield = E->getLHS()->getSourceBitField()) {
 | |
|     if (AnalyzeBitFieldAssignment(S, Bitfield, E->getRHS(),
 | |
|                                   E->getOperatorLoc())) {
 | |
|       // Recurse, ignoring any implicit conversions on the RHS.
 | |
|       return AnalyzeImplicitConversions(S, E->getRHS()->IgnoreParenImpCasts(),
 | |
|                                         E->getOperatorLoc());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
 | |
| }
 | |
| 
 | |
| /// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
 | |
| static void DiagnoseImpCast(Sema &S, Expr *E, QualType SourceType, QualType T, 
 | |
|                             SourceLocation CContext, unsigned diag,
 | |
|                             bool pruneControlFlow = false) {
 | |
|   if (pruneControlFlow) {
 | |
|     S.DiagRuntimeBehavior(E->getExprLoc(), E,
 | |
|                           S.PDiag(diag)
 | |
|                             << SourceType << T << E->getSourceRange()
 | |
|                             << SourceRange(CContext));
 | |
|     return;
 | |
|   }
 | |
|   S.Diag(E->getExprLoc(), diag)
 | |
|     << SourceType << T << E->getSourceRange() << SourceRange(CContext);
 | |
| }
 | |
| 
 | |
| /// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
 | |
| static void DiagnoseImpCast(Sema &S, Expr *E, QualType T,
 | |
|                             SourceLocation CContext, unsigned diag,
 | |
|                             bool pruneControlFlow = false) {
 | |
|   DiagnoseImpCast(S, E, E->getType(), T, CContext, diag, pruneControlFlow);
 | |
| }
 | |
| 
 | |
| /// Diagnose an implicit cast from a literal expression. Does not warn when the
 | |
| /// cast wouldn't lose information.
 | |
| void DiagnoseFloatingLiteralImpCast(Sema &S, FloatingLiteral *FL, QualType T,
 | |
|                                     SourceLocation CContext) {
 | |
|   // Try to convert the literal exactly to an integer. If we can, don't warn.
 | |
|   bool isExact = false;
 | |
|   const llvm::APFloat &Value = FL->getValue();
 | |
|   llvm::APSInt IntegerValue(S.Context.getIntWidth(T),
 | |
|                             T->hasUnsignedIntegerRepresentation());
 | |
|   if (Value.convertToInteger(IntegerValue,
 | |
|                              llvm::APFloat::rmTowardZero, &isExact)
 | |
|       == llvm::APFloat::opOK && isExact)
 | |
|     return;
 | |
| 
 | |
|   // FIXME: Force the precision of the source value down so we don't print
 | |
|   // digits which are usually useless (we don't really care here if we
 | |
|   // truncate a digit by accident in edge cases).  Ideally, APFloat::toString
 | |
|   // would automatically print the shortest representation, but it's a bit
 | |
|   // tricky to implement.
 | |
|   SmallString<16> PrettySourceValue;
 | |
|   unsigned precision = llvm::APFloat::semanticsPrecision(Value.getSemantics());
 | |
|   precision = (precision * 59 + 195) / 196;
 | |
|   Value.toString(PrettySourceValue, precision);
 | |
| 
 | |
|   SmallString<16> PrettyTargetValue;
 | |
|   if (T->isSpecificBuiltinType(BuiltinType::Bool))
 | |
|     PrettyTargetValue = IntegerValue == 0 ? "false" : "true";
 | |
|   else
 | |
|     IntegerValue.toString(PrettyTargetValue);
 | |
| 
 | |
|   S.Diag(FL->getExprLoc(), diag::warn_impcast_literal_float_to_integer)
 | |
|     << FL->getType() << T.getUnqualifiedType() << PrettySourceValue
 | |
|     << PrettyTargetValue << FL->getSourceRange() << SourceRange(CContext);
 | |
| }
 | |
| 
 | |
| std::string PrettyPrintInRange(const llvm::APSInt &Value, IntRange Range) {
 | |
|   if (!Range.Width) return "0";
 | |
| 
 | |
|   llvm::APSInt ValueInRange = Value;
 | |
|   ValueInRange.setIsSigned(!Range.NonNegative);
 | |
|   ValueInRange = ValueInRange.trunc(Range.Width);
 | |
|   return ValueInRange.toString(10);
 | |
| }
 | |
| 
 | |
| static bool IsImplicitBoolFloatConversion(Sema &S, Expr *Ex, bool ToBool) {
 | |
|   if (!isa<ImplicitCastExpr>(Ex))
 | |
|     return false;
 | |
| 
 | |
|   Expr *InnerE = Ex->IgnoreParenImpCasts();
 | |
|   const Type *Target = S.Context.getCanonicalType(Ex->getType()).getTypePtr();
 | |
|   const Type *Source =
 | |
|     S.Context.getCanonicalType(InnerE->getType()).getTypePtr();
 | |
|   if (Target->isDependentType())
 | |
|     return false;
 | |
| 
 | |
|   const BuiltinType *FloatCandidateBT =
 | |
|     dyn_cast<BuiltinType>(ToBool ? Source : Target);
 | |
|   const Type *BoolCandidateType = ToBool ? Target : Source;
 | |
| 
 | |
|   return (BoolCandidateType->isSpecificBuiltinType(BuiltinType::Bool) &&
 | |
|           FloatCandidateBT && (FloatCandidateBT->isFloatingPoint()));
 | |
| }
 | |
| 
 | |
| void CheckImplicitArgumentConversions(Sema &S, CallExpr *TheCall,
 | |
|                                       SourceLocation CC) {
 | |
|   unsigned NumArgs = TheCall->getNumArgs();
 | |
|   for (unsigned i = 0; i < NumArgs; ++i) {
 | |
|     Expr *CurrA = TheCall->getArg(i);
 | |
|     if (!IsImplicitBoolFloatConversion(S, CurrA, true))
 | |
|       continue;
 | |
| 
 | |
|     bool IsSwapped = ((i > 0) &&
 | |
|         IsImplicitBoolFloatConversion(S, TheCall->getArg(i - 1), false));
 | |
|     IsSwapped |= ((i < (NumArgs - 1)) &&
 | |
|         IsImplicitBoolFloatConversion(S, TheCall->getArg(i + 1), false));
 | |
|     if (IsSwapped) {
 | |
|       // Warn on this floating-point to bool conversion.
 | |
|       DiagnoseImpCast(S, CurrA->IgnoreParenImpCasts(),
 | |
|                       CurrA->getType(), CC,
 | |
|                       diag::warn_impcast_floating_point_to_bool);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void CheckImplicitConversion(Sema &S, Expr *E, QualType T,
 | |
|                              SourceLocation CC, bool *ICContext = 0) {
 | |
|   if (E->isTypeDependent() || E->isValueDependent()) return;
 | |
| 
 | |
|   const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr();
 | |
|   const Type *Target = S.Context.getCanonicalType(T).getTypePtr();
 | |
|   if (Source == Target) return;
 | |
|   if (Target->isDependentType()) return;
 | |
| 
 | |
|   // If the conversion context location is invalid don't complain. We also
 | |
|   // don't want to emit a warning if the issue occurs from the expansion of
 | |
|   // a system macro. The problem is that 'getSpellingLoc()' is slow, so we
 | |
|   // delay this check as long as possible. Once we detect we are in that
 | |
|   // scenario, we just return.
 | |
|   if (CC.isInvalid())
 | |
|     return;
 | |
| 
 | |
|   // Diagnose implicit casts to bool.
 | |
|   if (Target->isSpecificBuiltinType(BuiltinType::Bool)) {
 | |
|     if (isa<StringLiteral>(E))
 | |
|       // Warn on string literal to bool.  Checks for string literals in logical
 | |
|       // expressions, for instances, assert(0 && "error here"), is prevented
 | |
|       // by a check in AnalyzeImplicitConversions().
 | |
|       return DiagnoseImpCast(S, E, T, CC,
 | |
|                              diag::warn_impcast_string_literal_to_bool);
 | |
|     if (Source->isFunctionType()) {
 | |
|       // Warn on function to bool. Checks free functions and static member
 | |
|       // functions. Weakly imported functions are excluded from the check,
 | |
|       // since it's common to test their value to check whether the linker
 | |
|       // found a definition for them.
 | |
|       ValueDecl *D = 0;
 | |
|       if (DeclRefExpr* R = dyn_cast<DeclRefExpr>(E)) {
 | |
|         D = R->getDecl();
 | |
|       } else if (MemberExpr *M = dyn_cast<MemberExpr>(E)) {
 | |
|         D = M->getMemberDecl();
 | |
|       }
 | |
| 
 | |
|       if (D && !D->isWeak()) {
 | |
|         if (FunctionDecl* F = dyn_cast<FunctionDecl>(D)) {
 | |
|           S.Diag(E->getExprLoc(), diag::warn_impcast_function_to_bool)
 | |
|             << F << E->getSourceRange() << SourceRange(CC);
 | |
|           S.Diag(E->getExprLoc(), diag::note_function_to_bool_silence)
 | |
|             << FixItHint::CreateInsertion(E->getExprLoc(), "&");
 | |
|           QualType ReturnType;
 | |
|           UnresolvedSet<4> NonTemplateOverloads;
 | |
|           S.tryExprAsCall(*E, ReturnType, NonTemplateOverloads);
 | |
|           if (!ReturnType.isNull() 
 | |
|               && ReturnType->isSpecificBuiltinType(BuiltinType::Bool))
 | |
|             S.Diag(E->getExprLoc(), diag::note_function_to_bool_call)
 | |
|               << FixItHint::CreateInsertion(
 | |
|                  S.getPreprocessor().getLocForEndOfToken(E->getLocEnd()), "()");
 | |
|           return;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Strip vector types.
 | |
|   if (isa<VectorType>(Source)) {
 | |
|     if (!isa<VectorType>(Target)) {
 | |
|       if (S.SourceMgr.isInSystemMacro(CC))
 | |
|         return;
 | |
|       return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_vector_scalar);
 | |
|     }
 | |
|     
 | |
|     // If the vector cast is cast between two vectors of the same size, it is
 | |
|     // a bitcast, not a conversion.
 | |
|     if (S.Context.getTypeSize(Source) == S.Context.getTypeSize(Target))
 | |
|       return;
 | |
| 
 | |
|     Source = cast<VectorType>(Source)->getElementType().getTypePtr();
 | |
|     Target = cast<VectorType>(Target)->getElementType().getTypePtr();
 | |
|   }
 | |
| 
 | |
|   // Strip complex types.
 | |
|   if (isa<ComplexType>(Source)) {
 | |
|     if (!isa<ComplexType>(Target)) {
 | |
|       if (S.SourceMgr.isInSystemMacro(CC))
 | |
|         return;
 | |
| 
 | |
|       return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_complex_scalar);
 | |
|     }
 | |
| 
 | |
|     Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
 | |
|     Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
 | |
|   }
 | |
| 
 | |
|   const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
 | |
|   const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
 | |
| 
 | |
|   // If the source is floating point...
 | |
|   if (SourceBT && SourceBT->isFloatingPoint()) {
 | |
|     // ...and the target is floating point...
 | |
|     if (TargetBT && TargetBT->isFloatingPoint()) {
 | |
|       // ...then warn if we're dropping FP rank.
 | |
| 
 | |
|       // Builtin FP kinds are ordered by increasing FP rank.
 | |
|       if (SourceBT->getKind() > TargetBT->getKind()) {
 | |
|         // Don't warn about float constants that are precisely
 | |
|         // representable in the target type.
 | |
|         Expr::EvalResult result;
 | |
|         if (E->EvaluateAsRValue(result, S.Context)) {
 | |
|           // Value might be a float, a float vector, or a float complex.
 | |
|           if (IsSameFloatAfterCast(result.Val,
 | |
|                    S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
 | |
|                    S.Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         if (S.SourceMgr.isInSystemMacro(CC))
 | |
|           return;
 | |
| 
 | |
|         DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_precision);
 | |
|       }
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // If the target is integral, always warn.    
 | |
|     if (TargetBT && TargetBT->isInteger()) {
 | |
|       if (S.SourceMgr.isInSystemMacro(CC))
 | |
|         return;
 | |
|       
 | |
|       Expr *InnerE = E->IgnoreParenImpCasts();
 | |
|       // We also want to warn on, e.g., "int i = -1.234"
 | |
|       if (UnaryOperator *UOp = dyn_cast<UnaryOperator>(InnerE))
 | |
|         if (UOp->getOpcode() == UO_Minus || UOp->getOpcode() == UO_Plus)
 | |
|           InnerE = UOp->getSubExpr()->IgnoreParenImpCasts();
 | |
| 
 | |
|       if (FloatingLiteral *FL = dyn_cast<FloatingLiteral>(InnerE)) {
 | |
|         DiagnoseFloatingLiteralImpCast(S, FL, T, CC);
 | |
|       } else {
 | |
|         DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_integer);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // If the target is bool, warn if expr is a function or method call.
 | |
|     if (Target->isSpecificBuiltinType(BuiltinType::Bool) &&
 | |
|         isa<CallExpr>(E)) {
 | |
|       // Check last argument of function call to see if it is an
 | |
|       // implicit cast from a type matching the type the result
 | |
|       // is being cast to.
 | |
|       CallExpr *CEx = cast<CallExpr>(E);
 | |
|       unsigned NumArgs = CEx->getNumArgs();
 | |
|       if (NumArgs > 0) {
 | |
|         Expr *LastA = CEx->getArg(NumArgs - 1);
 | |
|         Expr *InnerE = LastA->IgnoreParenImpCasts();
 | |
|         const Type *InnerType =
 | |
|           S.Context.getCanonicalType(InnerE->getType()).getTypePtr();
 | |
|         if (isa<ImplicitCastExpr>(LastA) && (InnerType == Target)) {
 | |
|           // Warn on this floating-point to bool conversion
 | |
|           DiagnoseImpCast(S, E, T, CC,
 | |
|                           diag::warn_impcast_floating_point_to_bool);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if ((E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)
 | |
|            == Expr::NPCK_GNUNull) && !Target->isAnyPointerType()
 | |
|       && !Target->isBlockPointerType() && !Target->isMemberPointerType()
 | |
|       && Target->isScalarType() && !Target->isNullPtrType()) {
 | |
|     SourceLocation Loc = E->getSourceRange().getBegin();
 | |
|     if (Loc.isMacroID())
 | |
|       Loc = S.SourceMgr.getImmediateExpansionRange(Loc).first;
 | |
|     if (!Loc.isMacroID() || CC.isMacroID())
 | |
|       S.Diag(Loc, diag::warn_impcast_null_pointer_to_integer)
 | |
|           << T << clang::SourceRange(CC)
 | |
|           << FixItHint::CreateReplacement(Loc,
 | |
|                                           S.getFixItZeroLiteralForType(T, Loc));
 | |
|   }
 | |
| 
 | |
|   if (!Source->isIntegerType() || !Target->isIntegerType())
 | |
|     return;
 | |
| 
 | |
|   // TODO: remove this early return once the false positives for constant->bool
 | |
|   // in templates, macros, etc, are reduced or removed.
 | |
|   if (Target->isSpecificBuiltinType(BuiltinType::Bool))
 | |
|     return;
 | |
| 
 | |
|   IntRange SourceRange = GetExprRange(S.Context, E);
 | |
|   IntRange TargetRange = IntRange::forTargetOfCanonicalType(S.Context, Target);
 | |
| 
 | |
|   if (SourceRange.Width > TargetRange.Width) {
 | |
|     // If the source is a constant, use a default-on diagnostic.
 | |
|     // TODO: this should happen for bitfield stores, too.
 | |
|     llvm::APSInt Value(32);
 | |
|     if (E->isIntegerConstantExpr(Value, S.Context)) {
 | |
|       if (S.SourceMgr.isInSystemMacro(CC))
 | |
|         return;
 | |
| 
 | |
|       std::string PrettySourceValue = Value.toString(10);
 | |
|       std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
 | |
| 
 | |
|       S.DiagRuntimeBehavior(E->getExprLoc(), E,
 | |
|         S.PDiag(diag::warn_impcast_integer_precision_constant)
 | |
|             << PrettySourceValue << PrettyTargetValue
 | |
|             << E->getType() << T << E->getSourceRange()
 | |
|             << clang::SourceRange(CC));
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // People want to build with -Wshorten-64-to-32 and not -Wconversion.
 | |
|     if (S.SourceMgr.isInSystemMacro(CC))
 | |
|       return;
 | |
| 
 | |
|     if (TargetRange.Width == 32 && S.Context.getIntWidth(E->getType()) == 64)
 | |
|       return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_64_32,
 | |
|                              /* pruneControlFlow */ true);
 | |
|     return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_precision);
 | |
|   }
 | |
| 
 | |
|   if ((TargetRange.NonNegative && !SourceRange.NonNegative) ||
 | |
|       (!TargetRange.NonNegative && SourceRange.NonNegative &&
 | |
|        SourceRange.Width == TargetRange.Width)) {
 | |
|         
 | |
|     if (S.SourceMgr.isInSystemMacro(CC))
 | |
|       return;
 | |
| 
 | |
|     unsigned DiagID = diag::warn_impcast_integer_sign;
 | |
| 
 | |
|     // Traditionally, gcc has warned about this under -Wsign-compare.
 | |
|     // We also want to warn about it in -Wconversion.
 | |
|     // So if -Wconversion is off, use a completely identical diagnostic
 | |
|     // in the sign-compare group.
 | |
|     // The conditional-checking code will 
 | |
|     if (ICContext) {
 | |
|       DiagID = diag::warn_impcast_integer_sign_conditional;
 | |
|       *ICContext = true;
 | |
|     }
 | |
| 
 | |
|     return DiagnoseImpCast(S, E, T, CC, DiagID);
 | |
|   }
 | |
| 
 | |
|   // Diagnose conversions between different enumeration types.
 | |
|   // In C, we pretend that the type of an EnumConstantDecl is its enumeration
 | |
|   // type, to give us better diagnostics.
 | |
|   QualType SourceType = E->getType();
 | |
|   if (!S.getLangOpts().CPlusPlus) {
 | |
|     if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
 | |
|       if (EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
 | |
|         EnumDecl *Enum = cast<EnumDecl>(ECD->getDeclContext());
 | |
|         SourceType = S.Context.getTypeDeclType(Enum);
 | |
|         Source = S.Context.getCanonicalType(SourceType).getTypePtr();
 | |
|       }
 | |
|   }
 | |
|   
 | |
|   if (const EnumType *SourceEnum = Source->getAs<EnumType>())
 | |
|     if (const EnumType *TargetEnum = Target->getAs<EnumType>())
 | |
|       if (SourceEnum->getDecl()->hasNameForLinkage() &&
 | |
|           TargetEnum->getDecl()->hasNameForLinkage() &&
 | |
|           SourceEnum != TargetEnum) {
 | |
|         if (S.SourceMgr.isInSystemMacro(CC))
 | |
|           return;
 | |
| 
 | |
|         return DiagnoseImpCast(S, E, SourceType, T, CC, 
 | |
|                                diag::warn_impcast_different_enum_types);
 | |
|       }
 | |
|   
 | |
|   return;
 | |
| }
 | |
| 
 | |
| void CheckConditionalOperator(Sema &S, ConditionalOperator *E,
 | |
|                               SourceLocation CC, QualType T);
 | |
| 
 | |
| void CheckConditionalOperand(Sema &S, Expr *E, QualType T,
 | |
|                              SourceLocation CC, bool &ICContext) {
 | |
|   E = E->IgnoreParenImpCasts();
 | |
| 
 | |
|   if (isa<ConditionalOperator>(E))
 | |
|     return CheckConditionalOperator(S, cast<ConditionalOperator>(E), CC, T);
 | |
| 
 | |
|   AnalyzeImplicitConversions(S, E, CC);
 | |
|   if (E->getType() != T)
 | |
|     return CheckImplicitConversion(S, E, T, CC, &ICContext);
 | |
|   return;
 | |
| }
 | |
| 
 | |
| void CheckConditionalOperator(Sema &S, ConditionalOperator *E,
 | |
|                               SourceLocation CC, QualType T) {
 | |
|   AnalyzeImplicitConversions(S, E->getCond(), CC);
 | |
| 
 | |
|   bool Suspicious = false;
 | |
|   CheckConditionalOperand(S, E->getTrueExpr(), T, CC, Suspicious);
 | |
|   CheckConditionalOperand(S, E->getFalseExpr(), T, CC, Suspicious);
 | |
| 
 | |
|   // If -Wconversion would have warned about either of the candidates
 | |
|   // for a signedness conversion to the context type...
 | |
|   if (!Suspicious) return;
 | |
| 
 | |
|   // ...but it's currently ignored...
 | |
|   if (S.Diags.getDiagnosticLevel(diag::warn_impcast_integer_sign_conditional,
 | |
|                                  CC))
 | |
|     return;
 | |
| 
 | |
|   // ...then check whether it would have warned about either of the
 | |
|   // candidates for a signedness conversion to the condition type.
 | |
|   if (E->getType() == T) return;
 | |
|  
 | |
|   Suspicious = false;
 | |
|   CheckImplicitConversion(S, E->getTrueExpr()->IgnoreParenImpCasts(),
 | |
|                           E->getType(), CC, &Suspicious);
 | |
|   if (!Suspicious)
 | |
|     CheckImplicitConversion(S, E->getFalseExpr()->IgnoreParenImpCasts(),
 | |
|                             E->getType(), CC, &Suspicious);
 | |
| }
 | |
| 
 | |
| /// AnalyzeImplicitConversions - Find and report any interesting
 | |
| /// implicit conversions in the given expression.  There are a couple
 | |
| /// of competing diagnostics here, -Wconversion and -Wsign-compare.
 | |
| void AnalyzeImplicitConversions(Sema &S, Expr *OrigE, SourceLocation CC) {
 | |
|   QualType T = OrigE->getType();
 | |
|   Expr *E = OrigE->IgnoreParenImpCasts();
 | |
| 
 | |
|   if (E->isTypeDependent() || E->isValueDependent())
 | |
|     return;
 | |
| 
 | |
|   // For conditional operators, we analyze the arguments as if they
 | |
|   // were being fed directly into the output.
 | |
|   if (isa<ConditionalOperator>(E)) {
 | |
|     ConditionalOperator *CO = cast<ConditionalOperator>(E);
 | |
|     CheckConditionalOperator(S, CO, CC, T);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Check implicit argument conversions for function calls.
 | |
|   if (CallExpr *Call = dyn_cast<CallExpr>(E))
 | |
|     CheckImplicitArgumentConversions(S, Call, CC);
 | |
| 
 | |
|   // Go ahead and check any implicit conversions we might have skipped.
 | |
|   // The non-canonical typecheck is just an optimization;
 | |
|   // CheckImplicitConversion will filter out dead implicit conversions.
 | |
|   if (E->getType() != T)
 | |
|     CheckImplicitConversion(S, E, T, CC);
 | |
| 
 | |
|   // Now continue drilling into this expression.
 | |
|   
 | |
|   if (PseudoObjectExpr * POE = dyn_cast<PseudoObjectExpr>(E)) {
 | |
|     if (POE->getResultExpr())
 | |
|       E = POE->getResultExpr();
 | |
|   }
 | |
|   
 | |
|   if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E))
 | |
|     return AnalyzeImplicitConversions(S, OVE->getSourceExpr(), CC);
 | |
|   
 | |
|   // Skip past explicit casts.
 | |
|   if (isa<ExplicitCastExpr>(E)) {
 | |
|     E = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreParenImpCasts();
 | |
|     return AnalyzeImplicitConversions(S, E, CC);
 | |
|   }
 | |
| 
 | |
|   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
 | |
|     // Do a somewhat different check with comparison operators.
 | |
|     if (BO->isComparisonOp())
 | |
|       return AnalyzeComparison(S, BO);
 | |
| 
 | |
|     // And with simple assignments.
 | |
|     if (BO->getOpcode() == BO_Assign)
 | |
|       return AnalyzeAssignment(S, BO);
 | |
|   }
 | |
| 
 | |
|   // These break the otherwise-useful invariant below.  Fortunately,
 | |
|   // we don't really need to recurse into them, because any internal
 | |
|   // expressions should have been analyzed already when they were
 | |
|   // built into statements.
 | |
|   if (isa<StmtExpr>(E)) return;
 | |
| 
 | |
|   // Don't descend into unevaluated contexts.
 | |
|   if (isa<UnaryExprOrTypeTraitExpr>(E)) return;
 | |
| 
 | |
|   // Now just recurse over the expression's children.
 | |
|   CC = E->getExprLoc();
 | |
|   BinaryOperator *BO = dyn_cast<BinaryOperator>(E);
 | |
|   bool IsLogicalOperator = BO && BO->isLogicalOp();
 | |
|   for (Stmt::child_range I = E->children(); I; ++I) {
 | |
|     Expr *ChildExpr = dyn_cast_or_null<Expr>(*I);
 | |
|     if (!ChildExpr)
 | |
|       continue;
 | |
| 
 | |
|     if (IsLogicalOperator &&
 | |
|         isa<StringLiteral>(ChildExpr->IgnoreParenImpCasts()))
 | |
|       // Ignore checking string literals that are in logical operators.
 | |
|       continue;
 | |
|     AnalyzeImplicitConversions(S, ChildExpr, CC);
 | |
|   }
 | |
| }
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| /// Diagnoses "dangerous" implicit conversions within the given
 | |
| /// expression (which is a full expression).  Implements -Wconversion
 | |
| /// and -Wsign-compare.
 | |
| ///
 | |
| /// \param CC the "context" location of the implicit conversion, i.e.
 | |
| ///   the most location of the syntactic entity requiring the implicit
 | |
| ///   conversion
 | |
| void Sema::CheckImplicitConversions(Expr *E, SourceLocation CC) {
 | |
|   // Don't diagnose in unevaluated contexts.
 | |
|   if (isUnevaluatedContext())
 | |
|     return;
 | |
| 
 | |
|   // Don't diagnose for value- or type-dependent expressions.
 | |
|   if (E->isTypeDependent() || E->isValueDependent())
 | |
|     return;
 | |
| 
 | |
|   // Check for array bounds violations in cases where the check isn't triggered
 | |
|   // elsewhere for other Expr types (like BinaryOperators), e.g. when an
 | |
|   // ArraySubscriptExpr is on the RHS of a variable initialization.
 | |
|   CheckArrayAccess(E);
 | |
| 
 | |
|   // This is not the right CC for (e.g.) a variable initialization.
 | |
|   AnalyzeImplicitConversions(*this, E, CC);
 | |
| }
 | |
| 
 | |
| /// Diagnose when expression is an integer constant expression and its evaluation
 | |
| /// results in integer overflow
 | |
| void Sema::CheckForIntOverflow (Expr *E) {
 | |
|   if (isa<BinaryOperator>(E->IgnoreParens()))
 | |
|     E->EvaluateForOverflow(Context);
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| /// \brief Visitor for expressions which looks for unsequenced operations on the
 | |
| /// same object.
 | |
| class SequenceChecker : public EvaluatedExprVisitor<SequenceChecker> {
 | |
|   typedef EvaluatedExprVisitor<SequenceChecker> Base;
 | |
| 
 | |
|   /// \brief A tree of sequenced regions within an expression. Two regions are
 | |
|   /// unsequenced if one is an ancestor or a descendent of the other. When we
 | |
|   /// finish processing an expression with sequencing, such as a comma
 | |
|   /// expression, we fold its tree nodes into its parent, since they are
 | |
|   /// unsequenced with respect to nodes we will visit later.
 | |
|   class SequenceTree {
 | |
|     struct Value {
 | |
|       explicit Value(unsigned Parent) : Parent(Parent), Merged(false) {}
 | |
|       unsigned Parent : 31;
 | |
|       bool Merged : 1;
 | |
|     };
 | |
|     SmallVector<Value, 8> Values;
 | |
| 
 | |
|   public:
 | |
|     /// \brief A region within an expression which may be sequenced with respect
 | |
|     /// to some other region.
 | |
|     class Seq {
 | |
|       explicit Seq(unsigned N) : Index(N) {}
 | |
|       unsigned Index;
 | |
|       friend class SequenceTree;
 | |
|     public:
 | |
|       Seq() : Index(0) {}
 | |
|     };
 | |
| 
 | |
|     SequenceTree() { Values.push_back(Value(0)); }
 | |
|     Seq root() const { return Seq(0); }
 | |
| 
 | |
|     /// \brief Create a new sequence of operations, which is an unsequenced
 | |
|     /// subset of \p Parent. This sequence of operations is sequenced with
 | |
|     /// respect to other children of \p Parent.
 | |
|     Seq allocate(Seq Parent) {
 | |
|       Values.push_back(Value(Parent.Index));
 | |
|       return Seq(Values.size() - 1);
 | |
|     }
 | |
| 
 | |
|     /// \brief Merge a sequence of operations into its parent.
 | |
|     void merge(Seq S) {
 | |
|       Values[S.Index].Merged = true;
 | |
|     }
 | |
| 
 | |
|     /// \brief Determine whether two operations are unsequenced. This operation
 | |
|     /// is asymmetric: \p Cur should be the more recent sequence, and \p Old
 | |
|     /// should have been merged into its parent as appropriate.
 | |
|     bool isUnsequenced(Seq Cur, Seq Old) {
 | |
|       unsigned C = representative(Cur.Index);
 | |
|       unsigned Target = representative(Old.Index);
 | |
|       while (C >= Target) {
 | |
|         if (C == Target)
 | |
|           return true;
 | |
|         C = Values[C].Parent;
 | |
|       }
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|   private:
 | |
|     /// \brief Pick a representative for a sequence.
 | |
|     unsigned representative(unsigned K) {
 | |
|       if (Values[K].Merged)
 | |
|         // Perform path compression as we go.
 | |
|         return Values[K].Parent = representative(Values[K].Parent);
 | |
|       return K;
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   /// An object for which we can track unsequenced uses.
 | |
|   typedef NamedDecl *Object;
 | |
| 
 | |
|   /// Different flavors of object usage which we track. We only track the
 | |
|   /// least-sequenced usage of each kind.
 | |
|   enum UsageKind {
 | |
|     /// A read of an object. Multiple unsequenced reads are OK.
 | |
|     UK_Use,
 | |
|     /// A modification of an object which is sequenced before the value
 | |
|     /// computation of the expression, such as ++n in C++.
 | |
|     UK_ModAsValue,
 | |
|     /// A modification of an object which is not sequenced before the value
 | |
|     /// computation of the expression, such as n++.
 | |
|     UK_ModAsSideEffect,
 | |
| 
 | |
|     UK_Count = UK_ModAsSideEffect + 1
 | |
|   };
 | |
| 
 | |
|   struct Usage {
 | |
|     Usage() : Use(0), Seq() {}
 | |
|     Expr *Use;
 | |
|     SequenceTree::Seq Seq;
 | |
|   };
 | |
| 
 | |
|   struct UsageInfo {
 | |
|     UsageInfo() : Diagnosed(false) {}
 | |
|     Usage Uses[UK_Count];
 | |
|     /// Have we issued a diagnostic for this variable already?
 | |
|     bool Diagnosed;
 | |
|   };
 | |
|   typedef llvm::SmallDenseMap<Object, UsageInfo, 16> UsageInfoMap;
 | |
| 
 | |
|   Sema &SemaRef;
 | |
|   /// Sequenced regions within the expression.
 | |
|   SequenceTree Tree;
 | |
|   /// Declaration modifications and references which we have seen.
 | |
|   UsageInfoMap UsageMap;
 | |
|   /// The region we are currently within.
 | |
|   SequenceTree::Seq Region;
 | |
|   /// Filled in with declarations which were modified as a side-effect
 | |
|   /// (that is, post-increment operations).
 | |
|   SmallVectorImpl<std::pair<Object, Usage> > *ModAsSideEffect;
 | |
|   /// Expressions to check later. We defer checking these to reduce
 | |
|   /// stack usage.
 | |
|   SmallVectorImpl<Expr *> &WorkList;
 | |
| 
 | |
|   /// RAII object wrapping the visitation of a sequenced subexpression of an
 | |
|   /// expression. At the end of this process, the side-effects of the evaluation
 | |
|   /// become sequenced with respect to the value computation of the result, so
 | |
|   /// we downgrade any UK_ModAsSideEffect within the evaluation to
 | |
|   /// UK_ModAsValue.
 | |
|   struct SequencedSubexpression {
 | |
|     SequencedSubexpression(SequenceChecker &Self)
 | |
|       : Self(Self), OldModAsSideEffect(Self.ModAsSideEffect) {
 | |
|       Self.ModAsSideEffect = &ModAsSideEffect;
 | |
|     }
 | |
|     ~SequencedSubexpression() {
 | |
|       for (unsigned I = 0, E = ModAsSideEffect.size(); I != E; ++I) {
 | |
|         UsageInfo &U = Self.UsageMap[ModAsSideEffect[I].first];
 | |
|         U.Uses[UK_ModAsSideEffect] = ModAsSideEffect[I].second;
 | |
|         Self.addUsage(U, ModAsSideEffect[I].first,
 | |
|                       ModAsSideEffect[I].second.Use, UK_ModAsValue);
 | |
|       }
 | |
|       Self.ModAsSideEffect = OldModAsSideEffect;
 | |
|     }
 | |
| 
 | |
|     SequenceChecker &Self;
 | |
|     SmallVector<std::pair<Object, Usage>, 4> ModAsSideEffect;
 | |
|     SmallVectorImpl<std::pair<Object, Usage> > *OldModAsSideEffect;
 | |
|   };
 | |
| 
 | |
|   /// RAII object wrapping the visitation of a subexpression which we might
 | |
|   /// choose to evaluate as a constant. If any subexpression is evaluated and
 | |
|   /// found to be non-constant, this allows us to suppress the evaluation of
 | |
|   /// the outer expression.
 | |
|   class EvaluationTracker {
 | |
|   public:
 | |
|     EvaluationTracker(SequenceChecker &Self)
 | |
|         : Self(Self), Prev(Self.EvalTracker), EvalOK(true) {
 | |
|       Self.EvalTracker = this;
 | |
|     }
 | |
|     ~EvaluationTracker() {
 | |
|       Self.EvalTracker = Prev;
 | |
|       if (Prev)
 | |
|         Prev->EvalOK &= EvalOK;
 | |
|     }
 | |
| 
 | |
|     bool evaluate(const Expr *E, bool &Result) {
 | |
|       if (!EvalOK || E->isValueDependent())
 | |
|         return false;
 | |
|       EvalOK = E->EvaluateAsBooleanCondition(Result, Self.SemaRef.Context);
 | |
|       return EvalOK;
 | |
|     }
 | |
| 
 | |
|   private:
 | |
|     SequenceChecker &Self;
 | |
|     EvaluationTracker *Prev;
 | |
|     bool EvalOK;
 | |
|   } *EvalTracker;
 | |
| 
 | |
|   /// \brief Find the object which is produced by the specified expression,
 | |
|   /// if any.
 | |
|   Object getObject(Expr *E, bool Mod) const {
 | |
|     E = E->IgnoreParenCasts();
 | |
|     if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
 | |
|       if (Mod && (UO->getOpcode() == UO_PreInc || UO->getOpcode() == UO_PreDec))
 | |
|         return getObject(UO->getSubExpr(), Mod);
 | |
|     } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
 | |
|       if (BO->getOpcode() == BO_Comma)
 | |
|         return getObject(BO->getRHS(), Mod);
 | |
|       if (Mod && BO->isAssignmentOp())
 | |
|         return getObject(BO->getLHS(), Mod);
 | |
|     } else if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
 | |
|       // FIXME: Check for more interesting cases, like "x.n = ++x.n".
 | |
|       if (isa<CXXThisExpr>(ME->getBase()->IgnoreParenCasts()))
 | |
|         return ME->getMemberDecl();
 | |
|     } else if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
 | |
|       // FIXME: If this is a reference, map through to its value.
 | |
|       return DRE->getDecl();
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   /// \brief Note that an object was modified or used by an expression.
 | |
|   void addUsage(UsageInfo &UI, Object O, Expr *Ref, UsageKind UK) {
 | |
|     Usage &U = UI.Uses[UK];
 | |
|     if (!U.Use || !Tree.isUnsequenced(Region, U.Seq)) {
 | |
|       if (UK == UK_ModAsSideEffect && ModAsSideEffect)
 | |
|         ModAsSideEffect->push_back(std::make_pair(O, U));
 | |
|       U.Use = Ref;
 | |
|       U.Seq = Region;
 | |
|     }
 | |
|   }
 | |
|   /// \brief Check whether a modification or use conflicts with a prior usage.
 | |
|   void checkUsage(Object O, UsageInfo &UI, Expr *Ref, UsageKind OtherKind,
 | |
|                   bool IsModMod) {
 | |
|     if (UI.Diagnosed)
 | |
|       return;
 | |
| 
 | |
|     const Usage &U = UI.Uses[OtherKind];
 | |
|     if (!U.Use || !Tree.isUnsequenced(Region, U.Seq))
 | |
|       return;
 | |
| 
 | |
|     Expr *Mod = U.Use;
 | |
|     Expr *ModOrUse = Ref;
 | |
|     if (OtherKind == UK_Use)
 | |
|       std::swap(Mod, ModOrUse);
 | |
| 
 | |
|     SemaRef.Diag(Mod->getExprLoc(),
 | |
|                  IsModMod ? diag::warn_unsequenced_mod_mod
 | |
|                           : diag::warn_unsequenced_mod_use)
 | |
|       << O << SourceRange(ModOrUse->getExprLoc());
 | |
|     UI.Diagnosed = true;
 | |
|   }
 | |
| 
 | |
|   void notePreUse(Object O, Expr *Use) {
 | |
|     UsageInfo &U = UsageMap[O];
 | |
|     // Uses conflict with other modifications.
 | |
|     checkUsage(O, U, Use, UK_ModAsValue, false);
 | |
|   }
 | |
|   void notePostUse(Object O, Expr *Use) {
 | |
|     UsageInfo &U = UsageMap[O];
 | |
|     checkUsage(O, U, Use, UK_ModAsSideEffect, false);
 | |
|     addUsage(U, O, Use, UK_Use);
 | |
|   }
 | |
| 
 | |
|   void notePreMod(Object O, Expr *Mod) {
 | |
|     UsageInfo &U = UsageMap[O];
 | |
|     // Modifications conflict with other modifications and with uses.
 | |
|     checkUsage(O, U, Mod, UK_ModAsValue, true);
 | |
|     checkUsage(O, U, Mod, UK_Use, false);
 | |
|   }
 | |
|   void notePostMod(Object O, Expr *Use, UsageKind UK) {
 | |
|     UsageInfo &U = UsageMap[O];
 | |
|     checkUsage(O, U, Use, UK_ModAsSideEffect, true);
 | |
|     addUsage(U, O, Use, UK);
 | |
|   }
 | |
| 
 | |
| public:
 | |
|   SequenceChecker(Sema &S, Expr *E, SmallVectorImpl<Expr *> &WorkList)
 | |
|       : Base(S.Context), SemaRef(S), Region(Tree.root()), ModAsSideEffect(0),
 | |
|         WorkList(WorkList), EvalTracker(0) {
 | |
|     Visit(E);
 | |
|   }
 | |
| 
 | |
|   void VisitStmt(Stmt *S) {
 | |
|     // Skip all statements which aren't expressions for now.
 | |
|   }
 | |
| 
 | |
|   void VisitExpr(Expr *E) {
 | |
|     // By default, just recurse to evaluated subexpressions.
 | |
|     Base::VisitStmt(E);
 | |
|   }
 | |
| 
 | |
|   void VisitCastExpr(CastExpr *E) {
 | |
|     Object O = Object();
 | |
|     if (E->getCastKind() == CK_LValueToRValue)
 | |
|       O = getObject(E->getSubExpr(), false);
 | |
| 
 | |
|     if (O)
 | |
|       notePreUse(O, E);
 | |
|     VisitExpr(E);
 | |
|     if (O)
 | |
|       notePostUse(O, E);
 | |
|   }
 | |
| 
 | |
|   void VisitBinComma(BinaryOperator *BO) {
 | |
|     // C++11 [expr.comma]p1:
 | |
|     //   Every value computation and side effect associated with the left
 | |
|     //   expression is sequenced before every value computation and side
 | |
|     //   effect associated with the right expression.
 | |
|     SequenceTree::Seq LHS = Tree.allocate(Region);
 | |
|     SequenceTree::Seq RHS = Tree.allocate(Region);
 | |
|     SequenceTree::Seq OldRegion = Region;
 | |
| 
 | |
|     {
 | |
|       SequencedSubexpression SeqLHS(*this);
 | |
|       Region = LHS;
 | |
|       Visit(BO->getLHS());
 | |
|     }
 | |
| 
 | |
|     Region = RHS;
 | |
|     Visit(BO->getRHS());
 | |
| 
 | |
|     Region = OldRegion;
 | |
| 
 | |
|     // Forget that LHS and RHS are sequenced. They are both unsequenced
 | |
|     // with respect to other stuff.
 | |
|     Tree.merge(LHS);
 | |
|     Tree.merge(RHS);
 | |
|   }
 | |
| 
 | |
|   void VisitBinAssign(BinaryOperator *BO) {
 | |
|     // The modification is sequenced after the value computation of the LHS
 | |
|     // and RHS, so check it before inspecting the operands and update the
 | |
|     // map afterwards.
 | |
|     Object O = getObject(BO->getLHS(), true);
 | |
|     if (!O)
 | |
|       return VisitExpr(BO);
 | |
| 
 | |
|     notePreMod(O, BO);
 | |
| 
 | |
|     // C++11 [expr.ass]p7:
 | |
|     //   E1 op= E2 is equivalent to E1 = E1 op E2, except that E1 is evaluated
 | |
|     //   only once.
 | |
|     //
 | |
|     // Therefore, for a compound assignment operator, O is considered used
 | |
|     // everywhere except within the evaluation of E1 itself.
 | |
|     if (isa<CompoundAssignOperator>(BO))
 | |
|       notePreUse(O, BO);
 | |
| 
 | |
|     Visit(BO->getLHS());
 | |
| 
 | |
|     if (isa<CompoundAssignOperator>(BO))
 | |
|       notePostUse(O, BO);
 | |
| 
 | |
|     Visit(BO->getRHS());
 | |
| 
 | |
|     // C++11 [expr.ass]p1:
 | |
|     //   the assignment is sequenced [...] before the value computation of the
 | |
|     //   assignment expression.
 | |
|     // C11 6.5.16/3 has no such rule.
 | |
|     notePostMod(O, BO, SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue
 | |
|                                                        : UK_ModAsSideEffect);
 | |
|   }
 | |
|   void VisitCompoundAssignOperator(CompoundAssignOperator *CAO) {
 | |
|     VisitBinAssign(CAO);
 | |
|   }
 | |
| 
 | |
|   void VisitUnaryPreInc(UnaryOperator *UO) { VisitUnaryPreIncDec(UO); }
 | |
|   void VisitUnaryPreDec(UnaryOperator *UO) { VisitUnaryPreIncDec(UO); }
 | |
|   void VisitUnaryPreIncDec(UnaryOperator *UO) {
 | |
|     Object O = getObject(UO->getSubExpr(), true);
 | |
|     if (!O)
 | |
|       return VisitExpr(UO);
 | |
| 
 | |
|     notePreMod(O, UO);
 | |
|     Visit(UO->getSubExpr());
 | |
|     // C++11 [expr.pre.incr]p1:
 | |
|     //   the expression ++x is equivalent to x+=1
 | |
|     notePostMod(O, UO, SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue
 | |
|                                                        : UK_ModAsSideEffect);
 | |
|   }
 | |
| 
 | |
|   void VisitUnaryPostInc(UnaryOperator *UO) { VisitUnaryPostIncDec(UO); }
 | |
|   void VisitUnaryPostDec(UnaryOperator *UO) { VisitUnaryPostIncDec(UO); }
 | |
|   void VisitUnaryPostIncDec(UnaryOperator *UO) {
 | |
|     Object O = getObject(UO->getSubExpr(), true);
 | |
|     if (!O)
 | |
|       return VisitExpr(UO);
 | |
| 
 | |
|     notePreMod(O, UO);
 | |
|     Visit(UO->getSubExpr());
 | |
|     notePostMod(O, UO, UK_ModAsSideEffect);
 | |
|   }
 | |
| 
 | |
|   /// Don't visit the RHS of '&&' or '||' if it might not be evaluated.
 | |
|   void VisitBinLOr(BinaryOperator *BO) {
 | |
|     // The side-effects of the LHS of an '&&' are sequenced before the
 | |
|     // value computation of the RHS, and hence before the value computation
 | |
|     // of the '&&' itself, unless the LHS evaluates to zero. We treat them
 | |
|     // as if they were unconditionally sequenced.
 | |
|     EvaluationTracker Eval(*this);
 | |
|     {
 | |
|       SequencedSubexpression Sequenced(*this);
 | |
|       Visit(BO->getLHS());
 | |
|     }
 | |
| 
 | |
|     bool Result;
 | |
|     if (Eval.evaluate(BO->getLHS(), Result)) {
 | |
|       if (!Result)
 | |
|         Visit(BO->getRHS());
 | |
|     } else {
 | |
|       // Check for unsequenced operations in the RHS, treating it as an
 | |
|       // entirely separate evaluation.
 | |
|       //
 | |
|       // FIXME: If there are operations in the RHS which are unsequenced
 | |
|       // with respect to operations outside the RHS, and those operations
 | |
|       // are unconditionally evaluated, diagnose them.
 | |
|       WorkList.push_back(BO->getRHS());
 | |
|     }
 | |
|   }
 | |
|   void VisitBinLAnd(BinaryOperator *BO) {
 | |
|     EvaluationTracker Eval(*this);
 | |
|     {
 | |
|       SequencedSubexpression Sequenced(*this);
 | |
|       Visit(BO->getLHS());
 | |
|     }
 | |
| 
 | |
|     bool Result;
 | |
|     if (Eval.evaluate(BO->getLHS(), Result)) {
 | |
|       if (Result)
 | |
|         Visit(BO->getRHS());
 | |
|     } else {
 | |
|       WorkList.push_back(BO->getRHS());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Only visit the condition, unless we can be sure which subexpression will
 | |
|   // be chosen.
 | |
|   void VisitAbstractConditionalOperator(AbstractConditionalOperator *CO) {
 | |
|     EvaluationTracker Eval(*this);
 | |
|     {
 | |
|       SequencedSubexpression Sequenced(*this);
 | |
|       Visit(CO->getCond());
 | |
|     }
 | |
| 
 | |
|     bool Result;
 | |
|     if (Eval.evaluate(CO->getCond(), Result))
 | |
|       Visit(Result ? CO->getTrueExpr() : CO->getFalseExpr());
 | |
|     else {
 | |
|       WorkList.push_back(CO->getTrueExpr());
 | |
|       WorkList.push_back(CO->getFalseExpr());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void VisitCallExpr(CallExpr *CE) {
 | |
|     // C++11 [intro.execution]p15:
 | |
|     //   When calling a function [...], every value computation and side effect
 | |
|     //   associated with any argument expression, or with the postfix expression
 | |
|     //   designating the called function, is sequenced before execution of every
 | |
|     //   expression or statement in the body of the function [and thus before
 | |
|     //   the value computation of its result].
 | |
|     SequencedSubexpression Sequenced(*this);
 | |
|     Base::VisitCallExpr(CE);
 | |
| 
 | |
|     // FIXME: CXXNewExpr and CXXDeleteExpr implicitly call functions.
 | |
|   }
 | |
| 
 | |
|   void VisitCXXConstructExpr(CXXConstructExpr *CCE) {
 | |
|     // This is a call, so all subexpressions are sequenced before the result.
 | |
|     SequencedSubexpression Sequenced(*this);
 | |
| 
 | |
|     if (!CCE->isListInitialization())
 | |
|       return VisitExpr(CCE);
 | |
| 
 | |
|     // In C++11, list initializations are sequenced.
 | |
|     SmallVector<SequenceTree::Seq, 32> Elts;
 | |
|     SequenceTree::Seq Parent = Region;
 | |
|     for (CXXConstructExpr::arg_iterator I = CCE->arg_begin(),
 | |
|                                         E = CCE->arg_end();
 | |
|          I != E; ++I) {
 | |
|       Region = Tree.allocate(Parent);
 | |
|       Elts.push_back(Region);
 | |
|       Visit(*I);
 | |
|     }
 | |
| 
 | |
|     // Forget that the initializers are sequenced.
 | |
|     Region = Parent;
 | |
|     for (unsigned I = 0; I < Elts.size(); ++I)
 | |
|       Tree.merge(Elts[I]);
 | |
|   }
 | |
| 
 | |
|   void VisitInitListExpr(InitListExpr *ILE) {
 | |
|     if (!SemaRef.getLangOpts().CPlusPlus11)
 | |
|       return VisitExpr(ILE);
 | |
| 
 | |
|     // In C++11, list initializations are sequenced.
 | |
|     SmallVector<SequenceTree::Seq, 32> Elts;
 | |
|     SequenceTree::Seq Parent = Region;
 | |
|     for (unsigned I = 0; I < ILE->getNumInits(); ++I) {
 | |
|       Expr *E = ILE->getInit(I);
 | |
|       if (!E) continue;
 | |
|       Region = Tree.allocate(Parent);
 | |
|       Elts.push_back(Region);
 | |
|       Visit(E);
 | |
|     }
 | |
| 
 | |
|     // Forget that the initializers are sequenced.
 | |
|     Region = Parent;
 | |
|     for (unsigned I = 0; I < Elts.size(); ++I)
 | |
|       Tree.merge(Elts[I]);
 | |
|   }
 | |
| };
 | |
| }
 | |
| 
 | |
| void Sema::CheckUnsequencedOperations(Expr *E) {
 | |
|   SmallVector<Expr *, 8> WorkList;
 | |
|   WorkList.push_back(E);
 | |
|   while (!WorkList.empty()) {
 | |
|     Expr *Item = WorkList.pop_back_val();
 | |
|     SequenceChecker(*this, Item, WorkList);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Sema::CheckCompletedExpr(Expr *E, SourceLocation CheckLoc,
 | |
|                               bool IsConstexpr) {
 | |
|   CheckImplicitConversions(E, CheckLoc);
 | |
|   CheckUnsequencedOperations(E);
 | |
|   if (!IsConstexpr && !E->isValueDependent())
 | |
|     CheckForIntOverflow(E);
 | |
| }
 | |
| 
 | |
| void Sema::CheckBitFieldInitialization(SourceLocation InitLoc,
 | |
|                                        FieldDecl *BitField,
 | |
|                                        Expr *Init) {
 | |
|   (void) AnalyzeBitFieldAssignment(*this, BitField, Init, InitLoc);
 | |
| }
 | |
| 
 | |
| /// CheckParmsForFunctionDef - Check that the parameters of the given
 | |
| /// function are appropriate for the definition of a function. This
 | |
| /// takes care of any checks that cannot be performed on the
 | |
| /// declaration itself, e.g., that the types of each of the function
 | |
| /// parameters are complete.
 | |
| bool Sema::CheckParmsForFunctionDef(ParmVarDecl *const *P,
 | |
|                                     ParmVarDecl *const *PEnd,
 | |
|                                     bool CheckParameterNames) {
 | |
|   bool HasInvalidParm = false;
 | |
|   for (; P != PEnd; ++P) {
 | |
|     ParmVarDecl *Param = *P;
 | |
|     
 | |
|     // C99 6.7.5.3p4: the parameters in a parameter type list in a
 | |
|     // function declarator that is part of a function definition of
 | |
|     // that function shall not have incomplete type.
 | |
|     //
 | |
|     // This is also C++ [dcl.fct]p6.
 | |
|     if (!Param->isInvalidDecl() &&
 | |
|         RequireCompleteType(Param->getLocation(), Param->getType(),
 | |
|                             diag::err_typecheck_decl_incomplete_type)) {
 | |
|       Param->setInvalidDecl();
 | |
|       HasInvalidParm = true;
 | |
|     }
 | |
| 
 | |
|     // C99 6.9.1p5: If the declarator includes a parameter type list, the
 | |
|     // declaration of each parameter shall include an identifier.
 | |
|     if (CheckParameterNames &&
 | |
|         Param->getIdentifier() == 0 &&
 | |
|         !Param->isImplicit() &&
 | |
|         !getLangOpts().CPlusPlus)
 | |
|       Diag(Param->getLocation(), diag::err_parameter_name_omitted);
 | |
| 
 | |
|     // C99 6.7.5.3p12:
 | |
|     //   If the function declarator is not part of a definition of that
 | |
|     //   function, parameters may have incomplete type and may use the [*]
 | |
|     //   notation in their sequences of declarator specifiers to specify
 | |
|     //   variable length array types.
 | |
|     QualType PType = Param->getOriginalType();
 | |
|     while (const ArrayType *AT = Context.getAsArrayType(PType)) {
 | |
|       if (AT->getSizeModifier() == ArrayType::Star) {
 | |
|         // FIXME: This diagnostic should point the '[*]' if source-location
 | |
|         // information is added for it.
 | |
|         Diag(Param->getLocation(), diag::err_array_star_in_function_definition);
 | |
|         break;
 | |
|       }
 | |
|       PType= AT->getElementType();
 | |
|     }
 | |
| 
 | |
|     // MSVC destroys objects passed by value in the callee.  Therefore a
 | |
|     // function definition which takes such a parameter must be able to call the
 | |
|     // object's destructor.
 | |
|     if (getLangOpts().CPlusPlus &&
 | |
|         Context.getTargetInfo().getCXXABI().isArgumentDestroyedByCallee()) {
 | |
|       if (const RecordType *RT = Param->getType()->getAs<RecordType>())
 | |
|         FinalizeVarWithDestructor(Param, RT);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return HasInvalidParm;
 | |
| }
 | |
| 
 | |
| /// CheckCastAlign - Implements -Wcast-align, which warns when a
 | |
| /// pointer cast increases the alignment requirements.
 | |
| void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) {
 | |
|   // This is actually a lot of work to potentially be doing on every
 | |
|   // cast; don't do it if we're ignoring -Wcast_align (as is the default).
 | |
|   if (getDiagnostics().getDiagnosticLevel(diag::warn_cast_align,
 | |
|                                           TRange.getBegin())
 | |
|         == DiagnosticsEngine::Ignored)
 | |
|     return;
 | |
| 
 | |
|   // Ignore dependent types.
 | |
|   if (T->isDependentType() || Op->getType()->isDependentType())
 | |
|     return;
 | |
| 
 | |
|   // Require that the destination be a pointer type.
 | |
|   const PointerType *DestPtr = T->getAs<PointerType>();
 | |
|   if (!DestPtr) return;
 | |
| 
 | |
|   // If the destination has alignment 1, we're done.
 | |
|   QualType DestPointee = DestPtr->getPointeeType();
 | |
|   if (DestPointee->isIncompleteType()) return;
 | |
|   CharUnits DestAlign = Context.getTypeAlignInChars(DestPointee);
 | |
|   if (DestAlign.isOne()) return;
 | |
| 
 | |
|   // Require that the source be a pointer type.
 | |
|   const PointerType *SrcPtr = Op->getType()->getAs<PointerType>();
 | |
|   if (!SrcPtr) return;
 | |
|   QualType SrcPointee = SrcPtr->getPointeeType();
 | |
| 
 | |
|   // Whitelist casts from cv void*.  We already implicitly
 | |
|   // whitelisted casts to cv void*, since they have alignment 1.
 | |
|   // Also whitelist casts involving incomplete types, which implicitly
 | |
|   // includes 'void'.
 | |
|   if (SrcPointee->isIncompleteType()) return;
 | |
| 
 | |
|   CharUnits SrcAlign = Context.getTypeAlignInChars(SrcPointee);
 | |
|   if (SrcAlign >= DestAlign) return;
 | |
| 
 | |
|   Diag(TRange.getBegin(), diag::warn_cast_align)
 | |
|     << Op->getType() << T
 | |
|     << static_cast<unsigned>(SrcAlign.getQuantity())
 | |
|     << static_cast<unsigned>(DestAlign.getQuantity())
 | |
|     << TRange << Op->getSourceRange();
 | |
| }
 | |
| 
 | |
| static const Type* getElementType(const Expr *BaseExpr) {
 | |
|   const Type* EltType = BaseExpr->getType().getTypePtr();
 | |
|   if (EltType->isAnyPointerType())
 | |
|     return EltType->getPointeeType().getTypePtr();
 | |
|   else if (EltType->isArrayType())
 | |
|     return EltType->getBaseElementTypeUnsafe();
 | |
|   return EltType;
 | |
| }
 | |
| 
 | |
| /// \brief Check whether this array fits the idiom of a size-one tail padded
 | |
| /// array member of a struct.
 | |
| ///
 | |
| /// We avoid emitting out-of-bounds access warnings for such arrays as they are
 | |
| /// commonly used to emulate flexible arrays in C89 code.
 | |
| static bool IsTailPaddedMemberArray(Sema &S, llvm::APInt Size,
 | |
|                                     const NamedDecl *ND) {
 | |
|   if (Size != 1 || !ND) return false;
 | |
| 
 | |
|   const FieldDecl *FD = dyn_cast<FieldDecl>(ND);
 | |
|   if (!FD) return false;
 | |
| 
 | |
|   // Don't consider sizes resulting from macro expansions or template argument
 | |
|   // substitution to form C89 tail-padded arrays.
 | |
| 
 | |
|   TypeSourceInfo *TInfo = FD->getTypeSourceInfo();
 | |
|   while (TInfo) {
 | |
|     TypeLoc TL = TInfo->getTypeLoc();
 | |
|     // Look through typedefs.
 | |
|     if (TypedefTypeLoc TTL = TL.getAs<TypedefTypeLoc>()) {
 | |
|       const TypedefNameDecl *TDL = TTL.getTypedefNameDecl();
 | |
|       TInfo = TDL->getTypeSourceInfo();
 | |
|       continue;
 | |
|     }
 | |
|     if (ConstantArrayTypeLoc CTL = TL.getAs<ConstantArrayTypeLoc>()) {
 | |
|       const Expr *SizeExpr = dyn_cast<IntegerLiteral>(CTL.getSizeExpr());
 | |
|       if (!SizeExpr || SizeExpr->getExprLoc().isMacroID())
 | |
|         return false;
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   const RecordDecl *RD = dyn_cast<RecordDecl>(FD->getDeclContext());
 | |
|   if (!RD) return false;
 | |
|   if (RD->isUnion()) return false;
 | |
|   if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
 | |
|     if (!CRD->isStandardLayout()) return false;
 | |
|   }
 | |
| 
 | |
|   // See if this is the last field decl in the record.
 | |
|   const Decl *D = FD;
 | |
|   while ((D = D->getNextDeclInContext()))
 | |
|     if (isa<FieldDecl>(D))
 | |
|       return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void Sema::CheckArrayAccess(const Expr *BaseExpr, const Expr *IndexExpr,
 | |
|                             const ArraySubscriptExpr *ASE,
 | |
|                             bool AllowOnePastEnd, bool IndexNegated) {
 | |
|   IndexExpr = IndexExpr->IgnoreParenImpCasts();
 | |
|   if (IndexExpr->isValueDependent())
 | |
|     return;
 | |
| 
 | |
|   const Type *EffectiveType = getElementType(BaseExpr);
 | |
|   BaseExpr = BaseExpr->IgnoreParenCasts();
 | |
|   const ConstantArrayType *ArrayTy =
 | |
|     Context.getAsConstantArrayType(BaseExpr->getType());
 | |
|   if (!ArrayTy)
 | |
|     return;
 | |
| 
 | |
|   llvm::APSInt index;
 | |
|   if (!IndexExpr->EvaluateAsInt(index, Context))
 | |
|     return;
 | |
|   if (IndexNegated)
 | |
|     index = -index;
 | |
| 
 | |
|   const NamedDecl *ND = NULL;
 | |
|   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
 | |
|     ND = dyn_cast<NamedDecl>(DRE->getDecl());
 | |
|   if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
 | |
|     ND = dyn_cast<NamedDecl>(ME->getMemberDecl());
 | |
| 
 | |
|   if (index.isUnsigned() || !index.isNegative()) {
 | |
|     llvm::APInt size = ArrayTy->getSize();
 | |
|     if (!size.isStrictlyPositive())
 | |
|       return;
 | |
| 
 | |
|     const Type* BaseType = getElementType(BaseExpr);
 | |
|     if (BaseType != EffectiveType) {
 | |
|       // Make sure we're comparing apples to apples when comparing index to size
 | |
|       uint64_t ptrarith_typesize = Context.getTypeSize(EffectiveType);
 | |
|       uint64_t array_typesize = Context.getTypeSize(BaseType);
 | |
|       // Handle ptrarith_typesize being zero, such as when casting to void*
 | |
|       if (!ptrarith_typesize) ptrarith_typesize = 1;
 | |
|       if (ptrarith_typesize != array_typesize) {
 | |
|         // There's a cast to a different size type involved
 | |
|         uint64_t ratio = array_typesize / ptrarith_typesize;
 | |
|         // TODO: Be smarter about handling cases where array_typesize is not a
 | |
|         // multiple of ptrarith_typesize
 | |
|         if (ptrarith_typesize * ratio == array_typesize)
 | |
|           size *= llvm::APInt(size.getBitWidth(), ratio);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (size.getBitWidth() > index.getBitWidth())
 | |
|       index = index.zext(size.getBitWidth());
 | |
|     else if (size.getBitWidth() < index.getBitWidth())
 | |
|       size = size.zext(index.getBitWidth());
 | |
| 
 | |
|     // For array subscripting the index must be less than size, but for pointer
 | |
|     // arithmetic also allow the index (offset) to be equal to size since
 | |
|     // computing the next address after the end of the array is legal and
 | |
|     // commonly done e.g. in C++ iterators and range-based for loops.
 | |
|     if (AllowOnePastEnd ? index.ule(size) : index.ult(size))
 | |
|       return;
 | |
| 
 | |
|     // Also don't warn for arrays of size 1 which are members of some
 | |
|     // structure. These are often used to approximate flexible arrays in C89
 | |
|     // code.
 | |
|     if (IsTailPaddedMemberArray(*this, size, ND))
 | |
|       return;
 | |
| 
 | |
|     // Suppress the warning if the subscript expression (as identified by the
 | |
|     // ']' location) and the index expression are both from macro expansions
 | |
|     // within a system header.
 | |
|     if (ASE) {
 | |
|       SourceLocation RBracketLoc = SourceMgr.getSpellingLoc(
 | |
|           ASE->getRBracketLoc());
 | |
|       if (SourceMgr.isInSystemHeader(RBracketLoc)) {
 | |
|         SourceLocation IndexLoc = SourceMgr.getSpellingLoc(
 | |
|             IndexExpr->getLocStart());
 | |
|         if (SourceMgr.isWrittenInSameFile(RBracketLoc, IndexLoc))
 | |
|           return;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     unsigned DiagID = diag::warn_ptr_arith_exceeds_bounds;
 | |
|     if (ASE)
 | |
|       DiagID = diag::warn_array_index_exceeds_bounds;
 | |
| 
 | |
|     DiagRuntimeBehavior(BaseExpr->getLocStart(), BaseExpr,
 | |
|                         PDiag(DiagID) << index.toString(10, true)
 | |
|                           << size.toString(10, true)
 | |
|                           << (unsigned)size.getLimitedValue(~0U)
 | |
|                           << IndexExpr->getSourceRange());
 | |
|   } else {
 | |
|     unsigned DiagID = diag::warn_array_index_precedes_bounds;
 | |
|     if (!ASE) {
 | |
|       DiagID = diag::warn_ptr_arith_precedes_bounds;
 | |
|       if (index.isNegative()) index = -index;
 | |
|     }
 | |
| 
 | |
|     DiagRuntimeBehavior(BaseExpr->getLocStart(), BaseExpr,
 | |
|                         PDiag(DiagID) << index.toString(10, true)
 | |
|                           << IndexExpr->getSourceRange());
 | |
|   }
 | |
| 
 | |
|   if (!ND) {
 | |
|     // Try harder to find a NamedDecl to point at in the note.
 | |
|     while (const ArraySubscriptExpr *ASE =
 | |
|            dyn_cast<ArraySubscriptExpr>(BaseExpr))
 | |
|       BaseExpr = ASE->getBase()->IgnoreParenCasts();
 | |
|     if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
 | |
|       ND = dyn_cast<NamedDecl>(DRE->getDecl());
 | |
|     if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
 | |
|       ND = dyn_cast<NamedDecl>(ME->getMemberDecl());
 | |
|   }
 | |
| 
 | |
|   if (ND)
 | |
|     DiagRuntimeBehavior(ND->getLocStart(), BaseExpr,
 | |
|                         PDiag(diag::note_array_index_out_of_bounds)
 | |
|                           << ND->getDeclName());
 | |
| }
 | |
| 
 | |
| void Sema::CheckArrayAccess(const Expr *expr) {
 | |
|   int AllowOnePastEnd = 0;
 | |
|   while (expr) {
 | |
|     expr = expr->IgnoreParenImpCasts();
 | |
|     switch (expr->getStmtClass()) {
 | |
|       case Stmt::ArraySubscriptExprClass: {
 | |
|         const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(expr);
 | |
|         CheckArrayAccess(ASE->getBase(), ASE->getIdx(), ASE,
 | |
|                          AllowOnePastEnd > 0);
 | |
|         return;
 | |
|       }
 | |
|       case Stmt::UnaryOperatorClass: {
 | |
|         // Only unwrap the * and & unary operators
 | |
|         const UnaryOperator *UO = cast<UnaryOperator>(expr);
 | |
|         expr = UO->getSubExpr();
 | |
|         switch (UO->getOpcode()) {
 | |
|           case UO_AddrOf:
 | |
|             AllowOnePastEnd++;
 | |
|             break;
 | |
|           case UO_Deref:
 | |
|             AllowOnePastEnd--;
 | |
|             break;
 | |
|           default:
 | |
|             return;
 | |
|         }
 | |
|         break;
 | |
|       }
 | |
|       case Stmt::ConditionalOperatorClass: {
 | |
|         const ConditionalOperator *cond = cast<ConditionalOperator>(expr);
 | |
|         if (const Expr *lhs = cond->getLHS())
 | |
|           CheckArrayAccess(lhs);
 | |
|         if (const Expr *rhs = cond->getRHS())
 | |
|           CheckArrayAccess(rhs);
 | |
|         return;
 | |
|       }
 | |
|       default:
 | |
|         return;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| //===--- CHECK: Objective-C retain cycles ----------------------------------//
 | |
| 
 | |
| namespace {
 | |
|   struct RetainCycleOwner {
 | |
|     RetainCycleOwner() : Variable(0), Indirect(false) {}
 | |
|     VarDecl *Variable;
 | |
|     SourceRange Range;
 | |
|     SourceLocation Loc;
 | |
|     bool Indirect;
 | |
| 
 | |
|     void setLocsFrom(Expr *e) {
 | |
|       Loc = e->getExprLoc();
 | |
|       Range = e->getSourceRange();
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| /// Consider whether capturing the given variable can possibly lead to
 | |
| /// a retain cycle.
 | |
| static bool considerVariable(VarDecl *var, Expr *ref, RetainCycleOwner &owner) {
 | |
|   // In ARC, it's captured strongly iff the variable has __strong
 | |
|   // lifetime.  In MRR, it's captured strongly if the variable is
 | |
|   // __block and has an appropriate type.
 | |
|   if (var->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
 | |
|     return false;
 | |
| 
 | |
|   owner.Variable = var;
 | |
|   if (ref)
 | |
|     owner.setLocsFrom(ref);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static bool findRetainCycleOwner(Sema &S, Expr *e, RetainCycleOwner &owner) {
 | |
|   while (true) {
 | |
|     e = e->IgnoreParens();
 | |
|     if (CastExpr *cast = dyn_cast<CastExpr>(e)) {
 | |
|       switch (cast->getCastKind()) {
 | |
|       case CK_BitCast:
 | |
|       case CK_LValueBitCast:
 | |
|       case CK_LValueToRValue:
 | |
|       case CK_ARCReclaimReturnedObject:
 | |
|         e = cast->getSubExpr();
 | |
|         continue;
 | |
| 
 | |
|       default:
 | |
|         return false;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (ObjCIvarRefExpr *ref = dyn_cast<ObjCIvarRefExpr>(e)) {
 | |
|       ObjCIvarDecl *ivar = ref->getDecl();
 | |
|       if (ivar->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
 | |
|         return false;
 | |
| 
 | |
|       // Try to find a retain cycle in the base.
 | |
|       if (!findRetainCycleOwner(S, ref->getBase(), owner))
 | |
|         return false;
 | |
| 
 | |
|       if (ref->isFreeIvar()) owner.setLocsFrom(ref);
 | |
|       owner.Indirect = true;
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) {
 | |
|       VarDecl *var = dyn_cast<VarDecl>(ref->getDecl());
 | |
|       if (!var) return false;
 | |
|       return considerVariable(var, ref, owner);
 | |
|     }
 | |
| 
 | |
|     if (MemberExpr *member = dyn_cast<MemberExpr>(e)) {
 | |
|       if (member->isArrow()) return false;
 | |
| 
 | |
|       // Don't count this as an indirect ownership.
 | |
|       e = member->getBase();
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
 | |
|       // Only pay attention to pseudo-objects on property references.
 | |
|       ObjCPropertyRefExpr *pre
 | |
|         = dyn_cast<ObjCPropertyRefExpr>(pseudo->getSyntacticForm()
 | |
|                                               ->IgnoreParens());
 | |
|       if (!pre) return false;
 | |
|       if (pre->isImplicitProperty()) return false;
 | |
|       ObjCPropertyDecl *property = pre->getExplicitProperty();
 | |
|       if (!property->isRetaining() &&
 | |
|           !(property->getPropertyIvarDecl() &&
 | |
|             property->getPropertyIvarDecl()->getType()
 | |
|               .getObjCLifetime() == Qualifiers::OCL_Strong))
 | |
|           return false;
 | |
| 
 | |
|       owner.Indirect = true;
 | |
|       if (pre->isSuperReceiver()) {
 | |
|         owner.Variable = S.getCurMethodDecl()->getSelfDecl();
 | |
|         if (!owner.Variable)
 | |
|           return false;
 | |
|         owner.Loc = pre->getLocation();
 | |
|         owner.Range = pre->getSourceRange();
 | |
|         return true;
 | |
|       }
 | |
|       e = const_cast<Expr*>(cast<OpaqueValueExpr>(pre->getBase())
 | |
|                               ->getSourceExpr());
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Array ivars?
 | |
| 
 | |
|     return false;
 | |
|   }
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   struct FindCaptureVisitor : EvaluatedExprVisitor<FindCaptureVisitor> {
 | |
|     FindCaptureVisitor(ASTContext &Context, VarDecl *variable)
 | |
|       : EvaluatedExprVisitor<FindCaptureVisitor>(Context),
 | |
|         Variable(variable), Capturer(0) {}
 | |
| 
 | |
|     VarDecl *Variable;
 | |
|     Expr *Capturer;
 | |
| 
 | |
|     void VisitDeclRefExpr(DeclRefExpr *ref) {
 | |
|       if (ref->getDecl() == Variable && !Capturer)
 | |
|         Capturer = ref;
 | |
|     }
 | |
| 
 | |
|     void VisitObjCIvarRefExpr(ObjCIvarRefExpr *ref) {
 | |
|       if (Capturer) return;
 | |
|       Visit(ref->getBase());
 | |
|       if (Capturer && ref->isFreeIvar())
 | |
|         Capturer = ref;
 | |
|     }
 | |
| 
 | |
|     void VisitBlockExpr(BlockExpr *block) {
 | |
|       // Look inside nested blocks 
 | |
|       if (block->getBlockDecl()->capturesVariable(Variable))
 | |
|         Visit(block->getBlockDecl()->getBody());
 | |
|     }
 | |
|     
 | |
|     void VisitOpaqueValueExpr(OpaqueValueExpr *OVE) {
 | |
|       if (Capturer) return;
 | |
|       if (OVE->getSourceExpr())
 | |
|         Visit(OVE->getSourceExpr());
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| /// Check whether the given argument is a block which captures a
 | |
| /// variable.
 | |
| static Expr *findCapturingExpr(Sema &S, Expr *e, RetainCycleOwner &owner) {
 | |
|   assert(owner.Variable && owner.Loc.isValid());
 | |
| 
 | |
|   e = e->IgnoreParenCasts();
 | |
| 
 | |
|   // Look through [^{...} copy] and Block_copy(^{...}).
 | |
|   if (ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(e)) {
 | |
|     Selector Cmd = ME->getSelector();
 | |
|     if (Cmd.isUnarySelector() && Cmd.getNameForSlot(0) == "copy") {
 | |
|       e = ME->getInstanceReceiver();
 | |
|       if (!e)
 | |
|         return 0;
 | |
|       e = e->IgnoreParenCasts();
 | |
|     }
 | |
|   } else if (CallExpr *CE = dyn_cast<CallExpr>(e)) {
 | |
|     if (CE->getNumArgs() == 1) {
 | |
|       FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(CE->getCalleeDecl());
 | |
|       if (Fn) {
 | |
|         const IdentifierInfo *FnI = Fn->getIdentifier();
 | |
|         if (FnI && FnI->isStr("_Block_copy")) {
 | |
|           e = CE->getArg(0)->IgnoreParenCasts();
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   BlockExpr *block = dyn_cast<BlockExpr>(e);
 | |
|   if (!block || !block->getBlockDecl()->capturesVariable(owner.Variable))
 | |
|     return 0;
 | |
| 
 | |
|   FindCaptureVisitor visitor(S.Context, owner.Variable);
 | |
|   visitor.Visit(block->getBlockDecl()->getBody());
 | |
|   return visitor.Capturer;
 | |
| }
 | |
| 
 | |
| static void diagnoseRetainCycle(Sema &S, Expr *capturer,
 | |
|                                 RetainCycleOwner &owner) {
 | |
|   assert(capturer);
 | |
|   assert(owner.Variable && owner.Loc.isValid());
 | |
| 
 | |
|   S.Diag(capturer->getExprLoc(), diag::warn_arc_retain_cycle)
 | |
|     << owner.Variable << capturer->getSourceRange();
 | |
|   S.Diag(owner.Loc, diag::note_arc_retain_cycle_owner)
 | |
|     << owner.Indirect << owner.Range;
 | |
| }
 | |
| 
 | |
| /// Check for a keyword selector that starts with the word 'add' or
 | |
| /// 'set'.
 | |
| static bool isSetterLikeSelector(Selector sel) {
 | |
|   if (sel.isUnarySelector()) return false;
 | |
| 
 | |
|   StringRef str = sel.getNameForSlot(0);
 | |
|   while (!str.empty() && str.front() == '_') str = str.substr(1);
 | |
|   if (str.startswith("set"))
 | |
|     str = str.substr(3);
 | |
|   else if (str.startswith("add")) {
 | |
|     // Specially whitelist 'addOperationWithBlock:'.
 | |
|     if (sel.getNumArgs() == 1 && str.startswith("addOperationWithBlock"))
 | |
|       return false;
 | |
|     str = str.substr(3);
 | |
|   }
 | |
|   else
 | |
|     return false;
 | |
| 
 | |
|   if (str.empty()) return true;
 | |
|   return !isLowercase(str.front());
 | |
| }
 | |
| 
 | |
| /// Check a message send to see if it's likely to cause a retain cycle.
 | |
| void Sema::checkRetainCycles(ObjCMessageExpr *msg) {
 | |
|   // Only check instance methods whose selector looks like a setter.
 | |
|   if (!msg->isInstanceMessage() || !isSetterLikeSelector(msg->getSelector()))
 | |
|     return;
 | |
| 
 | |
|   // Try to find a variable that the receiver is strongly owned by.
 | |
|   RetainCycleOwner owner;
 | |
|   if (msg->getReceiverKind() == ObjCMessageExpr::Instance) {
 | |
|     if (!findRetainCycleOwner(*this, msg->getInstanceReceiver(), owner))
 | |
|       return;
 | |
|   } else {
 | |
|     assert(msg->getReceiverKind() == ObjCMessageExpr::SuperInstance);
 | |
|     owner.Variable = getCurMethodDecl()->getSelfDecl();
 | |
|     owner.Loc = msg->getSuperLoc();
 | |
|     owner.Range = msg->getSuperLoc();
 | |
|   }
 | |
| 
 | |
|   // Check whether the receiver is captured by any of the arguments.
 | |
|   for (unsigned i = 0, e = msg->getNumArgs(); i != e; ++i)
 | |
|     if (Expr *capturer = findCapturingExpr(*this, msg->getArg(i), owner))
 | |
|       return diagnoseRetainCycle(*this, capturer, owner);
 | |
| }
 | |
| 
 | |
| /// Check a property assign to see if it's likely to cause a retain cycle.
 | |
| void Sema::checkRetainCycles(Expr *receiver, Expr *argument) {
 | |
|   RetainCycleOwner owner;
 | |
|   if (!findRetainCycleOwner(*this, receiver, owner))
 | |
|     return;
 | |
| 
 | |
|   if (Expr *capturer = findCapturingExpr(*this, argument, owner))
 | |
|     diagnoseRetainCycle(*this, capturer, owner);
 | |
| }
 | |
| 
 | |
| void Sema::checkRetainCycles(VarDecl *Var, Expr *Init) {
 | |
|   RetainCycleOwner Owner;
 | |
|   if (!considerVariable(Var, /*DeclRefExpr=*/0, Owner))
 | |
|     return;
 | |
|   
 | |
|   // Because we don't have an expression for the variable, we have to set the
 | |
|   // location explicitly here.
 | |
|   Owner.Loc = Var->getLocation();
 | |
|   Owner.Range = Var->getSourceRange();
 | |
|   
 | |
|   if (Expr *Capturer = findCapturingExpr(*this, Init, Owner))
 | |
|     diagnoseRetainCycle(*this, Capturer, Owner);
 | |
| }
 | |
| 
 | |
| static bool checkUnsafeAssignLiteral(Sema &S, SourceLocation Loc,
 | |
|                                      Expr *RHS, bool isProperty) {
 | |
|   // Check if RHS is an Objective-C object literal, which also can get
 | |
|   // immediately zapped in a weak reference.  Note that we explicitly
 | |
|   // allow ObjCStringLiterals, since those are designed to never really die.
 | |
|   RHS = RHS->IgnoreParenImpCasts();
 | |
| 
 | |
|   // This enum needs to match with the 'select' in
 | |
|   // warn_objc_arc_literal_assign (off-by-1).
 | |
|   Sema::ObjCLiteralKind Kind = S.CheckLiteralKind(RHS);
 | |
|   if (Kind == Sema::LK_String || Kind == Sema::LK_None)
 | |
|     return false;
 | |
| 
 | |
|   S.Diag(Loc, diag::warn_arc_literal_assign)
 | |
|     << (unsigned) Kind
 | |
|     << (isProperty ? 0 : 1)
 | |
|     << RHS->getSourceRange();
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static bool checkUnsafeAssignObject(Sema &S, SourceLocation Loc,
 | |
|                                     Qualifiers::ObjCLifetime LT,
 | |
|                                     Expr *RHS, bool isProperty) {
 | |
|   // Strip off any implicit cast added to get to the one ARC-specific.
 | |
|   while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
 | |
|     if (cast->getCastKind() == CK_ARCConsumeObject) {
 | |
|       S.Diag(Loc, diag::warn_arc_retained_assign)
 | |
|         << (LT == Qualifiers::OCL_ExplicitNone)
 | |
|         << (isProperty ? 0 : 1)
 | |
|         << RHS->getSourceRange();
 | |
|       return true;
 | |
|     }
 | |
|     RHS = cast->getSubExpr();
 | |
|   }
 | |
| 
 | |
|   if (LT == Qualifiers::OCL_Weak &&
 | |
|       checkUnsafeAssignLiteral(S, Loc, RHS, isProperty))
 | |
|     return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool Sema::checkUnsafeAssigns(SourceLocation Loc,
 | |
|                               QualType LHS, Expr *RHS) {
 | |
|   Qualifiers::ObjCLifetime LT = LHS.getObjCLifetime();
 | |
| 
 | |
|   if (LT != Qualifiers::OCL_Weak && LT != Qualifiers::OCL_ExplicitNone)
 | |
|     return false;
 | |
| 
 | |
|   if (checkUnsafeAssignObject(*this, Loc, LT, RHS, false))
 | |
|     return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void Sema::checkUnsafeExprAssigns(SourceLocation Loc,
 | |
|                               Expr *LHS, Expr *RHS) {
 | |
|   QualType LHSType;
 | |
|   // PropertyRef on LHS type need be directly obtained from
 | |
|   // its declaration as it has a PsuedoType.
 | |
|   ObjCPropertyRefExpr *PRE
 | |
|     = dyn_cast<ObjCPropertyRefExpr>(LHS->IgnoreParens());
 | |
|   if (PRE && !PRE->isImplicitProperty()) {
 | |
|     const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
 | |
|     if (PD)
 | |
|       LHSType = PD->getType();
 | |
|   }
 | |
|   
 | |
|   if (LHSType.isNull())
 | |
|     LHSType = LHS->getType();
 | |
| 
 | |
|   Qualifiers::ObjCLifetime LT = LHSType.getObjCLifetime();
 | |
| 
 | |
|   if (LT == Qualifiers::OCL_Weak) {
 | |
|     DiagnosticsEngine::Level Level =
 | |
|       Diags.getDiagnosticLevel(diag::warn_arc_repeated_use_of_weak, Loc);
 | |
|     if (Level != DiagnosticsEngine::Ignored)
 | |
|       getCurFunction()->markSafeWeakUse(LHS);
 | |
|   }
 | |
| 
 | |
|   if (checkUnsafeAssigns(Loc, LHSType, RHS))
 | |
|     return;
 | |
| 
 | |
|   // FIXME. Check for other life times.
 | |
|   if (LT != Qualifiers::OCL_None)
 | |
|     return;
 | |
|   
 | |
|   if (PRE) {
 | |
|     if (PRE->isImplicitProperty())
 | |
|       return;
 | |
|     const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
 | |
|     if (!PD)
 | |
|       return;
 | |
|     
 | |
|     unsigned Attributes = PD->getPropertyAttributes();
 | |
|     if (Attributes & ObjCPropertyDecl::OBJC_PR_assign) {
 | |
|       // when 'assign' attribute was not explicitly specified
 | |
|       // by user, ignore it and rely on property type itself
 | |
|       // for lifetime info.
 | |
|       unsigned AsWrittenAttr = PD->getPropertyAttributesAsWritten();
 | |
|       if (!(AsWrittenAttr & ObjCPropertyDecl::OBJC_PR_assign) &&
 | |
|           LHSType->isObjCRetainableType())
 | |
|         return;
 | |
|         
 | |
|       while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
 | |
|         if (cast->getCastKind() == CK_ARCConsumeObject) {
 | |
|           Diag(Loc, diag::warn_arc_retained_property_assign)
 | |
|           << RHS->getSourceRange();
 | |
|           return;
 | |
|         }
 | |
|         RHS = cast->getSubExpr();
 | |
|       }
 | |
|     }
 | |
|     else if (Attributes & ObjCPropertyDecl::OBJC_PR_weak) {
 | |
|       if (checkUnsafeAssignObject(*this, Loc, Qualifiers::OCL_Weak, RHS, true))
 | |
|         return;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| //===--- CHECK: Empty statement body (-Wempty-body) ---------------------===//
 | |
| 
 | |
| namespace {
 | |
| bool ShouldDiagnoseEmptyStmtBody(const SourceManager &SourceMgr,
 | |
|                                  SourceLocation StmtLoc,
 | |
|                                  const NullStmt *Body) {
 | |
|   // Do not warn if the body is a macro that expands to nothing, e.g:
 | |
|   //
 | |
|   // #define CALL(x)
 | |
|   // if (condition)
 | |
|   //   CALL(0);
 | |
|   //
 | |
|   if (Body->hasLeadingEmptyMacro())
 | |
|     return false;
 | |
| 
 | |
|   // Get line numbers of statement and body.
 | |
|   bool StmtLineInvalid;
 | |
|   unsigned StmtLine = SourceMgr.getSpellingLineNumber(StmtLoc,
 | |
|                                                       &StmtLineInvalid);
 | |
|   if (StmtLineInvalid)
 | |
|     return false;
 | |
| 
 | |
|   bool BodyLineInvalid;
 | |
|   unsigned BodyLine = SourceMgr.getSpellingLineNumber(Body->getSemiLoc(),
 | |
|                                                       &BodyLineInvalid);
 | |
|   if (BodyLineInvalid)
 | |
|     return false;
 | |
| 
 | |
|   // Warn if null statement and body are on the same line.
 | |
|   if (StmtLine != BodyLine)
 | |
|     return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| } // Unnamed namespace
 | |
| 
 | |
| void Sema::DiagnoseEmptyStmtBody(SourceLocation StmtLoc,
 | |
|                                  const Stmt *Body,
 | |
|                                  unsigned DiagID) {
 | |
|   // Since this is a syntactic check, don't emit diagnostic for template
 | |
|   // instantiations, this just adds noise.
 | |
|   if (CurrentInstantiationScope)
 | |
|     return;
 | |
| 
 | |
|   // The body should be a null statement.
 | |
|   const NullStmt *NBody = dyn_cast<NullStmt>(Body);
 | |
|   if (!NBody)
 | |
|     return;
 | |
| 
 | |
|   // Do the usual checks.
 | |
|   if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
 | |
|     return;
 | |
| 
 | |
|   Diag(NBody->getSemiLoc(), DiagID);
 | |
|   Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
 | |
| }
 | |
| 
 | |
| void Sema::DiagnoseEmptyLoopBody(const Stmt *S,
 | |
|                                  const Stmt *PossibleBody) {
 | |
|   assert(!CurrentInstantiationScope); // Ensured by caller
 | |
| 
 | |
|   SourceLocation StmtLoc;
 | |
|   const Stmt *Body;
 | |
|   unsigned DiagID;
 | |
|   if (const ForStmt *FS = dyn_cast<ForStmt>(S)) {
 | |
|     StmtLoc = FS->getRParenLoc();
 | |
|     Body = FS->getBody();
 | |
|     DiagID = diag::warn_empty_for_body;
 | |
|   } else if (const WhileStmt *WS = dyn_cast<WhileStmt>(S)) {
 | |
|     StmtLoc = WS->getCond()->getSourceRange().getEnd();
 | |
|     Body = WS->getBody();
 | |
|     DiagID = diag::warn_empty_while_body;
 | |
|   } else
 | |
|     return; // Neither `for' nor `while'.
 | |
| 
 | |
|   // The body should be a null statement.
 | |
|   const NullStmt *NBody = dyn_cast<NullStmt>(Body);
 | |
|   if (!NBody)
 | |
|     return;
 | |
| 
 | |
|   // Skip expensive checks if diagnostic is disabled.
 | |
|   if (Diags.getDiagnosticLevel(DiagID, NBody->getSemiLoc()) ==
 | |
|           DiagnosticsEngine::Ignored)
 | |
|     return;
 | |
| 
 | |
|   // Do the usual checks.
 | |
|   if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
 | |
|     return;
 | |
| 
 | |
|   // `for(...);' and `while(...);' are popular idioms, so in order to keep
 | |
|   // noise level low, emit diagnostics only if for/while is followed by a
 | |
|   // CompoundStmt, e.g.:
 | |
|   //    for (int i = 0; i < n; i++);
 | |
|   //    {
 | |
|   //      a(i);
 | |
|   //    }
 | |
|   // or if for/while is followed by a statement with more indentation
 | |
|   // than for/while itself:
 | |
|   //    for (int i = 0; i < n; i++);
 | |
|   //      a(i);
 | |
|   bool ProbableTypo = isa<CompoundStmt>(PossibleBody);
 | |
|   if (!ProbableTypo) {
 | |
|     bool BodyColInvalid;
 | |
|     unsigned BodyCol = SourceMgr.getPresumedColumnNumber(
 | |
|                              PossibleBody->getLocStart(),
 | |
|                              &BodyColInvalid);
 | |
|     if (BodyColInvalid)
 | |
|       return;
 | |
| 
 | |
|     bool StmtColInvalid;
 | |
|     unsigned StmtCol = SourceMgr.getPresumedColumnNumber(
 | |
|                              S->getLocStart(),
 | |
|                              &StmtColInvalid);
 | |
|     if (StmtColInvalid)
 | |
|       return;
 | |
| 
 | |
|     if (BodyCol > StmtCol)
 | |
|       ProbableTypo = true;
 | |
|   }
 | |
| 
 | |
|   if (ProbableTypo) {
 | |
|     Diag(NBody->getSemiLoc(), DiagID);
 | |
|     Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
 | |
|   }
 | |
| }
 | |
| 
 | |
| //===--- Layout compatibility ----------------------------------------------//
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2);
 | |
| 
 | |
| /// \brief Check if two enumeration types are layout-compatible.
 | |
| bool isLayoutCompatible(ASTContext &C, EnumDecl *ED1, EnumDecl *ED2) {
 | |
|   // C++11 [dcl.enum] p8:
 | |
|   // Two enumeration types are layout-compatible if they have the same
 | |
|   // underlying type.
 | |
|   return ED1->isComplete() && ED2->isComplete() &&
 | |
|          C.hasSameType(ED1->getIntegerType(), ED2->getIntegerType());
 | |
| }
 | |
| 
 | |
| /// \brief Check if two fields are layout-compatible.
 | |
| bool isLayoutCompatible(ASTContext &C, FieldDecl *Field1, FieldDecl *Field2) {
 | |
|   if (!isLayoutCompatible(C, Field1->getType(), Field2->getType()))
 | |
|     return false;
 | |
| 
 | |
|   if (Field1->isBitField() != Field2->isBitField())
 | |
|     return false;
 | |
| 
 | |
|   if (Field1->isBitField()) {
 | |
|     // Make sure that the bit-fields are the same length.
 | |
|     unsigned Bits1 = Field1->getBitWidthValue(C);
 | |
|     unsigned Bits2 = Field2->getBitWidthValue(C);
 | |
| 
 | |
|     if (Bits1 != Bits2)
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// \brief Check if two standard-layout structs are layout-compatible.
 | |
| /// (C++11 [class.mem] p17)
 | |
| bool isLayoutCompatibleStruct(ASTContext &C,
 | |
|                               RecordDecl *RD1,
 | |
|                               RecordDecl *RD2) {
 | |
|   // If both records are C++ classes, check that base classes match.
 | |
|   if (const CXXRecordDecl *D1CXX = dyn_cast<CXXRecordDecl>(RD1)) {
 | |
|     // If one of records is a CXXRecordDecl we are in C++ mode,
 | |
|     // thus the other one is a CXXRecordDecl, too.
 | |
|     const CXXRecordDecl *D2CXX = cast<CXXRecordDecl>(RD2);
 | |
|     // Check number of base classes.
 | |
|     if (D1CXX->getNumBases() != D2CXX->getNumBases())
 | |
|       return false;
 | |
| 
 | |
|     // Check the base classes.
 | |
|     for (CXXRecordDecl::base_class_const_iterator
 | |
|                Base1 = D1CXX->bases_begin(),
 | |
|            BaseEnd1 = D1CXX->bases_end(),
 | |
|               Base2 = D2CXX->bases_begin();
 | |
|          Base1 != BaseEnd1;
 | |
|          ++Base1, ++Base2) {
 | |
|       if (!isLayoutCompatible(C, Base1->getType(), Base2->getType()))
 | |
|         return false;
 | |
|     }
 | |
|   } else if (const CXXRecordDecl *D2CXX = dyn_cast<CXXRecordDecl>(RD2)) {
 | |
|     // If only RD2 is a C++ class, it should have zero base classes.
 | |
|     if (D2CXX->getNumBases() > 0)
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // Check the fields.
 | |
|   RecordDecl::field_iterator Field2 = RD2->field_begin(),
 | |
|                              Field2End = RD2->field_end(),
 | |
|                              Field1 = RD1->field_begin(),
 | |
|                              Field1End = RD1->field_end();
 | |
|   for ( ; Field1 != Field1End && Field2 != Field2End; ++Field1, ++Field2) {
 | |
|     if (!isLayoutCompatible(C, *Field1, *Field2))
 | |
|       return false;
 | |
|   }
 | |
|   if (Field1 != Field1End || Field2 != Field2End)
 | |
|     return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// \brief Check if two standard-layout unions are layout-compatible.
 | |
| /// (C++11 [class.mem] p18)
 | |
| bool isLayoutCompatibleUnion(ASTContext &C,
 | |
|                              RecordDecl *RD1,
 | |
|                              RecordDecl *RD2) {
 | |
|   llvm::SmallPtrSet<FieldDecl *, 8> UnmatchedFields;
 | |
|   for (RecordDecl::field_iterator Field2 = RD2->field_begin(),
 | |
|                                   Field2End = RD2->field_end();
 | |
|        Field2 != Field2End; ++Field2) {
 | |
|     UnmatchedFields.insert(*Field2);
 | |
|   }
 | |
| 
 | |
|   for (RecordDecl::field_iterator Field1 = RD1->field_begin(),
 | |
|                                   Field1End = RD1->field_end();
 | |
|        Field1 != Field1End; ++Field1) {
 | |
|     llvm::SmallPtrSet<FieldDecl *, 8>::iterator
 | |
|         I = UnmatchedFields.begin(),
 | |
|         E = UnmatchedFields.end();
 | |
| 
 | |
|     for ( ; I != E; ++I) {
 | |
|       if (isLayoutCompatible(C, *Field1, *I)) {
 | |
|         bool Result = UnmatchedFields.erase(*I);
 | |
|         (void) Result;
 | |
|         assert(Result);
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     if (I == E)
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   return UnmatchedFields.empty();
 | |
| }
 | |
| 
 | |
| bool isLayoutCompatible(ASTContext &C, RecordDecl *RD1, RecordDecl *RD2) {
 | |
|   if (RD1->isUnion() != RD2->isUnion())
 | |
|     return false;
 | |
| 
 | |
|   if (RD1->isUnion())
 | |
|     return isLayoutCompatibleUnion(C, RD1, RD2);
 | |
|   else
 | |
|     return isLayoutCompatibleStruct(C, RD1, RD2);
 | |
| }
 | |
| 
 | |
| /// \brief Check if two types are layout-compatible in C++11 sense.
 | |
| bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2) {
 | |
|   if (T1.isNull() || T2.isNull())
 | |
|     return false;
 | |
| 
 | |
|   // C++11 [basic.types] p11:
 | |
|   // If two types T1 and T2 are the same type, then T1 and T2 are
 | |
|   // layout-compatible types.
 | |
|   if (C.hasSameType(T1, T2))
 | |
|     return true;
 | |
| 
 | |
|   T1 = T1.getCanonicalType().getUnqualifiedType();
 | |
|   T2 = T2.getCanonicalType().getUnqualifiedType();
 | |
| 
 | |
|   const Type::TypeClass TC1 = T1->getTypeClass();
 | |
|   const Type::TypeClass TC2 = T2->getTypeClass();
 | |
| 
 | |
|   if (TC1 != TC2)
 | |
|     return false;
 | |
| 
 | |
|   if (TC1 == Type::Enum) {
 | |
|     return isLayoutCompatible(C,
 | |
|                               cast<EnumType>(T1)->getDecl(),
 | |
|                               cast<EnumType>(T2)->getDecl());
 | |
|   } else if (TC1 == Type::Record) {
 | |
|     if (!T1->isStandardLayoutType() || !T2->isStandardLayoutType())
 | |
|       return false;
 | |
| 
 | |
|     return isLayoutCompatible(C,
 | |
|                               cast<RecordType>(T1)->getDecl(),
 | |
|                               cast<RecordType>(T2)->getDecl());
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| }
 | |
| 
 | |
| //===--- CHECK: pointer_with_type_tag attribute: datatypes should match ----//
 | |
| 
 | |
| namespace {
 | |
| /// \brief Given a type tag expression find the type tag itself.
 | |
| ///
 | |
| /// \param TypeExpr Type tag expression, as it appears in user's code.
 | |
| ///
 | |
| /// \param VD Declaration of an identifier that appears in a type tag.
 | |
| ///
 | |
| /// \param MagicValue Type tag magic value.
 | |
| bool FindTypeTagExpr(const Expr *TypeExpr, const ASTContext &Ctx,
 | |
|                      const ValueDecl **VD, uint64_t *MagicValue) {
 | |
|   while(true) {
 | |
|     if (!TypeExpr)
 | |
|       return false;
 | |
| 
 | |
|     TypeExpr = TypeExpr->IgnoreParenImpCasts()->IgnoreParenCasts();
 | |
| 
 | |
|     switch (TypeExpr->getStmtClass()) {
 | |
|     case Stmt::UnaryOperatorClass: {
 | |
|       const UnaryOperator *UO = cast<UnaryOperator>(TypeExpr);
 | |
|       if (UO->getOpcode() == UO_AddrOf || UO->getOpcode() == UO_Deref) {
 | |
|         TypeExpr = UO->getSubExpr();
 | |
|         continue;
 | |
|       }
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     case Stmt::DeclRefExprClass: {
 | |
|       const DeclRefExpr *DRE = cast<DeclRefExpr>(TypeExpr);
 | |
|       *VD = DRE->getDecl();
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     case Stmt::IntegerLiteralClass: {
 | |
|       const IntegerLiteral *IL = cast<IntegerLiteral>(TypeExpr);
 | |
|       llvm::APInt MagicValueAPInt = IL->getValue();
 | |
|       if (MagicValueAPInt.getActiveBits() <= 64) {
 | |
|         *MagicValue = MagicValueAPInt.getZExtValue();
 | |
|         return true;
 | |
|       } else
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     case Stmt::BinaryConditionalOperatorClass:
 | |
|     case Stmt::ConditionalOperatorClass: {
 | |
|       const AbstractConditionalOperator *ACO =
 | |
|           cast<AbstractConditionalOperator>(TypeExpr);
 | |
|       bool Result;
 | |
|       if (ACO->getCond()->EvaluateAsBooleanCondition(Result, Ctx)) {
 | |
|         if (Result)
 | |
|           TypeExpr = ACO->getTrueExpr();
 | |
|         else
 | |
|           TypeExpr = ACO->getFalseExpr();
 | |
|         continue;
 | |
|       }
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     case Stmt::BinaryOperatorClass: {
 | |
|       const BinaryOperator *BO = cast<BinaryOperator>(TypeExpr);
 | |
|       if (BO->getOpcode() == BO_Comma) {
 | |
|         TypeExpr = BO->getRHS();
 | |
|         continue;
 | |
|       }
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     default:
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// \brief Retrieve the C type corresponding to type tag TypeExpr.
 | |
| ///
 | |
| /// \param TypeExpr Expression that specifies a type tag.
 | |
| ///
 | |
| /// \param MagicValues Registered magic values.
 | |
| ///
 | |
| /// \param FoundWrongKind Set to true if a type tag was found, but of a wrong
 | |
| ///        kind.
 | |
| ///
 | |
| /// \param TypeInfo Information about the corresponding C type.
 | |
| ///
 | |
| /// \returns true if the corresponding C type was found.
 | |
| bool GetMatchingCType(
 | |
|         const IdentifierInfo *ArgumentKind,
 | |
|         const Expr *TypeExpr, const ASTContext &Ctx,
 | |
|         const llvm::DenseMap<Sema::TypeTagMagicValue,
 | |
|                              Sema::TypeTagData> *MagicValues,
 | |
|         bool &FoundWrongKind,
 | |
|         Sema::TypeTagData &TypeInfo) {
 | |
|   FoundWrongKind = false;
 | |
| 
 | |
|   // Variable declaration that has type_tag_for_datatype attribute.
 | |
|   const ValueDecl *VD = NULL;
 | |
| 
 | |
|   uint64_t MagicValue;
 | |
| 
 | |
|   if (!FindTypeTagExpr(TypeExpr, Ctx, &VD, &MagicValue))
 | |
|     return false;
 | |
| 
 | |
|   if (VD) {
 | |
|     for (specific_attr_iterator<TypeTagForDatatypeAttr>
 | |
|              I = VD->specific_attr_begin<TypeTagForDatatypeAttr>(),
 | |
|              E = VD->specific_attr_end<TypeTagForDatatypeAttr>();
 | |
|          I != E; ++I) {
 | |
|       if (I->getArgumentKind() != ArgumentKind) {
 | |
|         FoundWrongKind = true;
 | |
|         return false;
 | |
|       }
 | |
|       TypeInfo.Type = I->getMatchingCType();
 | |
|       TypeInfo.LayoutCompatible = I->getLayoutCompatible();
 | |
|       TypeInfo.MustBeNull = I->getMustBeNull();
 | |
|       return true;
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (!MagicValues)
 | |
|     return false;
 | |
| 
 | |
|   llvm::DenseMap<Sema::TypeTagMagicValue,
 | |
|                  Sema::TypeTagData>::const_iterator I =
 | |
|       MagicValues->find(std::make_pair(ArgumentKind, MagicValue));
 | |
|   if (I == MagicValues->end())
 | |
|     return false;
 | |
| 
 | |
|   TypeInfo = I->second;
 | |
|   return true;
 | |
| }
 | |
| } // unnamed namespace
 | |
| 
 | |
| void Sema::RegisterTypeTagForDatatype(const IdentifierInfo *ArgumentKind,
 | |
|                                       uint64_t MagicValue, QualType Type,
 | |
|                                       bool LayoutCompatible,
 | |
|                                       bool MustBeNull) {
 | |
|   if (!TypeTagForDatatypeMagicValues)
 | |
|     TypeTagForDatatypeMagicValues.reset(
 | |
|         new llvm::DenseMap<TypeTagMagicValue, TypeTagData>);
 | |
| 
 | |
|   TypeTagMagicValue Magic(ArgumentKind, MagicValue);
 | |
|   (*TypeTagForDatatypeMagicValues)[Magic] =
 | |
|       TypeTagData(Type, LayoutCompatible, MustBeNull);
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| bool IsSameCharType(QualType T1, QualType T2) {
 | |
|   const BuiltinType *BT1 = T1->getAs<BuiltinType>();
 | |
|   if (!BT1)
 | |
|     return false;
 | |
| 
 | |
|   const BuiltinType *BT2 = T2->getAs<BuiltinType>();
 | |
|   if (!BT2)
 | |
|     return false;
 | |
| 
 | |
|   BuiltinType::Kind T1Kind = BT1->getKind();
 | |
|   BuiltinType::Kind T2Kind = BT2->getKind();
 | |
| 
 | |
|   return (T1Kind == BuiltinType::SChar  && T2Kind == BuiltinType::Char_S) ||
 | |
|          (T1Kind == BuiltinType::UChar  && T2Kind == BuiltinType::Char_U) ||
 | |
|          (T1Kind == BuiltinType::Char_U && T2Kind == BuiltinType::UChar) ||
 | |
|          (T1Kind == BuiltinType::Char_S && T2Kind == BuiltinType::SChar);
 | |
| }
 | |
| } // unnamed namespace
 | |
| 
 | |
| void Sema::CheckArgumentWithTypeTag(const ArgumentWithTypeTagAttr *Attr,
 | |
|                                     const Expr * const *ExprArgs) {
 | |
|   const IdentifierInfo *ArgumentKind = Attr->getArgumentKind();
 | |
|   bool IsPointerAttr = Attr->getIsPointer();
 | |
| 
 | |
|   const Expr *TypeTagExpr = ExprArgs[Attr->getTypeTagIdx()];
 | |
|   bool FoundWrongKind;
 | |
|   TypeTagData TypeInfo;
 | |
|   if (!GetMatchingCType(ArgumentKind, TypeTagExpr, Context,
 | |
|                         TypeTagForDatatypeMagicValues.get(),
 | |
|                         FoundWrongKind, TypeInfo)) {
 | |
|     if (FoundWrongKind)
 | |
|       Diag(TypeTagExpr->getExprLoc(),
 | |
|            diag::warn_type_tag_for_datatype_wrong_kind)
 | |
|         << TypeTagExpr->getSourceRange();
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   const Expr *ArgumentExpr = ExprArgs[Attr->getArgumentIdx()];
 | |
|   if (IsPointerAttr) {
 | |
|     // Skip implicit cast of pointer to `void *' (as a function argument).
 | |
|     if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgumentExpr))
 | |
|       if (ICE->getType()->isVoidPointerType() &&
 | |
|           ICE->getCastKind() == CK_BitCast)
 | |
|         ArgumentExpr = ICE->getSubExpr();
 | |
|   }
 | |
|   QualType ArgumentType = ArgumentExpr->getType();
 | |
| 
 | |
|   // Passing a `void*' pointer shouldn't trigger a warning.
 | |
|   if (IsPointerAttr && ArgumentType->isVoidPointerType())
 | |
|     return;
 | |
| 
 | |
|   if (TypeInfo.MustBeNull) {
 | |
|     // Type tag with matching void type requires a null pointer.
 | |
|     if (!ArgumentExpr->isNullPointerConstant(Context,
 | |
|                                              Expr::NPC_ValueDependentIsNotNull)) {
 | |
|       Diag(ArgumentExpr->getExprLoc(),
 | |
|            diag::warn_type_safety_null_pointer_required)
 | |
|           << ArgumentKind->getName()
 | |
|           << ArgumentExpr->getSourceRange()
 | |
|           << TypeTagExpr->getSourceRange();
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   QualType RequiredType = TypeInfo.Type;
 | |
|   if (IsPointerAttr)
 | |
|     RequiredType = Context.getPointerType(RequiredType);
 | |
| 
 | |
|   bool mismatch = false;
 | |
|   if (!TypeInfo.LayoutCompatible) {
 | |
|     mismatch = !Context.hasSameType(ArgumentType, RequiredType);
 | |
| 
 | |
|     // C++11 [basic.fundamental] p1:
 | |
|     // Plain char, signed char, and unsigned char are three distinct types.
 | |
|     //
 | |
|     // But we treat plain `char' as equivalent to `signed char' or `unsigned
 | |
|     // char' depending on the current char signedness mode.
 | |
|     if (mismatch)
 | |
|       if ((IsPointerAttr && IsSameCharType(ArgumentType->getPointeeType(),
 | |
|                                            RequiredType->getPointeeType())) ||
 | |
|           (!IsPointerAttr && IsSameCharType(ArgumentType, RequiredType)))
 | |
|         mismatch = false;
 | |
|   } else
 | |
|     if (IsPointerAttr)
 | |
|       mismatch = !isLayoutCompatible(Context,
 | |
|                                      ArgumentType->getPointeeType(),
 | |
|                                      RequiredType->getPointeeType());
 | |
|     else
 | |
|       mismatch = !isLayoutCompatible(Context, ArgumentType, RequiredType);
 | |
| 
 | |
|   if (mismatch)
 | |
|     Diag(ArgumentExpr->getExprLoc(), diag::warn_type_safety_type_mismatch)
 | |
|         << ArgumentType << ArgumentKind->getName()
 | |
|         << TypeInfo.LayoutCompatible << RequiredType
 | |
|         << ArgumentExpr->getSourceRange()
 | |
|         << TypeTagExpr->getSourceRange();
 | |
| }
 | 
