* Updating common/lib * Updating lib/csu * Updating lib/libc * Updating libexec/ld.elf_so * Corrected test on __minix in featuretest to actually follow the meaning of the comment. * Cleaned up _REENTRANT-related defintions. * Disabled -D_REENTRANT for libfetch * Removing some unneeded __NBSD_LIBC defines and tests Change-Id: Ic1394baef74d11b9f86b312f5ff4bbc3cbf72ce2
		
			
				
	
	
		
			825 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			825 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/* $NetBSD: gdtoa.c,v 1.6 2012/03/13 21:13:33 christos Exp $ */
 | 
						|
 | 
						|
/****************************************************************
 | 
						|
 | 
						|
The author of this software is David M. Gay.
 | 
						|
 | 
						|
Copyright (C) 1998, 1999 by Lucent Technologies
 | 
						|
All Rights Reserved
 | 
						|
 | 
						|
Permission to use, copy, modify, and distribute this software and
 | 
						|
its documentation for any purpose and without fee is hereby
 | 
						|
granted, provided that the above copyright notice appear in all
 | 
						|
copies and that both that the copyright notice and this
 | 
						|
permission notice and warranty disclaimer appear in supporting
 | 
						|
documentation, and that the name of Lucent or any of its entities
 | 
						|
not be used in advertising or publicity pertaining to
 | 
						|
distribution of the software without specific, written prior
 | 
						|
permission.
 | 
						|
 | 
						|
LUCENT DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
 | 
						|
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS.
 | 
						|
IN NO EVENT SHALL LUCENT OR ANY OF ITS ENTITIES BE LIABLE FOR ANY
 | 
						|
SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 | 
						|
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER
 | 
						|
IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
 | 
						|
ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
 | 
						|
THIS SOFTWARE.
 | 
						|
 | 
						|
****************************************************************/
 | 
						|
 | 
						|
/* Please send bug reports to David M. Gay (dmg at acm dot org,
 | 
						|
 * with " at " changed at "@" and " dot " changed to ".").	*/
 | 
						|
 | 
						|
#include "gdtoaimp.h"
 | 
						|
 | 
						|
 static Bigint *
 | 
						|
#ifdef KR_headers
 | 
						|
bitstob(bits, nbits, bbits) ULong *bits; int nbits; int *bbits;
 | 
						|
#else
 | 
						|
bitstob(ULong *bits, int nbits, int *bbits)
 | 
						|
#endif
 | 
						|
{
 | 
						|
	int i, k;
 | 
						|
	Bigint *b;
 | 
						|
	ULong *be, *x, *x0;
 | 
						|
 | 
						|
	i = ULbits;
 | 
						|
	k = 0;
 | 
						|
	while(i < nbits) {
 | 
						|
		i <<= 1;
 | 
						|
		k++;
 | 
						|
		}
 | 
						|
#ifndef Pack_32
 | 
						|
	if (!k)
 | 
						|
		k = 1;
 | 
						|
#endif
 | 
						|
	b = Balloc(k);
 | 
						|
	if (b == NULL)
 | 
						|
		return NULL;
 | 
						|
	be = bits + (((unsigned int)nbits - 1) >> kshift);
 | 
						|
	x = x0 = b->x;
 | 
						|
	do {
 | 
						|
		*x++ = *bits & ALL_ON;
 | 
						|
#ifdef Pack_16
 | 
						|
		*x++ = (*bits >> 16) & ALL_ON;
 | 
						|
#endif
 | 
						|
		} while(++bits <= be);
 | 
						|
	ptrdiff_t td = x - x0;
 | 
						|
	_DIAGASSERT(__type_fit(int, td));
 | 
						|
	i = (int)td;
 | 
						|
	while(!x0[--i])
 | 
						|
		if (!i) {
 | 
						|
			b->wds = 0;
 | 
						|
			*bbits = 0;
 | 
						|
			goto ret;
 | 
						|
			}
 | 
						|
	b->wds = i + 1;
 | 
						|
	*bbits = i*ULbits + 32 - hi0bits(b->x[i]);
 | 
						|
 ret:
 | 
						|
	return b;
 | 
						|
	}
 | 
						|
 | 
						|
/* dtoa for IEEE arithmetic (dmg): convert double to ASCII string.
 | 
						|
 *
 | 
						|
 * Inspired by "How to Print Floating-Point Numbers Accurately" by
 | 
						|
 * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 112-126].
 | 
						|
 *
 | 
						|
 * Modifications:
 | 
						|
 *	1. Rather than iterating, we use a simple numeric overestimate
 | 
						|
 *	   to determine k = floor(log10(d)).  We scale relevant
 | 
						|
 *	   quantities using O(log2(k)) rather than O(k) multiplications.
 | 
						|
 *	2. For some modes > 2 (corresponding to ecvt and fcvt), we don't
 | 
						|
 *	   try to generate digits strictly left to right.  Instead, we
 | 
						|
 *	   compute with fewer bits and propagate the carry if necessary
 | 
						|
 *	   when rounding the final digit up.  This is often faster.
 | 
						|
 *	3. Under the assumption that input will be rounded nearest,
 | 
						|
 *	   mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22.
 | 
						|
 *	   That is, we allow equality in stopping tests when the
 | 
						|
 *	   round-nearest rule will give the same floating-point value
 | 
						|
 *	   as would satisfaction of the stopping test with strict
 | 
						|
 *	   inequality.
 | 
						|
 *	4. We remove common factors of powers of 2 from relevant
 | 
						|
 *	   quantities.
 | 
						|
 *	5. When converting floating-point integers less than 1e16,
 | 
						|
 *	   we use floating-point arithmetic rather than resorting
 | 
						|
 *	   to multiple-precision integers.
 | 
						|
 *	6. When asked to produce fewer than 15 digits, we first try
 | 
						|
 *	   to get by with floating-point arithmetic; we resort to
 | 
						|
 *	   multiple-precision integer arithmetic only if we cannot
 | 
						|
 *	   guarantee that the floating-point calculation has given
 | 
						|
 *	   the correctly rounded result.  For k requested digits and
 | 
						|
 *	   "uniformly" distributed input, the probability is
 | 
						|
 *	   something like 10^(k-15) that we must resort to the Long
 | 
						|
 *	   calculation.
 | 
						|
 */
 | 
						|
 | 
						|
 char *
 | 
						|
gdtoa
 | 
						|
#ifdef KR_headers
 | 
						|
	(fpi, be, bits, kindp, mode, ndigits, decpt, rve)
 | 
						|
	FPI *fpi; int be; ULong *bits;
 | 
						|
	int *kindp, mode, ndigits, *decpt; char **rve;
 | 
						|
#else
 | 
						|
	(FPI *fpi, int be, ULong *bits, int *kindp, int mode, int ndigits, int *decpt, char **rve)
 | 
						|
#endif
 | 
						|
{
 | 
						|
 /*	Arguments ndigits and decpt are similar to the second and third
 | 
						|
	arguments of ecvt and fcvt; trailing zeros are suppressed from
 | 
						|
	the returned string.  If not null, *rve is set to point
 | 
						|
	to the end of the return value.  If d is +-Infinity or NaN,
 | 
						|
	then *decpt is set to 9999.
 | 
						|
	be = exponent: value = (integer represented by bits) * (2 to the power of be).
 | 
						|
 | 
						|
	mode:
 | 
						|
		0 ==> shortest string that yields d when read in
 | 
						|
			and rounded to nearest.
 | 
						|
		1 ==> like 0, but with Steele & White stopping rule;
 | 
						|
			e.g. with IEEE P754 arithmetic , mode 0 gives
 | 
						|
			1e23 whereas mode 1 gives 9.999999999999999e22.
 | 
						|
		2 ==> max(1,ndigits) significant digits.  This gives a
 | 
						|
			return value similar to that of ecvt, except
 | 
						|
			that trailing zeros are suppressed.
 | 
						|
		3 ==> through ndigits past the decimal point.  This
 | 
						|
			gives a return value similar to that from fcvt,
 | 
						|
			except that trailing zeros are suppressed, and
 | 
						|
			ndigits can be negative.
 | 
						|
		4-9 should give the same return values as 2-3, i.e.,
 | 
						|
			4 <= mode <= 9 ==> same return as mode
 | 
						|
			2 + (mode & 1).  These modes are mainly for
 | 
						|
			debugging; often they run slower but sometimes
 | 
						|
			faster than modes 2-3.
 | 
						|
		4,5,8,9 ==> left-to-right digit generation.
 | 
						|
		6-9 ==> don't try fast floating-point estimate
 | 
						|
			(if applicable).
 | 
						|
 | 
						|
		Values of mode other than 0-9 are treated as mode 0.
 | 
						|
 | 
						|
		Sufficient space is allocated to the return value
 | 
						|
		to hold the suppressed trailing zeros.
 | 
						|
	*/
 | 
						|
 | 
						|
	int bbits, b2, b5, be0, dig, i, ieps, ilim = 0, ilim0, ilim1 = 0, inex;
 | 
						|
	int j, jj1, k, k0, k_check, kind, leftright, m2, m5, nbits;
 | 
						|
	int rdir, s2, s5, spec_case, try_quick;
 | 
						|
	Long L;
 | 
						|
	Bigint *b, *b1, *delta, *mlo, *mhi, *mhi1, *S;
 | 
						|
	double d2, ds;
 | 
						|
	char *s, *s0;
 | 
						|
	U d, eps;
 | 
						|
 | 
						|
#ifndef MULTIPLE_THREADS
 | 
						|
	if (dtoa_result) {
 | 
						|
		freedtoa(dtoa_result);
 | 
						|
		dtoa_result = 0;
 | 
						|
		}
 | 
						|
#endif
 | 
						|
	inex = 0;
 | 
						|
	if (*kindp & STRTOG_NoMemory)
 | 
						|
		return NULL;
 | 
						|
	kind = *kindp &= ~STRTOG_Inexact;
 | 
						|
	switch(kind & STRTOG_Retmask) {
 | 
						|
	  case STRTOG_Zero:
 | 
						|
		goto ret_zero;
 | 
						|
	  case STRTOG_Normal:
 | 
						|
	  case STRTOG_Denormal:
 | 
						|
		break;
 | 
						|
	  case STRTOG_Infinite:
 | 
						|
		*decpt = -32768;
 | 
						|
		return nrv_alloc("Infinity", rve, 8);
 | 
						|
	  case STRTOG_NaN:
 | 
						|
		*decpt = -32768;
 | 
						|
		return nrv_alloc("NaN", rve, 3);
 | 
						|
	  default:
 | 
						|
		return 0;
 | 
						|
	  }
 | 
						|
	b = bitstob(bits, nbits = fpi->nbits, &bbits);
 | 
						|
	if (b == NULL)
 | 
						|
		return NULL;
 | 
						|
	be0 = be;
 | 
						|
	if ( (i = trailz(b)) !=0) {
 | 
						|
		rshift(b, i);
 | 
						|
		be += i;
 | 
						|
		bbits -= i;
 | 
						|
		}
 | 
						|
	if (!b->wds) {
 | 
						|
		Bfree(b);
 | 
						|
 ret_zero:
 | 
						|
		*decpt = 1;
 | 
						|
		return nrv_alloc("0", rve, 1);
 | 
						|
		}
 | 
						|
 | 
						|
	dval(&d) = b2d(b, &i);
 | 
						|
	i = be + bbits - 1;
 | 
						|
	word0(&d) &= Frac_mask1;
 | 
						|
	word0(&d) |= Exp_11;
 | 
						|
#ifdef IBM
 | 
						|
	if ( (j = 11 - hi0bits(word0(&d) & Frac_mask)) !=0)
 | 
						|
		dval(&d) /= 1 << j;
 | 
						|
#endif
 | 
						|
 | 
						|
	/* log(x)	~=~ log(1.5) + (x-1.5)/1.5
 | 
						|
	 * log10(x)	 =  log(x) / log(10)
 | 
						|
	 *		~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10))
 | 
						|
	 * log10(&d) = (i-Bias)*log(2)/log(10) + log10(d2)
 | 
						|
	 *
 | 
						|
	 * This suggests computing an approximation k to log10(&d) by
 | 
						|
	 *
 | 
						|
	 * k = (i - Bias)*0.301029995663981
 | 
						|
	 *	+ ( (d2-1.5)*0.289529654602168 + 0.176091259055681 );
 | 
						|
	 *
 | 
						|
	 * We want k to be too large rather than too small.
 | 
						|
	 * The error in the first-order Taylor series approximation
 | 
						|
	 * is in our favor, so we just round up the constant enough
 | 
						|
	 * to compensate for any error in the multiplication of
 | 
						|
	 * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077,
 | 
						|
	 * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14,
 | 
						|
	 * adding 1e-13 to the constant term more than suffices.
 | 
						|
	 * Hence we adjust the constant term to 0.1760912590558.
 | 
						|
	 * (We could get a more accurate k by invoking log10,
 | 
						|
	 *  but this is probably not worthwhile.)
 | 
						|
	 */
 | 
						|
#ifdef IBM
 | 
						|
	i <<= 2;
 | 
						|
	i += j;
 | 
						|
#endif
 | 
						|
	ds = (dval(&d)-1.5)*0.289529654602168 + 0.1760912590558 + i*0.301029995663981;
 | 
						|
 | 
						|
	/* correct assumption about exponent range */
 | 
						|
	if ((j = i) < 0)
 | 
						|
		j = -j;
 | 
						|
	if ((j -= 1077) > 0)
 | 
						|
		ds += j * 7e-17;
 | 
						|
 | 
						|
	k = (int)ds;
 | 
						|
	if (ds < 0. && ds != k)
 | 
						|
		k--;	/* want k = floor(ds) */
 | 
						|
	k_check = 1;
 | 
						|
#ifdef IBM
 | 
						|
	j = be + bbits - 1;
 | 
						|
	if ( (jj1 = j & 3) !=0)
 | 
						|
		dval(&d) *= 1 << jj1;
 | 
						|
	word0(&d) += j << Exp_shift - 2 & Exp_mask;
 | 
						|
#else
 | 
						|
	word0(&d) += (be + bbits - 1) << Exp_shift;
 | 
						|
#endif
 | 
						|
	if (k >= 0 && k <= Ten_pmax) {
 | 
						|
		if (dval(&d) < tens[k])
 | 
						|
			k--;
 | 
						|
		k_check = 0;
 | 
						|
		}
 | 
						|
	j = bbits - i - 1;
 | 
						|
	if (j >= 0) {
 | 
						|
		b2 = 0;
 | 
						|
		s2 = j;
 | 
						|
		}
 | 
						|
	else {
 | 
						|
		b2 = -j;
 | 
						|
		s2 = 0;
 | 
						|
		}
 | 
						|
	if (k >= 0) {
 | 
						|
		b5 = 0;
 | 
						|
		s5 = k;
 | 
						|
		s2 += k;
 | 
						|
		}
 | 
						|
	else {
 | 
						|
		b2 -= k;
 | 
						|
		b5 = -k;
 | 
						|
		s5 = 0;
 | 
						|
		}
 | 
						|
	if (mode < 0 || mode > 9)
 | 
						|
		mode = 0;
 | 
						|
	try_quick = 1;
 | 
						|
	if (mode > 5) {
 | 
						|
		mode -= 4;
 | 
						|
		try_quick = 0;
 | 
						|
		}
 | 
						|
	else if (i >= -4 - Emin || i < Emin)
 | 
						|
		try_quick = 0;
 | 
						|
	leftright = 1;
 | 
						|
	ilim = ilim1 = -1;	/* Values for cases 0 and 1; done here to */
 | 
						|
				/* silence erroneous "gcc -Wall" warning. */
 | 
						|
	switch(mode) {
 | 
						|
		case 0:
 | 
						|
		case 1:
 | 
						|
			i = (int)(nbits * .30103) + 3;
 | 
						|
			ndigits = 0;
 | 
						|
			break;
 | 
						|
		case 2:
 | 
						|
			leftright = 0;
 | 
						|
			/*FALLTHROUGH*/
 | 
						|
		case 4:
 | 
						|
			if (ndigits <= 0)
 | 
						|
				ndigits = 1;
 | 
						|
			ilim = ilim1 = i = ndigits;
 | 
						|
			break;
 | 
						|
		case 3:
 | 
						|
			leftright = 0;
 | 
						|
			/*FALLTHROUGH*/
 | 
						|
		case 5:
 | 
						|
			i = ndigits + k + 1;
 | 
						|
			ilim = i;
 | 
						|
			ilim1 = i - 1;
 | 
						|
			if (i <= 0)
 | 
						|
				i = 1;
 | 
						|
		}
 | 
						|
	s = s0 = rv_alloc((size_t)i);
 | 
						|
	if (s == NULL)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	if ( (rdir = fpi->rounding - 1) !=0) {
 | 
						|
		if (rdir < 0)
 | 
						|
			rdir = 2;
 | 
						|
		if (kind & STRTOG_Neg)
 | 
						|
			rdir = 3 - rdir;
 | 
						|
		}
 | 
						|
 | 
						|
	/* Now rdir = 0 ==> round near, 1 ==> round up, 2 ==> round down. */
 | 
						|
 | 
						|
	if (ilim >= 0 && ilim <= Quick_max && try_quick && !rdir
 | 
						|
#ifndef IMPRECISE_INEXACT
 | 
						|
		&& k == 0
 | 
						|
#endif
 | 
						|
								) {
 | 
						|
 | 
						|
		/* Try to get by with floating-point arithmetic. */
 | 
						|
 | 
						|
		i = 0;
 | 
						|
		d2 = dval(&d);
 | 
						|
#ifdef IBM
 | 
						|
		if ( (j = 11 - hi0bits(word0(&d) & Frac_mask)) !=0)
 | 
						|
			dval(&d) /= 1 << j;
 | 
						|
#endif
 | 
						|
		k0 = k;
 | 
						|
		ilim0 = ilim;
 | 
						|
		ieps = 2; /* conservative */
 | 
						|
		if (k > 0) {
 | 
						|
			ds = tens[k&0xf];
 | 
						|
			j = (unsigned int)k >> 4;
 | 
						|
			if (j & Bletch) {
 | 
						|
				/* prevent overflows */
 | 
						|
				j &= Bletch - 1;
 | 
						|
				dval(&d) /= bigtens[n_bigtens-1];
 | 
						|
				ieps++;
 | 
						|
				}
 | 
						|
			for(; j; j /= 2, i++)
 | 
						|
				if (j & 1) {
 | 
						|
					ieps++;
 | 
						|
					ds *= bigtens[i];
 | 
						|
					}
 | 
						|
			}
 | 
						|
		else  {
 | 
						|
			ds = 1.;
 | 
						|
			if ( (jj1 = -k) !=0) {
 | 
						|
				dval(&d) *= tens[jj1 & 0xf];
 | 
						|
				for(j = jj1 >> 4; j; j >>= 1, i++)
 | 
						|
					if (j & 1) {
 | 
						|
						ieps++;
 | 
						|
						dval(&d) *= bigtens[i];
 | 
						|
						}
 | 
						|
				}
 | 
						|
			}
 | 
						|
		if (k_check && dval(&d) < 1. && ilim > 0) {
 | 
						|
			if (ilim1 <= 0)
 | 
						|
				goto fast_failed;
 | 
						|
			ilim = ilim1;
 | 
						|
			k--;
 | 
						|
			dval(&d) *= 10.;
 | 
						|
			ieps++;
 | 
						|
			}
 | 
						|
		dval(&eps) = ieps*dval(&d) + 7.;
 | 
						|
		word0(&eps) -= (P-1)*Exp_msk1;
 | 
						|
		if (ilim == 0) {
 | 
						|
			S = mhi = 0;
 | 
						|
			dval(&d) -= 5.;
 | 
						|
			if (dval(&d) > dval(&eps))
 | 
						|
				goto one_digit;
 | 
						|
			if (dval(&d) < -dval(&eps))
 | 
						|
				goto no_digits;
 | 
						|
			goto fast_failed;
 | 
						|
			}
 | 
						|
#ifndef No_leftright
 | 
						|
		if (leftright) {
 | 
						|
			/* Use Steele & White method of only
 | 
						|
			 * generating digits needed.
 | 
						|
			 */
 | 
						|
			dval(&eps) = ds*0.5/tens[ilim-1] - dval(&eps);
 | 
						|
			for(i = 0;;) {
 | 
						|
				L = (Long)(dval(&d)/ds);
 | 
						|
				dval(&d) -= L*ds;
 | 
						|
				*s++ = '0' + (int)L;
 | 
						|
				if (dval(&d) < dval(&eps)) {
 | 
						|
					if (dval(&d))
 | 
						|
						inex = STRTOG_Inexlo;
 | 
						|
					goto ret1;
 | 
						|
					}
 | 
						|
				if (ds - dval(&d) < dval(&eps))
 | 
						|
					goto bump_up;
 | 
						|
				if (++i >= ilim)
 | 
						|
					break;
 | 
						|
				dval(&eps) *= 10.;
 | 
						|
				dval(&d) *= 10.;
 | 
						|
				}
 | 
						|
			}
 | 
						|
		else {
 | 
						|
#endif
 | 
						|
			/* Generate ilim digits, then fix them up. */
 | 
						|
			dval(&eps) *= tens[ilim-1];
 | 
						|
			for(i = 1;; i++, dval(&d) *= 10.) {
 | 
						|
				if ( (L = (Long)(dval(&d)/ds)) !=0)
 | 
						|
					dval(&d) -= L*ds;
 | 
						|
				*s++ = '0' + (int)L;
 | 
						|
				if (i == ilim) {
 | 
						|
					ds *= 0.5;
 | 
						|
					if (dval(&d) > ds + dval(&eps))
 | 
						|
						goto bump_up;
 | 
						|
					else if (dval(&d) < ds - dval(&eps)) {
 | 
						|
						if (dval(&d))
 | 
						|
							inex = STRTOG_Inexlo;
 | 
						|
						goto clear_trailing0;
 | 
						|
						}
 | 
						|
					break;
 | 
						|
					}
 | 
						|
				}
 | 
						|
#ifndef No_leftright
 | 
						|
			}
 | 
						|
#endif
 | 
						|
 fast_failed:
 | 
						|
		s = s0;
 | 
						|
		dval(&d) = d2;
 | 
						|
		k = k0;
 | 
						|
		ilim = ilim0;
 | 
						|
		}
 | 
						|
 | 
						|
	/* Do we have a "small" integer? */
 | 
						|
 | 
						|
	if (be >= 0 && k <= Int_max) {
 | 
						|
		/* Yes. */
 | 
						|
		ds = tens[k];
 | 
						|
		if (ndigits < 0 && ilim <= 0) {
 | 
						|
			S = mhi = 0;
 | 
						|
			if (ilim < 0 || dval(&d) <= 5*ds)
 | 
						|
				goto no_digits;
 | 
						|
			goto one_digit;
 | 
						|
			}
 | 
						|
		for(i = 1;; i++, dval(&d) *= 10.) {
 | 
						|
			L = dval(&d) / ds;
 | 
						|
			dval(&d) -= L*ds;
 | 
						|
#ifdef Check_FLT_ROUNDS
 | 
						|
			/* If FLT_ROUNDS == 2, L will usually be high by 1 */
 | 
						|
			if (dval(&d) < 0) {
 | 
						|
				L--;
 | 
						|
				dval(&d) += ds;
 | 
						|
				}
 | 
						|
#endif
 | 
						|
			*s++ = '0' + (int)L;
 | 
						|
			if (dval(&d) == 0.)
 | 
						|
				break;
 | 
						|
			if (i == ilim) {
 | 
						|
				if (rdir) {
 | 
						|
					if (rdir == 1)
 | 
						|
						goto bump_up;
 | 
						|
					inex = STRTOG_Inexlo;
 | 
						|
					goto ret1;
 | 
						|
					}
 | 
						|
				dval(&d) += dval(&d);
 | 
						|
#ifdef ROUND_BIASED
 | 
						|
				if (dval(&d) >= ds)
 | 
						|
#else
 | 
						|
				if (dval(&d) > ds || (dval(&d) == ds && L & 1))
 | 
						|
#endif
 | 
						|
					{
 | 
						|
 bump_up:
 | 
						|
					inex = STRTOG_Inexhi;
 | 
						|
					while(*--s == '9')
 | 
						|
						if (s == s0) {
 | 
						|
							k++;
 | 
						|
							*s = '0';
 | 
						|
							break;
 | 
						|
							}
 | 
						|
					++*s++;
 | 
						|
					}
 | 
						|
				else {
 | 
						|
					inex = STRTOG_Inexlo;
 | 
						|
 clear_trailing0:
 | 
						|
					while(*--s == '0'){}
 | 
						|
					++s;
 | 
						|
					}
 | 
						|
				break;
 | 
						|
				}
 | 
						|
			}
 | 
						|
		goto ret1;
 | 
						|
		}
 | 
						|
 | 
						|
	m2 = b2;
 | 
						|
	m5 = b5;
 | 
						|
	mhi = mlo = 0;
 | 
						|
	if (leftright) {
 | 
						|
		i = nbits - bbits;
 | 
						|
		if (be - i++ < fpi->emin && mode != 3 && mode != 5) {
 | 
						|
			/* denormal */
 | 
						|
			i = be - fpi->emin + 1;
 | 
						|
			if (mode >= 2 && ilim > 0 && ilim < i)
 | 
						|
				goto small_ilim;
 | 
						|
			}
 | 
						|
		else if (mode >= 2) {
 | 
						|
 small_ilim:
 | 
						|
			j = ilim - 1;
 | 
						|
			if (m5 >= j)
 | 
						|
				m5 -= j;
 | 
						|
			else {
 | 
						|
				s5 += j -= m5;
 | 
						|
				b5 += j;
 | 
						|
				m5 = 0;
 | 
						|
				}
 | 
						|
			if ((i = ilim) < 0) {
 | 
						|
				m2 -= i;
 | 
						|
				i = 0;
 | 
						|
				}
 | 
						|
			}
 | 
						|
		b2 += i;
 | 
						|
		s2 += i;
 | 
						|
		mhi = i2b(1);
 | 
						|
		}
 | 
						|
	if (m2 > 0 && s2 > 0) {
 | 
						|
		i = m2 < s2 ? m2 : s2;
 | 
						|
		b2 -= i;
 | 
						|
		m2 -= i;
 | 
						|
		s2 -= i;
 | 
						|
		}
 | 
						|
	if (b5 > 0) {
 | 
						|
		if (leftright) {
 | 
						|
			if (m5 > 0) {
 | 
						|
				mhi = pow5mult(mhi, m5);
 | 
						|
				if (mhi == NULL)
 | 
						|
					return NULL;
 | 
						|
				b1 = mult(mhi, b);
 | 
						|
				if (b1 == NULL)
 | 
						|
					return NULL;
 | 
						|
				Bfree(b);
 | 
						|
				b = b1;
 | 
						|
				}
 | 
						|
			if ( (j = b5 - m5) !=0) {
 | 
						|
				b = pow5mult(b, j);
 | 
						|
				if (b == NULL)
 | 
						|
					return NULL;
 | 
						|
				}
 | 
						|
			}
 | 
						|
		else {
 | 
						|
			b = pow5mult(b, b5);
 | 
						|
			if (b == NULL)
 | 
						|
				return NULL;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	S = i2b(1);
 | 
						|
	if (S == NULL)
 | 
						|
		return NULL;
 | 
						|
	if (s5 > 0) {
 | 
						|
		S = pow5mult(S, s5);
 | 
						|
		if (S == NULL)
 | 
						|
			return NULL;
 | 
						|
		}
 | 
						|
 | 
						|
	/* Check for special case that d is a normalized power of 2. */
 | 
						|
 | 
						|
	spec_case = 0;
 | 
						|
	if (mode < 2) {
 | 
						|
		if (bbits == 1 && be0 > fpi->emin + 1) {
 | 
						|
			/* The special case */
 | 
						|
			b2++;
 | 
						|
			s2++;
 | 
						|
			spec_case = 1;
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
	/* Arrange for convenient computation of quotients:
 | 
						|
	 * shift left if necessary so divisor has 4 leading 0 bits.
 | 
						|
	 *
 | 
						|
	 * Perhaps we should just compute leading 28 bits of S once
 | 
						|
	 * and for all and pass them and a shift to quorem, so it
 | 
						|
	 * can do shifts and ors to compute the numerator for q.
 | 
						|
	 */
 | 
						|
	i = ((s5 ? hi0bits(S->x[S->wds-1]) : ULbits - 1) - s2 - 4) & kmask;
 | 
						|
	m2 += i;
 | 
						|
	if ((b2 += i) > 0)
 | 
						|
		b = lshift(b, b2);
 | 
						|
	if ((s2 += i) > 0)
 | 
						|
		S = lshift(S, s2);
 | 
						|
	if (k_check) {
 | 
						|
		if (cmp(b,S) < 0) {
 | 
						|
			k--;
 | 
						|
			b = multadd(b, 10, 0);	/* we botched the k estimate */
 | 
						|
			if (b == NULL)
 | 
						|
				return NULL;
 | 
						|
			if (leftright) {
 | 
						|
				mhi = multadd(mhi, 10, 0);
 | 
						|
				if (mhi == NULL)
 | 
						|
					return NULL;
 | 
						|
				}
 | 
						|
			ilim = ilim1;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	if (ilim <= 0 && mode > 2) {
 | 
						|
		if (ilim < 0 || cmp(b,S = multadd(S,5,0)) <= 0) {
 | 
						|
			/* no digits, fcvt style */
 | 
						|
 no_digits:
 | 
						|
			k = -1 - ndigits;
 | 
						|
			inex = STRTOG_Inexlo;
 | 
						|
			goto ret;
 | 
						|
			}
 | 
						|
 one_digit:
 | 
						|
		inex = STRTOG_Inexhi;
 | 
						|
		*s++ = '1';
 | 
						|
		k++;
 | 
						|
		goto ret;
 | 
						|
		}
 | 
						|
	if (leftright) {
 | 
						|
		if (m2 > 0) {
 | 
						|
			mhi = lshift(mhi, m2);
 | 
						|
			if (mhi == NULL)
 | 
						|
				return NULL;
 | 
						|
			}
 | 
						|
 | 
						|
		/* Compute mlo -- check for special case
 | 
						|
		 * that d is a normalized power of 2.
 | 
						|
		 */
 | 
						|
 | 
						|
		mlo = mhi;
 | 
						|
		if (spec_case) {
 | 
						|
			mhi = Balloc(mhi->k);
 | 
						|
			if (mhi == NULL)
 | 
						|
				return NULL;
 | 
						|
			Bcopy(mhi, mlo);
 | 
						|
			mhi = lshift(mhi, 1);
 | 
						|
			if (mhi == NULL)
 | 
						|
				return NULL;
 | 
						|
			}
 | 
						|
 | 
						|
		for(i = 1;;i++) {
 | 
						|
			dig = quorem(b,S) + '0';
 | 
						|
			/* Do we yet have the shortest decimal string
 | 
						|
			 * that will round to d?
 | 
						|
			 */
 | 
						|
			j = cmp(b, mlo);
 | 
						|
			delta = diff(S, mhi);
 | 
						|
			if (delta == NULL)
 | 
						|
				return NULL;
 | 
						|
			jj1 = delta->sign ? 1 : cmp(b, delta);
 | 
						|
			Bfree(delta);
 | 
						|
#ifndef ROUND_BIASED
 | 
						|
			if (jj1 == 0 && !mode && !(bits[0] & 1) && !rdir) {
 | 
						|
				if (dig == '9')
 | 
						|
					goto round_9_up;
 | 
						|
				if (j <= 0) {
 | 
						|
					if (b->wds > 1 || b->x[0])
 | 
						|
						inex = STRTOG_Inexlo;
 | 
						|
					}
 | 
						|
				else {
 | 
						|
					dig++;
 | 
						|
					inex = STRTOG_Inexhi;
 | 
						|
					}
 | 
						|
				*s++ = dig;
 | 
						|
				goto ret;
 | 
						|
				}
 | 
						|
#endif
 | 
						|
			if (j < 0 || (j == 0 && !mode
 | 
						|
#ifndef ROUND_BIASED
 | 
						|
							&& !(bits[0] & 1)
 | 
						|
#endif
 | 
						|
					)) {
 | 
						|
				if (rdir && (b->wds > 1 || b->x[0])) {
 | 
						|
					if (rdir == 2) {
 | 
						|
						inex = STRTOG_Inexlo;
 | 
						|
						goto accept;
 | 
						|
						}
 | 
						|
					while (cmp(S,mhi) > 0) {
 | 
						|
						*s++ = dig;
 | 
						|
						mhi1 = multadd(mhi, 10, 0);
 | 
						|
						if (mhi1 == NULL)
 | 
						|
							return NULL;
 | 
						|
						if (mlo == mhi)
 | 
						|
							mlo = mhi1;
 | 
						|
						mhi = mhi1;
 | 
						|
						b = multadd(b, 10, 0);
 | 
						|
						if (b == NULL)
 | 
						|
							return NULL;
 | 
						|
						dig = quorem(b,S) + '0';
 | 
						|
						}
 | 
						|
					if (dig++ == '9')
 | 
						|
						goto round_9_up;
 | 
						|
					inex = STRTOG_Inexhi;
 | 
						|
					goto accept;
 | 
						|
					}
 | 
						|
				if (jj1 > 0) {
 | 
						|
					b = lshift(b, 1);
 | 
						|
					if (b == NULL)
 | 
						|
						return NULL;
 | 
						|
					jj1 = cmp(b, S);
 | 
						|
#ifdef ROUND_BIASED
 | 
						|
					if (jj1 >= 0 /*)*/
 | 
						|
#else
 | 
						|
					if ((jj1 > 0 || (jj1 == 0 && dig & 1))
 | 
						|
#endif
 | 
						|
					&& dig++ == '9')
 | 
						|
						goto round_9_up;
 | 
						|
					inex = STRTOG_Inexhi;
 | 
						|
					}
 | 
						|
				if (b->wds > 1 || b->x[0])
 | 
						|
					inex = STRTOG_Inexlo;
 | 
						|
 accept:
 | 
						|
				*s++ = dig;
 | 
						|
				goto ret;
 | 
						|
				}
 | 
						|
			if (jj1 > 0 && rdir != 2) {
 | 
						|
				if (dig == '9') { /* possible if i == 1 */
 | 
						|
 round_9_up:
 | 
						|
					*s++ = '9';
 | 
						|
					inex = STRTOG_Inexhi;
 | 
						|
					goto roundoff;
 | 
						|
					}
 | 
						|
				inex = STRTOG_Inexhi;
 | 
						|
				*s++ = dig + 1;
 | 
						|
				goto ret;
 | 
						|
				}
 | 
						|
			*s++ = dig;
 | 
						|
			if (i == ilim)
 | 
						|
				break;
 | 
						|
			b = multadd(b, 10, 0);
 | 
						|
			if (b == NULL)
 | 
						|
				return NULL;
 | 
						|
			if (mlo == mhi) {
 | 
						|
				mlo = mhi = multadd(mhi, 10, 0);
 | 
						|
				if (mlo == NULL)
 | 
						|
					return NULL;
 | 
						|
				}
 | 
						|
			else {
 | 
						|
				mlo = multadd(mlo, 10, 0);
 | 
						|
				if (mlo == NULL)
 | 
						|
					return NULL;
 | 
						|
				mhi = multadd(mhi, 10, 0);
 | 
						|
				if (mhi == NULL)
 | 
						|
					return NULL;
 | 
						|
				}
 | 
						|
			}
 | 
						|
		}
 | 
						|
	else
 | 
						|
		for(i = 1;; i++) {
 | 
						|
			*s++ = dig = quorem(b,S) + '0';
 | 
						|
			if (i >= ilim)
 | 
						|
				break;
 | 
						|
			b = multadd(b, 10, 0);
 | 
						|
			if (b == NULL)
 | 
						|
				return NULL;
 | 
						|
			}
 | 
						|
 | 
						|
	/* Round off last digit */
 | 
						|
 | 
						|
	if (rdir) {
 | 
						|
		if (rdir == 2 || (b->wds <= 1 && !b->x[0]))
 | 
						|
			goto chopzeros;
 | 
						|
		goto roundoff;
 | 
						|
		}
 | 
						|
	b = lshift(b, 1);
 | 
						|
	if (b == NULL)
 | 
						|
		return NULL;
 | 
						|
	j = cmp(b, S);
 | 
						|
#ifdef ROUND_BIASED
 | 
						|
	if (j >= 0)
 | 
						|
#else
 | 
						|
	if (j > 0 || (j == 0 && dig & 1))
 | 
						|
#endif
 | 
						|
		{
 | 
						|
 roundoff:
 | 
						|
		inex = STRTOG_Inexhi;
 | 
						|
		while(*--s == '9')
 | 
						|
			if (s == s0) {
 | 
						|
				k++;
 | 
						|
				*s++ = '1';
 | 
						|
				goto ret;
 | 
						|
				}
 | 
						|
		++*s++;
 | 
						|
		}
 | 
						|
	else {
 | 
						|
 chopzeros:
 | 
						|
		if (b->wds > 1 || b->x[0])
 | 
						|
			inex = STRTOG_Inexlo;
 | 
						|
		while(*--s == '0'){}
 | 
						|
		++s;
 | 
						|
		}
 | 
						|
 ret:
 | 
						|
	Bfree(S);
 | 
						|
	if (mhi) {
 | 
						|
		if (mlo && mlo != mhi)
 | 
						|
			Bfree(mlo);
 | 
						|
		Bfree(mhi);
 | 
						|
		}
 | 
						|
 ret1:
 | 
						|
	Bfree(b);
 | 
						|
	*s = 0;
 | 
						|
	*decpt = k + 1;
 | 
						|
	if (rve)
 | 
						|
		*rve = s;
 | 
						|
	*kindp |= inex;
 | 
						|
	return s0;
 | 
						|
	}
 |