 0dc9e0996a
			
		
	
	
		0dc9e0996a
		
	
	
	
	
		
			
			As the current libc includes a libm implementation, with the new libc this is needed. Unneeded (for the moment) archs have been removed.
		
			
				
	
	
		
			492 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			492 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*      $NetBSD: n_log.c,v 1.7 2008/03/20 16:41:26 mhitch Exp $ */
 | |
| /*
 | |
|  * Copyright (c) 1992, 1993
 | |
|  *	The Regents of the University of California.  All rights reserved.
 | |
|  *
 | |
|  * Redistribution and use in source and binary forms, with or without
 | |
|  * modification, are permitted provided that the following conditions
 | |
|  * are met:
 | |
|  * 1. Redistributions of source code must retain the above copyright
 | |
|  *    notice, this list of conditions and the following disclaimer.
 | |
|  * 2. Redistributions in binary form must reproduce the above copyright
 | |
|  *    notice, this list of conditions and the following disclaimer in the
 | |
|  *    documentation and/or other materials provided with the distribution.
 | |
|  * 3. Neither the name of the University nor the names of its contributors
 | |
|  *    may be used to endorse or promote products derived from this software
 | |
|  *    without specific prior written permission.
 | |
|  *
 | |
|  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
 | |
|  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 | |
|  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 | |
|  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 | |
|  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 | |
|  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 | |
|  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 | |
|  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 | |
|  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 | |
|  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 | |
|  * SUCH DAMAGE.
 | |
|  */
 | |
| 
 | |
| #ifndef lint
 | |
| #if 0
 | |
| static char sccsid[] = "@(#)log.c	8.2 (Berkeley) 11/30/93";
 | |
| #endif
 | |
| #endif /* not lint */
 | |
| 
 | |
| #include "../src/namespace.h"
 | |
| 
 | |
| #include <math.h>
 | |
| #include <errno.h>
 | |
| 
 | |
| #include "mathimpl.h"
 | |
| 
 | |
| #ifdef __weak_alias
 | |
| __weak_alias(log, _log);
 | |
| __weak_alias(logf, _logf);
 | |
| #endif
 | |
| 
 | |
| /* Table-driven natural logarithm.
 | |
|  *
 | |
|  * This code was derived, with minor modifications, from:
 | |
|  *	Peter Tang, "Table-Driven Implementation of the
 | |
|  *	Logarithm in IEEE Floating-Point arithmetic." ACM Trans.
 | |
|  *	Math Software, vol 16. no 4, pp 378-400, Dec 1990).
 | |
|  *
 | |
|  * Calculates log(2^m*F*(1+f/F)), |f/j| <= 1/256,
 | |
|  * where F = j/128 for j an integer in [0, 128].
 | |
|  *
 | |
|  * log(2^m) = log2_hi*m + log2_tail*m
 | |
|  * since m is an integer, the dominant term is exact.
 | |
|  * m has at most 10 digits (for subnormal numbers),
 | |
|  * and log2_hi has 11 trailing zero bits.
 | |
|  *
 | |
|  * log(F) = logF_hi[j] + logF_lo[j] is in tabular form in log_table.h
 | |
|  * logF_hi[] + 512 is exact.
 | |
|  *
 | |
|  * log(1+f/F) = 2*f/(2*F + f) + 1/12 * (2*f/(2*F + f))**3 + ...
 | |
|  * the leading term is calculated to extra precision in two
 | |
|  * parts, the larger of which adds exactly to the dominant
 | |
|  * m and F terms.
 | |
|  * There are two cases:
 | |
|  *	1. when m, j are non-zero (m | j), use absolute
 | |
|  *	   precision for the leading term.
 | |
|  *	2. when m = j = 0, |1-x| < 1/256, and log(x) ~= (x-1).
 | |
|  *	   In this case, use a relative precision of 24 bits.
 | |
|  * (This is done differently in the original paper)
 | |
|  *
 | |
|  * Special cases:
 | |
|  *	0	return signalling -Inf
 | |
|  *	neg	return signalling NaN
 | |
|  *	+Inf	return +Inf
 | |
| */
 | |
| 
 | |
| #if defined(__vax__) || defined(tahoe)
 | |
| #define _IEEE		0
 | |
| #define TRUNC(x)	x = (double) (float) (x)
 | |
| #else
 | |
| #define _IEEE		1
 | |
| #define endian		(((*(int *) &one)) ? 1 : 0)
 | |
| #define TRUNC(x)	*(((int *) &x) + endian) &= 0xf8000000
 | |
| #define infnan(x)	0.0
 | |
| #endif
 | |
| 
 | |
| #define N 128
 | |
| 
 | |
| /* Table of log(Fj) = logF_head[j] + logF_tail[j], for Fj = 1+j/128.
 | |
|  * Used for generation of extend precision logarithms.
 | |
|  * The constant 35184372088832 is 2^45, so the divide is exact.
 | |
|  * It ensures correct reading of logF_head, even for inaccurate
 | |
|  * decimal-to-binary conversion routines.  (Everybody gets the
 | |
|  * right answer for integers less than 2^53.)
 | |
|  * Values for log(F) were generated using error < 10^-57 absolute
 | |
|  * with the bc -l package.
 | |
| */
 | |
| static const double	A1 = 	  .08333333333333178827;
 | |
| static const double	A2 = 	  .01250000000377174923;
 | |
| static const double	A3 =	 .002232139987919447809;
 | |
| static const double	A4 =	.0004348877777076145742;
 | |
| 
 | |
| static const double logF_head[N+1] = {
 | |
| 	0.,
 | |
| 	.007782140442060381246,
 | |
| 	.015504186535963526694,
 | |
| 	.023167059281547608406,
 | |
| 	.030771658666765233647,
 | |
| 	.038318864302141264488,
 | |
| 	.045809536031242714670,
 | |
| 	.053244514518837604555,
 | |
| 	.060624621816486978786,
 | |
| 	.067950661908525944454,
 | |
| 	.075223421237524235039,
 | |
| 	.082443669210988446138,
 | |
| 	.089612158689760690322,
 | |
| 	.096729626458454731618,
 | |
| 	.103796793681567578460,
 | |
| 	.110814366340264314203,
 | |
| 	.117783035656430001836,
 | |
| 	.124703478501032805070,
 | |
| 	.131576357788617315236,
 | |
| 	.138402322859292326029,
 | |
| 	.145182009844575077295,
 | |
| 	.151916042025732167530,
 | |
| 	.158605030176659056451,
 | |
| 	.165249572895390883786,
 | |
| 	.171850256926518341060,
 | |
| 	.178407657472689606947,
 | |
| 	.184922338493834104156,
 | |
| 	.191394852999565046047,
 | |
| 	.197825743329758552135,
 | |
| 	.204215541428766300668,
 | |
| 	.210564769107350002741,
 | |
| 	.216873938300523150246,
 | |
| 	.223143551314024080056,
 | |
| 	.229374101064877322642,
 | |
| 	.235566071312860003672,
 | |
| 	.241719936886966024758,
 | |
| 	.247836163904594286577,
 | |
| 	.253915209980732470285,
 | |
| 	.259957524436686071567,
 | |
| 	.265963548496984003577,
 | |
| 	.271933715484010463114,
 | |
| 	.277868451003087102435,
 | |
| 	.283768173130738432519,
 | |
| 	.289633292582948342896,
 | |
| 	.295464212893421063199,
 | |
| 	.301261330578199704177,
 | |
| 	.307025035294827830512,
 | |
| 	.312755710004239517729,
 | |
| 	.318453731118097493890,
 | |
| 	.324119468654316733591,
 | |
| 	.329753286372579168528,
 | |
| 	.335355541920762334484,
 | |
| 	.340926586970454081892,
 | |
| 	.346466767346100823488,
 | |
| 	.351976423156884266063,
 | |
| 	.357455888922231679316,
 | |
| 	.362905493689140712376,
 | |
| 	.368325561158599157352,
 | |
| 	.373716409793814818840,
 | |
| 	.379078352934811846353,
 | |
| 	.384411698910298582632,
 | |
| 	.389716751140440464951,
 | |
| 	.394993808240542421117,
 | |
| 	.400243164127459749579,
 | |
| 	.405465108107819105498,
 | |
| 	.410659924985338875558,
 | |
| 	.415827895143593195825,
 | |
| 	.420969294644237379543,
 | |
| 	.426084395310681429691,
 | |
| 	.431173464818130014464,
 | |
| 	.436236766774527495726,
 | |
| 	.441274560805140936281,
 | |
| 	.446287102628048160113,
 | |
| 	.451274644139630254358,
 | |
| 	.456237433481874177232,
 | |
| 	.461175715122408291790,
 | |
| 	.466089729924533457960,
 | |
| 	.470979715219073113985,
 | |
| 	.475845904869856894947,
 | |
| 	.480688529345570714212,
 | |
| 	.485507815781602403149,
 | |
| 	.490303988045525329653,
 | |
| 	.495077266798034543171,
 | |
| 	.499827869556611403822,
 | |
| 	.504556010751912253908,
 | |
| 	.509261901790523552335,
 | |
| 	.513945751101346104405,
 | |
| 	.518607764208354637958,
 | |
| 	.523248143765158602036,
 | |
| 	.527867089620485785417,
 | |
| 	.532464798869114019908,
 | |
| 	.537041465897345915436,
 | |
| 	.541597282432121573947,
 | |
| 	.546132437597407260909,
 | |
| 	.550647117952394182793,
 | |
| 	.555141507540611200965,
 | |
| 	.559615787935399566777,
 | |
| 	.564070138285387656651,
 | |
| 	.568504735352689749561,
 | |
| 	.572919753562018740922,
 | |
| 	.577315365035246941260,
 | |
| 	.581691739635061821900,
 | |
| 	.586049045003164792433,
 | |
| 	.590387446602107957005,
 | |
| 	.594707107746216934174,
 | |
| 	.599008189645246602594,
 | |
| 	.603290851438941899687,
 | |
| 	.607555250224322662688,
 | |
| 	.611801541106615331955,
 | |
| 	.616029877215623855590,
 | |
| 	.620240409751204424537,
 | |
| 	.624433288012369303032,
 | |
| 	.628608659422752680256,
 | |
| 	.632766669570628437213,
 | |
| 	.636907462236194987781,
 | |
| 	.641031179420679109171,
 | |
| 	.645137961373620782978,
 | |
| 	.649227946625615004450,
 | |
| 	.653301272011958644725,
 | |
| 	.657358072709030238911,
 | |
| 	.661398482245203922502,
 | |
| 	.665422632544505177065,
 | |
| 	.669430653942981734871,
 | |
| 	.673422675212350441142,
 | |
| 	.677398823590920073911,
 | |
| 	.681359224807238206267,
 | |
| 	.685304003098281100392,
 | |
| 	.689233281238557538017,
 | |
| 	.693147180560117703862
 | |
| };
 | |
| 
 | |
| static const double logF_tail[N+1] = {
 | |
| 	0.,
 | |
| 	-.00000000000000543229938420049,
 | |
| 	 .00000000000000172745674997061,
 | |
| 	-.00000000000001323017818229233,
 | |
| 	-.00000000000001154527628289872,
 | |
| 	-.00000000000000466529469958300,
 | |
| 	 .00000000000005148849572685810,
 | |
| 	-.00000000000002532168943117445,
 | |
| 	-.00000000000005213620639136504,
 | |
| 	-.00000000000001819506003016881,
 | |
| 	 .00000000000006329065958724544,
 | |
| 	 .00000000000008614512936087814,
 | |
| 	-.00000000000007355770219435028,
 | |
| 	 .00000000000009638067658552277,
 | |
| 	 .00000000000007598636597194141,
 | |
| 	 .00000000000002579999128306990,
 | |
| 	-.00000000000004654729747598444,
 | |
| 	-.00000000000007556920687451336,
 | |
| 	 .00000000000010195735223708472,
 | |
| 	-.00000000000017319034406422306,
 | |
| 	-.00000000000007718001336828098,
 | |
| 	 .00000000000010980754099855238,
 | |
| 	-.00000000000002047235780046195,
 | |
| 	-.00000000000008372091099235912,
 | |
| 	 .00000000000014088127937111135,
 | |
| 	 .00000000000012869017157588257,
 | |
| 	 .00000000000017788850778198106,
 | |
| 	 .00000000000006440856150696891,
 | |
| 	 .00000000000016132822667240822,
 | |
| 	-.00000000000007540916511956188,
 | |
| 	-.00000000000000036507188831790,
 | |
| 	 .00000000000009120937249914984,
 | |
| 	 .00000000000018567570959796010,
 | |
| 	-.00000000000003149265065191483,
 | |
| 	-.00000000000009309459495196889,
 | |
| 	 .00000000000017914338601329117,
 | |
| 	-.00000000000001302979717330866,
 | |
| 	 .00000000000023097385217586939,
 | |
| 	 .00000000000023999540484211737,
 | |
| 	 .00000000000015393776174455408,
 | |
| 	-.00000000000036870428315837678,
 | |
| 	 .00000000000036920375082080089,
 | |
| 	-.00000000000009383417223663699,
 | |
| 	 .00000000000009433398189512690,
 | |
| 	 .00000000000041481318704258568,
 | |
| 	-.00000000000003792316480209314,
 | |
| 	 .00000000000008403156304792424,
 | |
| 	-.00000000000034262934348285429,
 | |
| 	 .00000000000043712191957429145,
 | |
| 	-.00000000000010475750058776541,
 | |
| 	-.00000000000011118671389559323,
 | |
| 	 .00000000000037549577257259853,
 | |
| 	 .00000000000013912841212197565,
 | |
| 	 .00000000000010775743037572640,
 | |
| 	 .00000000000029391859187648000,
 | |
| 	-.00000000000042790509060060774,
 | |
| 	 .00000000000022774076114039555,
 | |
| 	 .00000000000010849569622967912,
 | |
| 	-.00000000000023073801945705758,
 | |
| 	 .00000000000015761203773969435,
 | |
| 	 .00000000000003345710269544082,
 | |
| 	-.00000000000041525158063436123,
 | |
| 	 .00000000000032655698896907146,
 | |
| 	-.00000000000044704265010452446,
 | |
| 	 .00000000000034527647952039772,
 | |
| 	-.00000000000007048962392109746,
 | |
| 	 .00000000000011776978751369214,
 | |
| 	-.00000000000010774341461609578,
 | |
| 	 .00000000000021863343293215910,
 | |
| 	 .00000000000024132639491333131,
 | |
| 	 .00000000000039057462209830700,
 | |
| 	-.00000000000026570679203560751,
 | |
| 	 .00000000000037135141919592021,
 | |
| 	-.00000000000017166921336082431,
 | |
| 	-.00000000000028658285157914353,
 | |
| 	-.00000000000023812542263446809,
 | |
| 	 .00000000000006576659768580062,
 | |
| 	-.00000000000028210143846181267,
 | |
| 	 .00000000000010701931762114254,
 | |
| 	 .00000000000018119346366441110,
 | |
| 	 .00000000000009840465278232627,
 | |
| 	-.00000000000033149150282752542,
 | |
| 	-.00000000000018302857356041668,
 | |
| 	-.00000000000016207400156744949,
 | |
| 	 .00000000000048303314949553201,
 | |
| 	-.00000000000071560553172382115,
 | |
| 	 .00000000000088821239518571855,
 | |
| 	-.00000000000030900580513238244,
 | |
| 	-.00000000000061076551972851496,
 | |
| 	 .00000000000035659969663347830,
 | |
| 	 .00000000000035782396591276383,
 | |
| 	-.00000000000046226087001544578,
 | |
| 	 .00000000000062279762917225156,
 | |
| 	 .00000000000072838947272065741,
 | |
| 	 .00000000000026809646615211673,
 | |
| 	-.00000000000010960825046059278,
 | |
| 	 .00000000000002311949383800537,
 | |
| 	-.00000000000058469058005299247,
 | |
| 	-.00000000000002103748251144494,
 | |
| 	-.00000000000023323182945587408,
 | |
| 	-.00000000000042333694288141916,
 | |
| 	-.00000000000043933937969737844,
 | |
| 	 .00000000000041341647073835565,
 | |
| 	 .00000000000006841763641591466,
 | |
| 	 .00000000000047585534004430641,
 | |
| 	 .00000000000083679678674757695,
 | |
| 	-.00000000000085763734646658640,
 | |
| 	 .00000000000021913281229340092,
 | |
| 	-.00000000000062242842536431148,
 | |
| 	-.00000000000010983594325438430,
 | |
| 	 .00000000000065310431377633651,
 | |
| 	-.00000000000047580199021710769,
 | |
| 	-.00000000000037854251265457040,
 | |
| 	 .00000000000040939233218678664,
 | |
| 	 .00000000000087424383914858291,
 | |
| 	 .00000000000025218188456842882,
 | |
| 	-.00000000000003608131360422557,
 | |
| 	-.00000000000050518555924280902,
 | |
| 	 .00000000000078699403323355317,
 | |
| 	-.00000000000067020876961949060,
 | |
| 	 .00000000000016108575753932458,
 | |
| 	 .00000000000058527188436251509,
 | |
| 	-.00000000000035246757297904791,
 | |
| 	-.00000000000018372084495629058,
 | |
| 	 .00000000000088606689813494916,
 | |
| 	 .00000000000066486268071468700,
 | |
| 	 .00000000000063831615170646519,
 | |
| 	 .00000000000025144230728376072,
 | |
| 	-.00000000000017239444525614834
 | |
| };
 | |
| 
 | |
| double
 | |
| log(double x)
 | |
| {
 | |
| 	int m, j;
 | |
| 	double F, f, g, q, u, u2, v, zero = 0.0, one = 1.0;
 | |
| 	volatile double u1;
 | |
| 
 | |
| 	/* Catch special cases */
 | |
| 	if (x <= 0) {
 | |
| 		if (_IEEE && x == zero)	/* log(0) = -Inf */
 | |
| 			return (-one/zero);
 | |
| 		else if (_IEEE)		/* log(neg) = NaN */
 | |
| 			return (zero/zero);
 | |
| 		else if (x == zero)	/* NOT REACHED IF _IEEE */
 | |
| 			return (infnan(-ERANGE));
 | |
| 		else
 | |
| 			return (infnan(EDOM));
 | |
| 	} else if (!finite(x)) {
 | |
| 		if (_IEEE)		/* x = NaN, Inf */
 | |
| 			return (x+x);
 | |
| 		else
 | |
| 			return (infnan(ERANGE));
 | |
| 	}
 | |
| 
 | |
| 	/* Argument reduction: 1 <= g < 2; x/2^m = g;	*/
 | |
| 	/* y = F*(1 + f/F) for |f| <= 2^-8		*/
 | |
| 
 | |
| 	m = logb(x);
 | |
| 	g = ldexp(x, -m);
 | |
| 	if (_IEEE && m == -1022) {
 | |
| 		j = logb(g), m += j;
 | |
| 		g = ldexp(g, -j);
 | |
| 	}
 | |
| 	j = N*(g-1) + .5;
 | |
| 	F = (1.0/N) * j + 1;	/* F*128 is an integer in [128, 512] */
 | |
| 	f = g - F;
 | |
| 
 | |
| 	/* Approximate expansion for log(1+f/F) ~= u + q */
 | |
| 	g = 1/(2*F+f);
 | |
| 	u = 2*f*g;
 | |
| 	v = u*u;
 | |
| 	q = u*v*(A1 + v*(A2 + v*(A3 + v*A4)));
 | |
| 
 | |
|     /* case 1: u1 = u rounded to 2^-43 absolute.  Since u < 2^-8,
 | |
|      * 	       u1 has at most 35 bits, and F*u1 is exact, as F has < 8 bits.
 | |
|      *         It also adds exactly to |m*log2_hi + log_F_head[j] | < 750
 | |
|     */
 | |
| 	if (m | j)
 | |
| 		u1 = u + 513, u1 -= 513;
 | |
| 
 | |
|     /* case 2:	|1-x| < 1/256. The m- and j- dependent terms are zero;
 | |
|      * 		u1 = u to 24 bits.
 | |
|     */
 | |
| 	else
 | |
| 		u1 = u, TRUNC(u1);
 | |
| 	u2 = (2.0*(f - F*u1) - u1*f) * g;
 | |
| 			/* u1 + u2 = 2f/(2F+f) to extra precision.	*/
 | |
| 
 | |
| 	/* log(x) = log(2^m*F*(1+f/F)) =				*/
 | |
| 	/* (m*log2_hi+logF_head[j]+u1) + (m*log2_lo+logF_tail[j]+q);	*/
 | |
| 	/* (exact) + (tiny)						*/
 | |
| 
 | |
| 	u1 += m*logF_head[N] + logF_head[j];		/* exact */
 | |
| 	u2 = (u2 + logF_tail[j]) + q;			/* tiny */
 | |
| 	u2 += logF_tail[N]*m;
 | |
| 	return (u1 + u2);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Extra precision variant, returning struct {double a, b;};
 | |
|  * log(x) = a+b to 63 bits, with a is rounded to 26 bits.
 | |
|  */
 | |
| struct Double
 | |
| __log__D(double x)
 | |
| {
 | |
| 	int m, j;
 | |
| 	double F, f, g, q, u, v, u2;
 | |
| 	volatile double u1;
 | |
| 	struct Double r;
 | |
| 
 | |
| 	/* Argument reduction: 1 <= g < 2; x/2^m = g;	*/
 | |
| 	/* y = F*(1 + f/F) for |f| <= 2^-8		*/
 | |
| 
 | |
| 	m = logb(x);
 | |
| 	g = ldexp(x, -m);
 | |
| 	if (_IEEE && m == -1022) {
 | |
| 		j = logb(g), m += j;
 | |
| 		g = ldexp(g, -j);
 | |
| 	}
 | |
| 	j = N*(g-1) + .5;
 | |
| 	F = (1.0/N) * j + 1;
 | |
| 	f = g - F;
 | |
| 
 | |
| 	g = 1/(2*F+f);
 | |
| 	u = 2*f*g;
 | |
| 	v = u*u;
 | |
| 	q = u*v*(A1 + v*(A2 + v*(A3 + v*A4)));
 | |
| 	if (m | j)
 | |
| 		u1 = u + 513, u1 -= 513;
 | |
| 	else
 | |
| 		u1 = u, TRUNC(u1);
 | |
| 	u2 = (2.0*(f - F*u1) - u1*f) * g;
 | |
| 
 | |
| 	u1 += m*logF_head[N] + logF_head[j];
 | |
| 
 | |
| 	u2 +=  logF_tail[j]; u2 += q;
 | |
| 	u2 += logF_tail[N]*m;
 | |
| 	r.a = u1 + u2;			/* Only difference is here */
 | |
| 	TRUNC(r.a);
 | |
| 	r.b = (u1 - r.a) + u2;
 | |
| 	return (r);
 | |
| }
 | |
| 
 | |
| float
 | |
| logf(float x)
 | |
| {
 | |
| 	return(log((double)x));
 | |
| }
 |