phunix/minix/kernel/arch/earm/arch_clock.c
Lionel Sambuc f12160c14d Kernel: synchronize i386 and ARM clock code
Change-Id: Ie5c4653299e47aaefc9d35a8af491ad0b2eab1ab
2016-01-16 14:04:18 +01:00

248 lines
5.5 KiB
C

/* ARM-specific clock functions. */
#include "kernel/kernel.h"
#include "kernel/clock.h"
#include "kernel/interrupt.h"
#include <minix/u64.h>
#include <minix/board.h>
#include "kernel/glo.h"
#include "kernel/profile.h"
#include <sys/sched.h> /* for CP_*, CPUSTATES */
#if CPUSTATES != MINIX_CPUSTATES
/* If this breaks, the code in this file may have to be adapted accordingly. */
#error "MINIX_CPUSTATES value is out of sync with NetBSD's!"
#endif
#include "kernel/spinlock.h"
#ifdef CONFIG_SMP
#include "kernel/smp.h"
#error CONFIG_SMP is unsupported on ARM
#endif
#include "bsp_timer.h"
#include "bsp_intr.h"
static unsigned tsc_per_ms[CONFIG_MAX_CPUS];
static unsigned tsc_per_tick[CONFIG_MAX_CPUS];
static uint64_t tsc_per_state[CONFIG_MAX_CPUS][CPUSTATES];
int init_local_timer(unsigned freq)
{
bsp_timer_init(freq);
if (BOARD_IS_BBXM(machine.board_id)) {
tsc_per_ms[0] = 16250;
} else if (BOARD_IS_BB(machine.board_id)) {
tsc_per_ms[0] = 15000;
} else {
panic("Can not do the clock setup. machine (0x%08x) is unknown\n",machine.board_id);
};
tsc_per_tick[0] = tsc_per_ms[0] * 1000 / system_hz;
return 0;
}
void stop_local_timer(void)
{
bsp_timer_stop();
}
void arch_timer_int_handler(void)
{
bsp_timer_int_handler();
}
void cycles_accounting_init(void)
{
#ifdef CONFIG_SMP
unsigned cpu = cpuid;
#endif
read_tsc_64(get_cpu_var_ptr(cpu, tsc_ctr_switch));
get_cpu_var(cpu, cpu_last_tsc) = 0;
get_cpu_var(cpu, cpu_last_idle) = 0;
}
void context_stop(struct proc * p)
{
u64_t tsc, tsc_delta;
u64_t * __tsc_ctr_switch = get_cpulocal_var_ptr(tsc_ctr_switch);
unsigned int cpu, tpt, counter;
#ifdef CONFIG_SMP
#error CONFIG_SMP is unsupported on ARM
#else
read_tsc_64(&tsc);
p->p_cycles = p->p_cycles + tsc - *__tsc_ctr_switch;
cpu = 0;
#endif
tsc_delta = tsc - *__tsc_ctr_switch;
if (kbill_ipc) {
kbill_ipc->p_kipc_cycles += tsc_delta;
kbill_ipc = NULL;
}
if (kbill_kcall) {
kbill_kcall->p_kcall_cycles += tsc_delta;
kbill_kcall = NULL;
}
/*
* Perform CPU average accounting here, rather than in the generic
* clock handler. Doing it here offers two advantages: 1) we can
* account for time spent in the kernel, and 2) we properly account for
* CPU time spent by a process that has a lot of short-lasting activity
* such that it spends serious CPU time but never actually runs when a
* clock tick triggers. Note that clock speed inaccuracy requires that
* the code below is a loop, but the loop will in by far most cases not
* be executed more than once, and often be skipped at all.
*/
tpt = tsc_per_tick[cpu];
p->p_tick_cycles += tsc_delta;
while (tpt > 0 && p->p_tick_cycles >= tpt) {
p->p_tick_cycles -= tpt;
/*
* The process has spent roughly a whole clock tick worth of
* CPU cycles. Update its per-process CPU utilization counter.
* Some of the cycles may actually have been spent in a
* previous second, but that is not a problem.
*/
cpuavg_increment(&p->p_cpuavg, kclockinfo.uptime, system_hz);
}
/*
* deduct the just consumed cpu cycles from the cpu time left for this
* process during its current quantum. Skip IDLE and other pseudo kernel
* tasks, except for global accounting purposes.
*/
if (p->p_endpoint >= 0) {
/* On MINIX3, the "system" counter covers system processes. */
if (p->p_priv != priv_addr(USER_PRIV_ID))
counter = CP_SYS;
else if (p->p_misc_flags & MF_NICED)
counter = CP_NICE;
else
counter = CP_USER;
#if DEBUG_RACE
p->p_cpu_time_left = 0;
#else
if (tsc_delta < p->p_cpu_time_left) {
p->p_cpu_time_left -= tsc_delta;
} else {
p->p_cpu_time_left = 0;
}
#endif
} else {
/* On MINIX3, the "interrupts" counter covers the kernel. */
if (p->p_endpoint == IDLE)
counter = CP_IDLE;
else
counter = CP_INTR;
}
tsc_per_state[cpu][counter] += tsc_delta;
*__tsc_ctr_switch = tsc;
}
void context_stop_idle(void)
{
int is_idle;
#ifdef CONFIG_SMP
unsigned cpu = cpuid;
#endif
is_idle = get_cpu_var(cpu, cpu_is_idle);
get_cpu_var(cpu, cpu_is_idle) = 0;
context_stop(get_cpulocal_var_ptr(idle_proc));
if (is_idle)
restart_local_timer();
#if SPROFILE
if (sprofiling)
get_cpulocal_var(idle_interrupted) = 1;
#endif
}
void restart_local_timer(void)
{
}
int register_local_timer_handler(const irq_handler_t handler)
{
return bsp_register_timer_handler(handler);
}
u64_t ms_2_cpu_time(unsigned ms)
{
return (u64_t)tsc_per_ms[cpuid] * ms;
}
unsigned cpu_time_2_ms(u64_t cpu_time)
{
return (unsigned long)(cpu_time / tsc_per_ms[cpuid]);
}
short cpu_load(void)
{
u64_t current_tsc, *current_idle;
u64_t tsc_delta, idle_delta, busy;
struct proc *idle;
short load;
#ifdef CONFIG_SMP
unsigned cpu = cpuid;
#endif
u64_t *last_tsc, *last_idle;
last_tsc = get_cpu_var_ptr(cpu, cpu_last_tsc);
last_idle = get_cpu_var_ptr(cpu, cpu_last_idle);
idle = get_cpu_var_ptr(cpu, idle_proc);;
read_tsc_64(&current_tsc);
current_idle = &idle->p_cycles; /* ptr to idle proc */
/* calculate load since last cpu_load invocation */
if (*last_tsc) {
tsc_delta = current_tsc - *last_tsc;
idle_delta = *current_idle - *last_idle;
busy = tsc_delta - idle_delta;
busy = busy * 100;
load = ex64lo(busy / tsc_delta);
if (load > 100)
load = 100;
} else
load = 0;
*last_tsc = current_tsc;
*last_idle = *current_idle;
return load;
}
/*
* Return the number of clock ticks spent in each of a predefined number of
* CPU states.
*/
void
get_cpu_ticks(unsigned int cpu, uint64_t ticks[CPUSTATES])
{
int i;
/* TODO: make this inter-CPU safe! */
for (i = 0; i < CPUSTATES; i++)
ticks[i] = tsc_per_state[cpu][i] / tsc_per_tick[cpu];
}