 b8b8f537bd
			
		
	
	
		b8b8f537bd
		
	
	
	
	
		
			
			Kernel: o Remove s_ipc_sendrec, instead using s_ipc_to for all send primitives o Centralize s_ipc_to bit manipulation, - disallowing assignment of bits pointing to unused priv structs; - preventing send-to-self by not setting bit for own priv struct; - preserving send mask matrix symmetry in all cases o Add IPC send mask checks to SENDA, which were missing entirely somehow o Slightly improve IPC stats accounting for SENDA o Remove SYSTEM from user processes' send mask o Half-fix the dependency between boot image order and process numbers, - correcting the table order of the boot processes; - documenting the order requirement needed for proper send masks; - warning at boot time if the order is violated RS: o Add support in /etc/drivers.conf for servers that talk to user processes, - disallowing IPC to user processes if no "ipc" field is present - adding a special "USER" label to explicitly allow IPC to user processes o Always apply IPC masks when specified; remove -i flag from service(8) o Use kernel send mask symmetry to delay adding IPC permissions for labels that do not exist yet, adding them to that label's process upon creation o Add VM to ipc permissions list for rtl8139 and fxp in drivers.conf Left to future fixes: o Removal of the table order vs process numbers dependency altogether, possibly using per-process send list structures as used for SYSTEM calls o Proper assignment of send masks to boot processes; some of the assigned (~0) masks are much wider than necessary o Proper assignment of IPC send masks for many more servers in drivers.conf o Removal of the debugging warning about the now legitimate case where RS's add_forward_ipc cannot find the IPC destination's label yet
		
			
				
	
	
		
			1430 lines
		
	
	
		
			45 KiB
		
	
	
	
		
			C
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			1430 lines
		
	
	
		
			45 KiB
		
	
	
	
		
			C
		
	
	
		
			Executable File
		
	
	
	
	
| /* This file contains essentially all of the process and message handling.
 | |
|  * Together with "mpx.s" it forms the lowest layer of the MINIX kernel.
 | |
|  * There is one entry point from the outside:
 | |
|  *
 | |
|  *   sys_call: 	      a system call, i.e., the kernel is trapped with an INT
 | |
|  *
 | |
|  * As well as several entry points used from the interrupt and task level:
 | |
|  *
 | |
|  *   lock_notify:     notify a process of a system event
 | |
|  *   lock_send:	      send a message to a process
 | |
|  *   lock_enqueue:    put a process on one of the scheduling queues 
 | |
|  *   lock_dequeue:    remove a process from the scheduling queues
 | |
|  *
 | |
|  * Changes:
 | |
|  *   Aug 19, 2005     rewrote scheduling code  (Jorrit N. Herder)
 | |
|  *   Jul 25, 2005     rewrote system call handling  (Jorrit N. Herder)
 | |
|  *   May 26, 2005     rewrote message passing functions  (Jorrit N. Herder)
 | |
|  *   May 24, 2005     new notification system call  (Jorrit N. Herder)
 | |
|  *   Oct 28, 2004     nonblocking send and receive calls  (Jorrit N. Herder)
 | |
|  *
 | |
|  * The code here is critical to make everything work and is important for the
 | |
|  * overall performance of the system. A large fraction of the code deals with
 | |
|  * list manipulation. To make this both easy to understand and fast to execute 
 | |
|  * pointer pointers are used throughout the code. Pointer pointers prevent
 | |
|  * exceptions for the head or tail of a linked list. 
 | |
|  *
 | |
|  *  node_t *queue, *new_node;	// assume these as global variables
 | |
|  *  node_t **xpp = &queue; 	// get pointer pointer to head of queue 
 | |
|  *  while (*xpp != NULL) 	// find last pointer of the linked list
 | |
|  *      xpp = &(*xpp)->next;	// get pointer to next pointer 
 | |
|  *  *xpp = new_node;		// now replace the end (the NULL pointer) 
 | |
|  *  new_node->next = NULL;	// and mark the new end of the list
 | |
|  * 
 | |
|  * For example, when adding a new node to the end of the list, one normally 
 | |
|  * makes an exception for an empty list and looks up the end of the list for 
 | |
|  * nonempty lists. As shown above, this is not required with pointer pointers.
 | |
|  */
 | |
| 
 | |
| #include <minix/com.h>
 | |
| #include <minix/callnr.h>
 | |
| #include <minix/endpoint.h>
 | |
| #include <stddef.h>
 | |
| #include <signal.h>
 | |
| #include <minix/portio.h>
 | |
| #include <minix/u64.h>
 | |
| 
 | |
| #include "debug.h"
 | |
| #include "kernel.h"
 | |
| #include "proc.h"
 | |
| #include "vm.h"
 | |
| 
 | |
| /* Scheduling and message passing functions. The functions are available to 
 | |
|  * other parts of the kernel through lock_...(). The lock temporarily disables 
 | |
|  * interrupts to prevent race conditions. 
 | |
|  */
 | |
| FORWARD _PROTOTYPE( int mini_send, (struct proc *caller_ptr, int dst_e,
 | |
| 		message *m_ptr, int flags));
 | |
| FORWARD _PROTOTYPE( int mini_receive, (struct proc *caller_ptr, int src,
 | |
| 		message *m_ptr, int flags));
 | |
| FORWARD _PROTOTYPE( int mini_notify, (struct proc *caller_ptr, int dst));
 | |
| FORWARD _PROTOTYPE( int mini_senda, (struct proc *caller_ptr,
 | |
| 	asynmsg_t *table, size_t size));
 | |
| FORWARD _PROTOTYPE( int deadlock, (int function,
 | |
| 		register struct proc *caller, int src_dst));
 | |
| FORWARD _PROTOTYPE( int try_async, (struct proc *caller_ptr));
 | |
| FORWARD _PROTOTYPE( int try_one, (struct proc *src_ptr, struct proc *dst_ptr));
 | |
| FORWARD _PROTOTYPE( void sched, (struct proc *rp, int *queue, int *front));
 | |
| FORWARD _PROTOTYPE( void pick_proc, (void));
 | |
| 
 | |
| #define BuildMess(m_ptr, src, dst_ptr) \
 | |
| 	(m_ptr)->m_source = proc_addr(src)->p_endpoint;		\
 | |
| 	(m_ptr)->m_type = NOTIFY_FROM(src);				\
 | |
| 	(m_ptr)->NOTIFY_TIMESTAMP = get_uptime();			\
 | |
| 	switch (src) {							\
 | |
| 	case HARDWARE:							\
 | |
| 		(m_ptr)->NOTIFY_ARG = priv(dst_ptr)->s_int_pending;	\
 | |
| 		priv(dst_ptr)->s_int_pending = 0;			\
 | |
| 		break;							\
 | |
| 	case SYSTEM:							\
 | |
| 		(m_ptr)->NOTIFY_ARG = priv(dst_ptr)->s_sig_pending;	\
 | |
| 		priv(dst_ptr)->s_sig_pending = 0;			\
 | |
| 		break;							\
 | |
| 	}
 | |
| 
 | |
| #define CopyMess(s,sp,sm,dp,dm) do { 			\
 | |
| 	vir_bytes dstlin;				\
 | |
| 	endpoint_t e = proc_addr(s)->p_endpoint;	\
 | |
| 	struct vir_addr src, dst;			\
 | |
| 	int r;						\
 | |
| 	if((dstlin = umap_local((dp), D, (vir_bytes) dm, sizeof(message))) == 0){\
 | |
| 		minix_panic("CopyMess: umap_local failed", __LINE__);	\
 | |
| 	}						\
 | |
| 			\
 | |
| 	if(vm_running &&	\
 | |
| 	 (r=vm_checkrange((dp), (dp), dstlin, sizeof(message), 1, 0)) != OK) { \
 | |
| 		if(r != VMSUSPEND) 			\
 | |
| 		  minix_panic("CopyMess: vm_checkrange error", __LINE__); \
 | |
| 		(dp)->p_vmrequest.saved.msgcopy.dst = (dp);	\
 | |
| 		(dp)->p_vmrequest.saved.msgcopy.dst_v = (vir_bytes) dm;	\
 | |
|   		if(data_copy((sp)->p_endpoint,	\
 | |
| 			(vir_bytes) (sm), SYSTEM,	\
 | |
| 			(vir_bytes) &(dp)->p_vmrequest.saved.msgcopy.msgbuf, \
 | |
| 			sizeof(message)) != OK) {		\
 | |
| 				minix_panic("CopyMess: data_copy failed", __LINE__);\
 | |
| 			}				\
 | |
| 			(dp)->p_vmrequest.saved.msgcopy.msgbuf.m_source = e; \
 | |
| 			(dp)->p_vmrequest.type = VMSTYPE_MSGCOPY; \
 | |
| 	} else 	{					\
 | |
| 		src.proc_nr_e = (sp)->p_endpoint;		\
 | |
| 		dst.proc_nr_e = (dp)->p_endpoint;		\
 | |
| 		src.segment = dst.segment = D;			\
 | |
| 		src.offset = (vir_bytes) (sm);			\
 | |
| 		dst.offset = (vir_bytes) (dm);			\
 | |
| 		if(virtual_copy(&src, &dst, sizeof(message)) != OK) {	\
 | |
| 			kprintf("copymess: copy %d:%lx to %d:%lx failed\n",\
 | |
| 				(sp)->p_endpoint, (sm), (dp)->p_endpoint, dm);\
 | |
| 			minix_panic("CopyMess: virtual_copy (1) failed", __LINE__); \
 | |
| 		}		\
 | |
| 		src.proc_nr_e = SYSTEM;				\
 | |
| 		src.offset = (vir_bytes) &e;			\
 | |
| 		if(virtual_copy(&src, &dst, sizeof(e)) != OK) {		\
 | |
| 			kprintf("copymess: copy %d:%lx to %d:%lx\n",	\
 | |
| 				(sp)->p_endpoint, (sm), (dp)->p_endpoint, dm);\
 | |
| 			minix_panic("CopyMess: virtual_copy (2) failed", __LINE__); \
 | |
| 		}					\
 | |
| 	}	\
 | |
| } while(0)
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				sys_call				     * 
 | |
|  *===========================================================================*/
 | |
| PUBLIC int sys_call(call_nr, src_dst_e, m_ptr, bit_map)
 | |
| int call_nr;			/* system call number and flags */
 | |
| int src_dst_e;			/* src to receive from or dst to send to */
 | |
| message *m_ptr;			/* pointer to message in the caller's space */
 | |
| long bit_map;			/* notification event set or flags */
 | |
| {
 | |
| /* System calls are done by trapping to the kernel with an INT instruction.
 | |
|  * The trap is caught and sys_call() is called to send or receive a message
 | |
|  * (or both). The caller is always given by 'proc_ptr'.
 | |
|  */
 | |
|   register struct proc *caller_ptr = proc_ptr;	/* get pointer to caller */
 | |
|   int mask_entry;				/* bit to check in send mask */
 | |
|   int group_size;				/* used for deadlock check */
 | |
|   int result;					/* the system call's result */
 | |
|   int src_dst_p;				/* Process slot number */
 | |
|   size_t msg_size;
 | |
| 
 | |
|   if (caller_ptr->p_endpoint == ipc_stats_target)
 | |
| 	ipc_stats.total= add64u(ipc_stats.total, 1);
 | |
| 
 | |
| #if 0
 | |
|   if(src_dst_e != 4 && src_dst_e != 5 &&
 | |
| 	caller_ptr->p_endpoint != 4 && caller_ptr->p_endpoint != 5) {
 | |
| 	if(call_nr == SEND)
 | |
| 		kprintf("(%d SEND to %d) ", caller_ptr->p_endpoint, src_dst_e);
 | |
| 	else if(call_nr == RECEIVE)
 | |
| 		kprintf("(%d RECEIVE from %d) ", caller_ptr->p_endpoint, src_dst_e);
 | |
| 	else if(call_nr == SENDREC)
 | |
| 		kprintf("(%d SENDREC to %d) ", caller_ptr->p_endpoint, src_dst_e);
 | |
| 	else
 | |
| 		kprintf("(%d %d to/from %d) ", caller_ptr->p_endpoint, call_nr, src_dst_e);
 | |
|   }
 | |
| #endif
 | |
| 
 | |
| #if 1
 | |
|   if (RTS_ISSET(caller_ptr, SLOT_FREE))
 | |
|   {
 | |
| 	kprintf("called by the dead?!?\n");
 | |
| 	if (caller_ptr->p_endpoint == ipc_stats_target)
 | |
| 		ipc_stats.deadproc++;
 | |
| 	return EINVAL;
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   /* Check destination. SENDA is special because its argument is a table and
 | |
|    * not a single destination. RECEIVE is the only call that accepts ANY (in
 | |
|    * addition to a real endpoint). The other calls (SEND, SENDREC,
 | |
|    * and NOTIFY) require an endpoint to corresponds to a process. In addition,
 | |
|    * it is necessary to check whether a process is allowed to send to a given
 | |
|    * destination.
 | |
|    */
 | |
|   if (call_nr == SENDA)
 | |
|   {
 | |
| 	/* No destination argument */
 | |
|   }
 | |
|   else if (src_dst_e == ANY)
 | |
|   {
 | |
| 	if (call_nr != RECEIVE)
 | |
| 	{
 | |
| #if DEBUG_ENABLE_IPC_WARNINGS
 | |
| 		kprintf("sys_call: trap %d by %d with bad endpoint %d\n", 
 | |
| 			call_nr, proc_nr(caller_ptr), src_dst_e);
 | |
| #endif
 | |
|   		if (caller_ptr->p_endpoint == ipc_stats_target)
 | |
| 			ipc_stats.bad_endpoint++;
 | |
| 		return EINVAL;
 | |
| 	}
 | |
| 	src_dst_p = src_dst_e;
 | |
|   }
 | |
|   else
 | |
|   {
 | |
| 	/* Require a valid source and/or destination process. */
 | |
| 	if(!isokendpt(src_dst_e, &src_dst_p)) {
 | |
| #if DEBUG_ENABLE_IPC_WARNINGS
 | |
| 		kprintf("sys_call: trap %d by %d with bad endpoint %d\n", 
 | |
| 			call_nr, proc_nr(caller_ptr), src_dst_e);
 | |
| #endif
 | |
|   		if (caller_ptr->p_endpoint == ipc_stats_target)
 | |
| 			ipc_stats.bad_endpoint++;
 | |
| 		return EDEADSRCDST;
 | |
| 	}
 | |
| 
 | |
| 	/* If the call is to send to a process, i.e., for SEND, SENDNB,
 | |
| 	 * SENDREC or NOTIFY, verify that the caller is allowed to send to
 | |
| 	 * the given destination. 
 | |
| 	 */
 | |
| 	if (call_nr != RECEIVE)
 | |
| 	{
 | |
| 		if (!may_send_to(caller_ptr, src_dst_p)) {
 | |
| #if DEBUG_ENABLE_IPC_WARNINGS
 | |
| 			kprintf(
 | |
| 			"sys_call: ipc mask denied trap %d from %d to %d\n",
 | |
| 				call_nr, proc_nr(caller_ptr), src_dst_p);
 | |
| #endif
 | |
| 			if (caller_ptr->p_endpoint == ipc_stats_target)
 | |
| 				ipc_stats.dst_not_allowed++;
 | |
| 			return(ECALLDENIED);	/* call denied by ipc mask */
 | |
| 		}
 | |
| 	}
 | |
|   }
 | |
| 
 | |
|   /* Only allow non-negative call_nr values less than 32 */
 | |
|   if (call_nr < 0 || call_nr >= 32)
 | |
|   {
 | |
| #if DEBUG_ENABLE_IPC_WARNINGS
 | |
|       kprintf("sys_call: trap %d not allowed, caller %d, src_dst %d\n", 
 | |
|           call_nr, proc_nr(caller_ptr), src_dst_p);
 | |
| #endif
 | |
| 	if (caller_ptr->p_endpoint == ipc_stats_target)
 | |
| 		ipc_stats.bad_call++;
 | |
| 	return(ETRAPDENIED);		/* trap denied by mask or kernel */
 | |
|   }
 | |
| 
 | |
|   /* Check if the process has privileges for the requested call. Calls to the 
 | |
|    * kernel may only be SENDREC, because tasks always reply and may not block 
 | |
|    * if the caller doesn't do receive(). 
 | |
|    */
 | |
|   if (!(priv(caller_ptr)->s_trap_mask & (1 << call_nr))) {
 | |
| #if DEBUG_ENABLE_IPC_WARNINGS
 | |
|       kprintf("sys_call: trap %d not allowed, caller %d, src_dst %d\n", 
 | |
|           call_nr, proc_nr(caller_ptr), src_dst_p);
 | |
| #endif
 | |
| 	if (caller_ptr->p_endpoint == ipc_stats_target)
 | |
| 		ipc_stats.call_not_allowed++;
 | |
| 	return(ETRAPDENIED);		/* trap denied by mask or kernel */
 | |
|   }
 | |
| 
 | |
|   if ((iskerneln(src_dst_p) && call_nr != SENDREC && call_nr != RECEIVE)) {
 | |
| #if DEBUG_ENABLE_IPC_WARNINGS
 | |
|       kprintf("sys_call: trap %d not allowed, caller %d, src_dst %d\n", 
 | |
|           call_nr, proc_nr(caller_ptr), src_dst_e);
 | |
| #endif
 | |
| 	if (caller_ptr->p_endpoint == ipc_stats_target)
 | |
| 		ipc_stats.call_not_allowed++;
 | |
| 	return(ETRAPDENIED);		/* trap denied by mask or kernel */
 | |
|   }
 | |
| 
 | |
|   /* Get and check the size of the argument in bytes.
 | |
|    * Normally this is just the size of a regular message, but in the
 | |
|    * case of SENDA the argument is a table.
 | |
|    */
 | |
|   if(call_nr == SENDA) {
 | |
| 	msg_size = (size_t) src_dst_e;
 | |
| 
 | |
| 	/* Limit size to something reasonable. An arbitrary choice is 16
 | |
| 	 * times the number of process table entries.
 | |
| 	 */
 | |
| 	if (msg_size > 16*(NR_TASKS + NR_PROCS))
 | |
| 		return EDOM;
 | |
| 	msg_size *= sizeof(asynmsg_t);	/* convert to bytes */
 | |
|   } else {
 | |
| 	msg_size = sizeof(*m_ptr);
 | |
|   }
 | |
| 
 | |
|   /* If the call involves a message buffer, i.e., for SEND, SENDREC, 
 | |
|    * or RECEIVE, check the message pointer. This check allows a message to be 
 | |
|    * anywhere in data or stack or gap. It will have to be made more elaborate 
 | |
|    * for machines which don't have the gap mapped. 
 | |
|    *
 | |
|    * We use msg_size decided above.
 | |
|    */
 | |
|   if (call_nr == SEND || call_nr == SENDREC ||
 | |
| 	call_nr == RECEIVE || call_nr == SENDA || call_nr == SENDNB) {
 | |
| 	int r;
 | |
| 	phys_bytes lin;
 | |
| 
 | |
| 	/* Map to linear address. */
 | |
| 	if(msg_size > 0 && 
 | |
| 		(lin = umap_local(caller_ptr, D, (vir_bytes) m_ptr, msg_size)) == 0) {
 | |
| 		kprintf("umap_local failed for %s / %d on 0x%lx size %d\n",
 | |
| 			caller_ptr->p_name, caller_ptr->p_endpoint,
 | |
| 			m_ptr, msg_size);
 | |
| 		return EFAULT;
 | |
| 	}
 | |
| 
 | |
| 	/* Check if message pages in calling process are mapped.
 | |
| 	 * We don't have to check the recipient if this is a send,
 | |
| 	 * because this code will do that before its receive() starts.
 | |
| 	 *
 | |
| 	 * It is important the range is verified as _writable_, because
 | |
| 	 * the kernel will want to write to the SENDA buffer in the future,
 | |
| 	 * and those pages may not be shared between processes.
 | |
| 	 */
 | |
| 
 | |
| 	if(vm_running && msg_size > 0 &&
 | |
| 	 (r=vm_checkrange(caller_ptr, caller_ptr, lin, msg_size, 1, 0)) != OK) {
 | |
| 		if(r != VMSUSPEND) {
 | |
| 			kprintf("SYSTEM:sys_call:vm_checkrange: err %d\n", r);
 | |
| 			return r;
 | |
| 		}
 | |
| 		
 | |
| 		/* We can't go ahead with this call. Caller is suspended
 | |
| 		 * and we have to save the state in its process struct.
 | |
| 		 */
 | |
| 		caller_ptr->p_vmrequest.saved.sys_call.call_nr = call_nr;
 | |
| 		caller_ptr->p_vmrequest.saved.sys_call.m_ptr = m_ptr;
 | |
| 		caller_ptr->p_vmrequest.saved.sys_call.src_dst_e = src_dst_e;
 | |
| 		caller_ptr->p_vmrequest.saved.sys_call.bit_map = bit_map;
 | |
| 		caller_ptr->p_vmrequest.type = VMSTYPE_SYS_CALL;
 | |
| 
 | |
| 		kprintf("SYSTEM: %s:%d: suspending call 0x%lx on ipc buffer 0x%lx length 0x%lx\n",
 | |
| 			caller_ptr->p_name, caller_ptr->p_endpoint, call_nr, m_ptr, msg_size);
 | |
| 
 | |
| 		/* vm_checkrange() will have suspended caller with VMREQUEST. */
 | |
| 		return OK;
 | |
| 	}
 | |
| 
 | |
|   } 
 | |
| 
 | |
|   /* Check for a possible deadlock for blocking SEND(REC) and RECEIVE. */
 | |
|   if (call_nr == SEND || call_nr == SENDREC || call_nr == RECEIVE) {
 | |
|       if (group_size = deadlock(call_nr, caller_ptr, src_dst_p)) {
 | |
| #if 0
 | |
|           kprintf("sys_call: trap %d from %d to %d deadlocked, group size %d\n",
 | |
|               call_nr, proc_nr(caller_ptr), src_dst_p, group_size);
 | |
| #endif
 | |
| 	if (caller_ptr->p_endpoint == ipc_stats_target)
 | |
| 		ipc_stats.deadlock++;
 | |
|         return(ELOCKED);
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   /* Now check if the call is known and try to perform the request. The only
 | |
|    * system calls that exist in MINIX are sending and receiving messages.
 | |
|    *   - SENDREC: combines SEND and RECEIVE in a single system call
 | |
|    *   - SEND:    sender blocks until its message has been delivered
 | |
|    *   - RECEIVE: receiver blocks until an acceptable message has arrived
 | |
|    *   - NOTIFY:  asynchronous call; deliver notification or mark pending
 | |
|    *   - SENDA:   list of asynchronous send requests
 | |
|    */
 | |
|   switch(call_nr) {
 | |
|   case SENDREC:
 | |
| 	/* A flag is set so that notifications cannot interrupt SENDREC. */
 | |
| 	caller_ptr->p_misc_flags |= REPLY_PENDING;
 | |
| 	/* fall through */
 | |
|   case SEND:			
 | |
| 	result = mini_send(caller_ptr, src_dst_e, m_ptr, 0);
 | |
| 	if (call_nr == SEND || result != OK)
 | |
| 		break;				/* done, or SEND failed */
 | |
| 	/* fall through for SENDREC */
 | |
|   case RECEIVE:			
 | |
| 	if (call_nr == RECEIVE)
 | |
| 		caller_ptr->p_misc_flags &= ~REPLY_PENDING;
 | |
| 	result = mini_receive(caller_ptr, src_dst_e, m_ptr, 0);
 | |
| 	break;
 | |
|   case NOTIFY:
 | |
| 	result = mini_notify(caller_ptr, src_dst_p);
 | |
| 	break;
 | |
|   case SENDNB:
 | |
|         result = mini_send(caller_ptr, src_dst_e, m_ptr, NON_BLOCKING);
 | |
|         break;
 | |
|   case SENDA:
 | |
| 	result = mini_senda(caller_ptr, (asynmsg_t *)m_ptr, (size_t)src_dst_e);
 | |
| 	break;
 | |
|   default:
 | |
| 	result = EBADCALL;			/* illegal system call */
 | |
|   }
 | |
| 
 | |
|   /* Now, return the result of the system call to the caller. */
 | |
|   return(result);
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				deadlock				     * 
 | |
|  *===========================================================================*/
 | |
| PRIVATE int deadlock(function, cp, src_dst) 
 | |
| int function;					/* trap number */
 | |
| register struct proc *cp;			/* pointer to caller */
 | |
| int src_dst;					/* src or dst process */
 | |
| {
 | |
| /* Check for deadlock. This can happen if 'caller_ptr' and 'src_dst' have
 | |
|  * a cyclic dependency of blocking send and receive calls. The only cyclic 
 | |
|  * depency that is not fatal is if the caller and target directly SEND(REC)
 | |
|  * and RECEIVE to each other. If a deadlock is found, the group size is 
 | |
|  * returned. Otherwise zero is returned. 
 | |
|  */
 | |
|   register struct proc *xp;			/* process pointer */
 | |
|   int group_size = 1;				/* start with only caller */
 | |
|   int trap_flags;
 | |
| #if DEBUG_ENABLE_IPC_WARNINGS
 | |
|   static struct proc *processes[NR_PROCS + NR_TASKS];
 | |
|   processes[0] = cp;
 | |
| #endif
 | |
| 
 | |
|   while (src_dst != ANY) { 			/* check while process nr */
 | |
|       int src_dst_e;
 | |
|       xp = proc_addr(src_dst);			/* follow chain of processes */
 | |
| #if DEBUG_ENABLE_IPC_WARNINGS
 | |
|       processes[group_size] = xp;
 | |
| #endif
 | |
|       group_size ++;				/* extra process in group */
 | |
| 
 | |
|       /* Check whether the last process in the chain has a dependency. If it 
 | |
|        * has not, the cycle cannot be closed and we are done.
 | |
|        */
 | |
|       if (RTS_ISSET(xp, RECEIVING)) {	/* xp has dependency */
 | |
| 	  if(xp->p_getfrom_e == ANY) src_dst = ANY;
 | |
| 	  else okendpt(xp->p_getfrom_e, &src_dst);
 | |
|       } else if (RTS_ISSET(xp, SENDING)) {	/* xp has dependency */
 | |
| 	  okendpt(xp->p_sendto_e, &src_dst);
 | |
|       } else {
 | |
| 	  return(0);				/* not a deadlock */
 | |
|       }
 | |
| 
 | |
|       /* Now check if there is a cyclic dependency. For group sizes of two,  
 | |
|        * a combination of SEND(REC) and RECEIVE is not fatal. Larger groups
 | |
|        * or other combinations indicate a deadlock.  
 | |
|        */
 | |
|       if (src_dst == proc_nr(cp)) {		/* possible deadlock */
 | |
| 	  if (group_size == 2) {		/* caller and src_dst */
 | |
| 	      /* The function number is magically converted to flags. */
 | |
| 	      if ((xp->p_rts_flags ^ (function << 2)) & SENDING) { 
 | |
| 	          return(0);			/* not a deadlock */
 | |
| 	      }
 | |
| 	  }
 | |
| #if DEBUG_ENABLE_IPC_WARNINGS
 | |
| 	  {
 | |
| 		int i;
 | |
| 		kprintf("deadlock between these processes:\n");
 | |
| 		for(i = 0; i < group_size; i++) {
 | |
| 			kprintf(" %10s ", processes[i]->p_name);
 | |
| 			proc_stacktrace(processes[i]);
 | |
| 		}
 | |
| 	  }
 | |
| #endif
 | |
|           return(group_size);			/* deadlock found */
 | |
|       }
 | |
|   }
 | |
|   return(0);					/* not a deadlock */
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				sys_call_restart			     * 
 | |
|  *===========================================================================*/
 | |
| PUBLIC void sys_call_restart(caller)
 | |
| struct proc *caller;
 | |
| {
 | |
| 	int r;
 | |
| 	kprintf("restarting sys_call code 0x%lx, "
 | |
| 		"m_ptr 0x%lx, srcdst %d, bitmap 0x%lx, but not really\n",
 | |
| 		caller->p_vmrequest.saved.sys_call.call_nr,
 | |
| 		caller->p_vmrequest.saved.sys_call.m_ptr,
 | |
| 		caller->p_vmrequest.saved.sys_call.src_dst_e,
 | |
| 		caller->p_vmrequest.saved.sys_call.bit_map);
 | |
| 	caller->p_reg.retreg = r;
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				mini_send				     * 
 | |
|  *===========================================================================*/
 | |
| PRIVATE int mini_send(caller_ptr, dst_e, m_ptr, flags)
 | |
| register struct proc *caller_ptr;	/* who is trying to send a message? */
 | |
| int dst_e;				/* to whom is message being sent? */
 | |
| message *m_ptr;				/* pointer to message buffer */
 | |
| int flags;
 | |
| {
 | |
| /* Send a message from 'caller_ptr' to 'dst'. If 'dst' is blocked waiting
 | |
|  * for this message, copy the message to it and unblock 'dst'. If 'dst' is
 | |
|  * not waiting at all, or is waiting for another source, queue 'caller_ptr'.
 | |
|  */
 | |
|   register struct proc *dst_ptr;
 | |
|   register struct proc **xpp;
 | |
|   int dst_p;
 | |
| 
 | |
|   dst_p = _ENDPOINT_P(dst_e);
 | |
|   dst_ptr = proc_addr(dst_p);
 | |
| 
 | |
|   if (RTS_ISSET(dst_ptr, NO_ENDPOINT))
 | |
|   {
 | |
| 	if (caller_ptr->p_endpoint == ipc_stats_target)
 | |
| 		ipc_stats.dst_died++;
 | |
| 	return EDSTDIED;
 | |
|   }
 | |
| 
 | |
|   /* Check if 'dst' is blocked waiting for this message. The destination's 
 | |
|    * SENDING flag may be set when its SENDREC call blocked while sending.  
 | |
|    */
 | |
|   if (WILLRECEIVE(dst_ptr, caller_ptr->p_endpoint)) {
 | |
| 	/* Destination is indeed waiting for this message. */
 | |
| 	CopyMess(caller_ptr->p_nr, caller_ptr, m_ptr, dst_ptr,
 | |
| 		 dst_ptr->p_messbuf);
 | |
| 	RTS_UNSET(dst_ptr, RECEIVING);
 | |
|   } else {
 | |
| 	if(flags & NON_BLOCKING) {
 | |
| 		if (caller_ptr->p_endpoint == ipc_stats_target)
 | |
| 			ipc_stats.not_ready++;
 | |
| 		return(ENOTREADY);
 | |
| 	}
 | |
| 
 | |
| 	/* Destination is not waiting.  Block and dequeue caller. */
 | |
| 	caller_ptr->p_messbuf = m_ptr;
 | |
| 	RTS_SET(caller_ptr, SENDING);
 | |
| 	caller_ptr->p_sendto_e = dst_e;
 | |
| 
 | |
| 	/* Process is now blocked.  Put in on the destination's queue. */
 | |
| 	xpp = &dst_ptr->p_caller_q;		/* find end of list */
 | |
| 	while (*xpp != NIL_PROC) xpp = &(*xpp)->p_q_link;	
 | |
| 	*xpp = caller_ptr;			/* add caller to end */
 | |
| 	caller_ptr->p_q_link = NIL_PROC;	/* mark new end of list */
 | |
|   }
 | |
|   return(OK);
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				mini_receive				     * 
 | |
|  *===========================================================================*/
 | |
| PRIVATE int mini_receive(caller_ptr, src_e, m_ptr, flags)
 | |
| register struct proc *caller_ptr;	/* process trying to get message */
 | |
| int src_e;				/* which message source is wanted */
 | |
| message *m_ptr;				/* pointer to message buffer */
 | |
| int flags;
 | |
| {
 | |
| /* A process or task wants to get a message.  If a message is already queued,
 | |
|  * acquire it and deblock the sender.  If no message from the desired source
 | |
|  * is available block the caller.
 | |
|  */
 | |
|   register struct proc **xpp;
 | |
|   register struct notification **ntf_q_pp;
 | |
|   message m;
 | |
|   int bit_nr;
 | |
|   sys_map_t *map;
 | |
|   bitchunk_t *chunk;
 | |
|   int i, r, src_id, src_proc_nr, src_p;
 | |
| 
 | |
|   if(src_e == ANY) src_p = ANY;
 | |
|   else
 | |
|   {
 | |
| 	okendpt(src_e, &src_p);
 | |
| 	if (RTS_ISSET(proc_addr(src_p), NO_ENDPOINT))
 | |
| 	{
 | |
| 		if (caller_ptr->p_endpoint == ipc_stats_target)
 | |
| 			ipc_stats.src_died++;
 | |
| 		return ESRCDIED;
 | |
| 	}
 | |
|   }
 | |
| 
 | |
| 
 | |
|   /* Check to see if a message from desired source is already available.
 | |
|    * The caller's SENDING flag may be set if SENDREC couldn't send. If it is
 | |
|    * set, the process should be blocked.
 | |
|    */
 | |
|   if (!RTS_ISSET(caller_ptr, SENDING)) {
 | |
| 
 | |
|     /* Check if there are pending notifications, except for SENDREC. */
 | |
|     if (! (caller_ptr->p_misc_flags & REPLY_PENDING)) {
 | |
| 
 | |
|         map = &priv(caller_ptr)->s_notify_pending;
 | |
|         for (chunk=&map->chunk[0]; chunk<&map->chunk[NR_SYS_CHUNKS]; chunk++) {
 | |
| 
 | |
|             /* Find a pending notification from the requested source. */ 
 | |
|             if (! *chunk) continue; 			/* no bits in chunk */
 | |
|             for (i=0; ! (*chunk & (1<<i)); ++i) {} 	/* look up the bit */
 | |
|             src_id = (chunk - &map->chunk[0]) * BITCHUNK_BITS + i;
 | |
|             if (src_id >= NR_SYS_PROCS) break;		/* out of range */
 | |
|             src_proc_nr = id_to_nr(src_id);		/* get source proc */
 | |
| #if DEBUG_ENABLE_IPC_WARNINGS
 | |
| 	    if(src_proc_nr == NONE) {
 | |
| 		kprintf("mini_receive: sending notify from NONE\n");
 | |
| 	    }
 | |
| #endif
 | |
|             if (src_e!=ANY && src_p != src_proc_nr) continue;/* source not ok */
 | |
|             *chunk &= ~(1 << i);			/* no longer pending */
 | |
| 
 | |
|             /* Found a suitable source, deliver the notification message. */
 | |
| 	    BuildMess(&m, src_proc_nr, caller_ptr);	/* assemble message */
 | |
|             CopyMess(src_proc_nr, proc_addr(HARDWARE), &m, caller_ptr, m_ptr);
 | |
|             return(OK);					/* report success */
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Check caller queue. Use pointer pointers to keep code simple. */
 | |
|     xpp = &caller_ptr->p_caller_q;
 | |
|     while (*xpp != NIL_PROC) {
 | |
|         if (src_e == ANY || src_p == proc_nr(*xpp)) {
 | |
| #if 1
 | |
| 	    if (RTS_ISSET(*xpp, SLOT_FREE) || RTS_ISSET(*xpp, NO_ENDPOINT))
 | |
| 	    {
 | |
| 		kprintf("%d: receive from %d; found dead %d (%s)?\n",
 | |
| 			caller_ptr->p_endpoint, src_e, (*xpp)->p_endpoint,
 | |
| 			(*xpp)->p_name);
 | |
| 		if (caller_ptr->p_endpoint == ipc_stats_target)
 | |
| 			ipc_stats.deadproc++;
 | |
| 		return EINVAL;
 | |
| 	    }
 | |
| #endif
 | |
| 
 | |
| 	    /* Found acceptable message. Copy it and update status. */
 | |
| 	    CopyMess((*xpp)->p_nr, *xpp, (*xpp)->p_messbuf, caller_ptr, m_ptr);
 | |
| 	    RTS_UNSET(*xpp, SENDING);
 | |
|             *xpp = (*xpp)->p_q_link;		/* remove from queue */
 | |
|             return(OK);				/* report success */
 | |
| 	}
 | |
| 	xpp = &(*xpp)->p_q_link;		/* proceed to next */
 | |
|     }
 | |
| 
 | |
|     if (caller_ptr->p_misc_flags & MF_ASYNMSG)
 | |
|     {
 | |
| 	if (src_e != ANY)
 | |
| 	{
 | |
| #if 0
 | |
| 		kprintf("mini_receive: should try async from %d\n", src_e);
 | |
| #endif
 | |
| 		r= EAGAIN;
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		caller_ptr->p_messbuf = m_ptr;
 | |
| 		r= try_async(caller_ptr);
 | |
| 	}
 | |
| 	if (r == OK)
 | |
| 		return OK;	/* Got a message */
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* No suitable message is available or the caller couldn't send in SENDREC. 
 | |
|    * Block the process trying to receive, unless the flags tell otherwise.
 | |
|    */
 | |
|   if ( ! (flags & NON_BLOCKING)) {
 | |
|       caller_ptr->p_getfrom_e = src_e;		
 | |
|       caller_ptr->p_messbuf = m_ptr;
 | |
|       RTS_SET(caller_ptr, RECEIVING);
 | |
|       return(OK);
 | |
|   } else {
 | |
| 	if (caller_ptr->p_endpoint == ipc_stats_target)
 | |
| 		ipc_stats.not_ready++;
 | |
| 	return(ENOTREADY);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				mini_notify				     * 
 | |
|  *===========================================================================*/
 | |
| PRIVATE int mini_notify(caller_ptr, dst)
 | |
| register struct proc *caller_ptr;	/* sender of the notification */
 | |
| int dst;				/* which process to notify */
 | |
| {
 | |
|   register struct proc *dst_ptr = proc_addr(dst);
 | |
|   int src_id;				/* source id for late delivery */
 | |
|   message m;				/* the notification message */
 | |
| 
 | |
|   /* Check to see if target is blocked waiting for this message. A process 
 | |
|    * can be both sending and receiving during a SENDREC system call.
 | |
|    */
 | |
|     if (WILLRECEIVE(dst_ptr, caller_ptr->p_endpoint) &&
 | |
|       ! (dst_ptr->p_misc_flags & REPLY_PENDING)) {
 | |
|       /* Destination is indeed waiting for a message. Assemble a notification 
 | |
|        * message and deliver it. Copy from pseudo-source HARDWARE, since the
 | |
|        * message is in the kernel's address space.
 | |
|        */ 
 | |
|       BuildMess(&m, proc_nr(caller_ptr), dst_ptr);
 | |
|       CopyMess(proc_nr(caller_ptr), proc_addr(HARDWARE), &m, 
 | |
|           dst_ptr, dst_ptr->p_messbuf);
 | |
|       RTS_UNSET(dst_ptr, RECEIVING);
 | |
|       return(OK);
 | |
|   } 
 | |
| 
 | |
|   /* Destination is not ready to receive the notification. Add it to the 
 | |
|    * bit map with pending notifications. Note the indirectness: the system id 
 | |
|    * instead of the process number is used in the pending bit map.
 | |
|    */ 
 | |
|   src_id = priv(caller_ptr)->s_id;
 | |
|   set_sys_bit(priv(dst_ptr)->s_notify_pending, src_id); 
 | |
|   return(OK);
 | |
| }
 | |
| 
 | |
| #define ASCOMPLAIN(caller, entry, field)	\
 | |
| 	kprintf("kernel:%s:%d: asyn failed for %s in %s "	\
 | |
| 	"(%d/%d, tab 0x%lx)\n",__FILE__,__LINE__,	\
 | |
| field, caller->p_name, entry, priv(caller)->s_asynsize, priv(caller)->s_asyntab)
 | |
| 
 | |
| #define A_RETRIEVE(entry, field)	\
 | |
|   if(data_copy(caller_ptr->p_endpoint,	\
 | |
| 	 table_v + (entry)*sizeof(asynmsg_t) + offsetof(struct asynmsg,field),\
 | |
| 		SYSTEM, (vir_bytes) &tabent.field,	\
 | |
| 			sizeof(tabent.field)) != OK) {\
 | |
| 		ASCOMPLAIN(caller_ptr, entry, #field);	\
 | |
| 		return EFAULT; \
 | |
| 	}
 | |
| 
 | |
| #define A_INSERT(entry, field)	\
 | |
|   if(data_copy(SYSTEM, (vir_bytes) &tabent.field, \
 | |
| 	caller_ptr->p_endpoint,	\
 | |
|  	table_v + (entry)*sizeof(asynmsg_t) + offsetof(struct asynmsg,field),\
 | |
| 		sizeof(tabent.field)) != OK) {\
 | |
| 		ASCOMPLAIN(caller_ptr, entry, #field);	\
 | |
| 		return EFAULT; \
 | |
| 	}
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				mini_senda				     *
 | |
|  *===========================================================================*/
 | |
| PRIVATE int mini_senda(caller_ptr, table, size)
 | |
| struct proc *caller_ptr;
 | |
| asynmsg_t *table;
 | |
| size_t size;
 | |
| {
 | |
| 	int i, dst_p, done, do_notify;
 | |
| 	unsigned flags;
 | |
| 	struct proc *dst_ptr;
 | |
| 	struct priv *privp;
 | |
| 	message *m_ptr;
 | |
| 	asynmsg_t tabent;
 | |
| 	vir_bytes table_v = (vir_bytes) table;
 | |
| 
 | |
| 	privp= priv(caller_ptr);
 | |
| 	if (!(privp->s_flags & SYS_PROC))
 | |
| 	{
 | |
| 		kprintf(
 | |
| 		"mini_senda: warning caller has no privilege structure\n");
 | |
| 		if (caller_ptr->p_endpoint == ipc_stats_target)
 | |
| 			ipc_stats.no_priv++;
 | |
| 		return EPERM;
 | |
| 	}
 | |
| 
 | |
| 	/* Clear table */
 | |
| 	privp->s_asyntab= -1;	
 | |
| 	privp->s_asynsize= 0;
 | |
| 
 | |
| 	if (size == 0)
 | |
| 	{
 | |
| 		/* Nothing to do, just return */
 | |
| 		return OK;
 | |
| 	}
 | |
| 
 | |
| 	/* Limit size to something reasonable. An arbitrary choice is 16
 | |
| 	 * times the number of process table entries.
 | |
| 	 *
 | |
| 	 * (this check has been duplicated in sys_call but is left here
 | |
| 	 * as a sanity check)
 | |
| 	 */
 | |
| 	if (size > 16*(NR_TASKS + NR_PROCS))
 | |
| 	{
 | |
| 		if (caller_ptr->p_endpoint == ipc_stats_target)
 | |
| 			ipc_stats.bad_size++;
 | |
| 		return EDOM;
 | |
| 	}
 | |
| 	
 | |
| 	/* Scan the table */
 | |
| 	do_notify= FALSE;	
 | |
| 	done= TRUE;
 | |
| 	for (i= 0; i<size; i++)
 | |
| 	{
 | |
| 
 | |
| 		/* Read status word */
 | |
| 		A_RETRIEVE(i, flags);
 | |
| 		flags= tabent.flags;
 | |
| 
 | |
| 		/* Skip empty entries */
 | |
| 		if (flags == 0)
 | |
| 			continue;
 | |
| 
 | |
| 		/* Check for reserved bits in the flags field */
 | |
| 		if (flags & ~(AMF_VALID|AMF_DONE|AMF_NOTIFY) ||
 | |
| 			!(flags & AMF_VALID))
 | |
| 		{
 | |
| 			if (caller_ptr->p_endpoint == ipc_stats_target)
 | |
| 				ipc_stats.bad_senda++;
 | |
| 			return EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		/* Skip entry if AMF_DONE is already set */
 | |
| 		if (flags & AMF_DONE)
 | |
| 			continue;
 | |
| 
 | |
| 		/* Get destination */
 | |
| 		A_RETRIEVE(i, dst);
 | |
| 
 | |
| 		if (!isokendpt(tabent.dst, &dst_p))
 | |
| 		{
 | |
| 			/* Bad destination, report the error */
 | |
|   			if (caller_ptr->p_endpoint == ipc_stats_target)
 | |
| 				ipc_stats.bad_endpoint++;
 | |
| 
 | |
| 			tabent.result= EDEADSRCDST;
 | |
| 			A_INSERT(i, result);
 | |
| 			tabent.flags= flags | AMF_DONE;
 | |
| 			A_INSERT(i, flags);
 | |
| 
 | |
| 			if (flags & AMF_NOTIFY)
 | |
| 				do_notify= 1;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (!may_send_to(caller_ptr, dst_p))
 | |
| 		{
 | |
| 			/* Send denied by IPC mask */
 | |
| 			if (caller_ptr->p_endpoint == ipc_stats_target)
 | |
| 				ipc_stats.dst_not_allowed++;
 | |
| 
 | |
| 			tabent.result= ECALLDENIED;
 | |
| 			A_INSERT(i, result);
 | |
| 			tabent.flags= flags | AMF_DONE;
 | |
| 			A_INSERT(i, flags);
 | |
| 
 | |
| 			if (flags & AMF_NOTIFY)
 | |
| 				do_notify= 1;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| #if 0
 | |
| 		kprintf("mini_senda: entry[%d]: flags 0x%x dst %d/%d\n",
 | |
| 			i, tabent.flags, tabent.dst, dst_p);
 | |
| #endif
 | |
| 
 | |
| 		dst_ptr = proc_addr(dst_p);
 | |
| 
 | |
| 		/* NO_ENDPOINT should be removed */
 | |
| 		if (dst_ptr->p_rts_flags & NO_ENDPOINT)
 | |
| 		{
 | |
| 			if (caller_ptr->p_endpoint == ipc_stats_target)
 | |
| 				ipc_stats.dst_died++;
 | |
| 
 | |
| 			tabent.result= EDSTDIED;
 | |
| 			A_INSERT(i, result);
 | |
| 			tabent.flags= flags | AMF_DONE;
 | |
| 			A_INSERT(i, flags);
 | |
| 
 | |
| 			if (flags & AMF_NOTIFY)
 | |
| 				do_notify= TRUE;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* Check if 'dst' is blocked waiting for this message. The
 | |
| 		 * destination's SENDING flag may be set when its SENDREC call
 | |
| 		 * blocked while sending. 
 | |
| 		 */
 | |
| 		if ( (dst_ptr->p_rts_flags & (RECEIVING | SENDING)) ==
 | |
| 			RECEIVING &&
 | |
| 			(dst_ptr->p_getfrom_e == ANY ||
 | |
| 			dst_ptr->p_getfrom_e == caller_ptr->p_endpoint))
 | |
| 		{
 | |
| 			/* Destination is indeed waiting for this message. */
 | |
| 			m_ptr= &table[i].msg;	/* Note: pointer in the
 | |
| 						 * caller's address space.
 | |
| 						 */
 | |
| 			CopyMess(caller_ptr->p_nr, caller_ptr, m_ptr, dst_ptr,
 | |
| 				dst_ptr->p_messbuf);
 | |
| 
 | |
| 			RTS_UNSET(dst_ptr, RECEIVING);
 | |
| 
 | |
| 			tabent.result= OK;
 | |
| 			A_INSERT(i, result);
 | |
| 			tabent.flags= flags | AMF_DONE;
 | |
| 			A_INSERT(i, flags);
 | |
| 
 | |
| 			if (flags & AMF_NOTIFY)
 | |
| 				do_notify= 1;
 | |
| 			continue;
 | |
| 		}
 | |
| 		else 
 | |
| 		{
 | |
| 			/* Should inform receiver that something is pending */
 | |
| 			dst_ptr->p_misc_flags |= MF_ASYNMSG;
 | |
| 			done= FALSE;
 | |
| 			continue;
 | |
| 		} 
 | |
| 	}
 | |
| 	if (do_notify)
 | |
| 		kprintf("mini_senda: should notify caller\n");
 | |
| 	if (!done)
 | |
| 	{
 | |
| 		privp->s_asyntab= (vir_bytes)table;
 | |
| 		privp->s_asynsize= size;
 | |
| #if 0
 | |
| 		if(caller_ptr->p_endpoint > INIT_PROC_NR) {
 | |
| 			kprintf("kernel: %s (%d) asynsend table at 0x%lx, %d\n", 
 | |
| 				caller_ptr->p_name, caller_ptr->p_endpoint,
 | |
| 				table, size);
 | |
| 		}
 | |
| #endif
 | |
| 	}
 | |
| 	return OK;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				try_async				     * 
 | |
|  *===========================================================================*/
 | |
| PRIVATE int try_async(caller_ptr)
 | |
| struct proc *caller_ptr;
 | |
| {
 | |
| 	int r;
 | |
| 	struct priv *privp;
 | |
| 	struct proc *src_ptr;
 | |
| 
 | |
| 	/* Try all privilege structures */
 | |
| 	for (privp = BEG_PRIV_ADDR; privp < END_PRIV_ADDR; ++privp) 
 | |
| 	{
 | |
| 		if (privp->s_proc_nr == NONE || privp->s_id == USER_PRIV_ID)
 | |
| 			continue;
 | |
| 		if (privp->s_asynsize == 0)
 | |
| 			continue;
 | |
| #if 0
 | |
| 		kprintf("try_async: found asyntable for proc %d\n",
 | |
| 			privp->s_proc_nr);
 | |
| #endif
 | |
| 		src_ptr= proc_addr(privp->s_proc_nr);
 | |
| 		if (!may_send_to(src_ptr, proc_nr(caller_ptr)))
 | |
| 			continue;
 | |
| 		r= try_one(src_ptr, caller_ptr);
 | |
| 		if (r == OK)
 | |
| 			return r;
 | |
| 	}
 | |
| 
 | |
| 	/* Nothing found, clear MF_ASYNMSG */
 | |
| 	caller_ptr->p_misc_flags &= ~MF_ASYNMSG;
 | |
| 
 | |
| 	return ESRCH;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				try_one					     *
 | |
|  *===========================================================================*/
 | |
| PRIVATE int try_one(src_ptr, dst_ptr)
 | |
| struct proc *src_ptr;
 | |
| struct proc *dst_ptr;
 | |
| {
 | |
| 	int i, do_notify, done;
 | |
| 	unsigned flags;
 | |
| 	size_t size;
 | |
| 	endpoint_t dst_e;
 | |
| 	asynmsg_t *table_ptr;
 | |
| 	message *m_ptr;
 | |
| 	struct priv *privp;
 | |
| 	asynmsg_t tabent;
 | |
| 	vir_bytes table_v;
 | |
| 	struct proc *caller_ptr;
 | |
| 
 | |
| 	privp= priv(src_ptr);
 | |
| 	size= privp->s_asynsize;
 | |
| 	table_v = privp->s_asyntab;
 | |
| 	caller_ptr = src_ptr;
 | |
| 
 | |
| 	dst_e= dst_ptr->p_endpoint;
 | |
| 
 | |
| 	/* Scan the table */
 | |
| 	do_notify= FALSE;	
 | |
| 	done= TRUE;
 | |
| 	for (i= 0; i<size; i++)
 | |
| 	{
 | |
| 		/* Read status word */
 | |
| 		A_RETRIEVE(i, flags);
 | |
| 		flags= tabent.flags;
 | |
| 
 | |
| 		/* Skip empty entries */
 | |
| 		if (flags == 0)
 | |
| 		{
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* Check for reserved bits in the flags field */
 | |
| 		if (flags & ~(AMF_VALID|AMF_DONE|AMF_NOTIFY) ||
 | |
| 			!(flags & AMF_VALID))
 | |
| 		{
 | |
| 			kprintf("try_one: bad bits in table\n");
 | |
| 			privp->s_asynsize= 0;
 | |
| 			if (src_ptr->p_endpoint == ipc_stats_target)
 | |
| 				ipc_stats.bad_senda++;
 | |
| 			return EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		/* Skip entry is AMF_DONE is already set */
 | |
| 		if (flags & AMF_DONE)
 | |
| 		{
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* Clear done. We are done when all entries are either empty
 | |
| 		 * or done at the start of the call.
 | |
| 		 */
 | |
| 		done= FALSE;
 | |
| 
 | |
| 		/* Get destination */
 | |
| 		A_RETRIEVE(i, dst);
 | |
| 
 | |
| 		if (tabent.dst != dst_e)
 | |
| 		{
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* Deliver message */
 | |
| 		table_ptr= (asynmsg_t *)privp->s_asyntab;
 | |
| 		m_ptr= &table_ptr[i].msg;	/* Note: pointer in the
 | |
| 					 	 * caller's address space.
 | |
| 					 	 */
 | |
| 		CopyMess(src_ptr->p_nr, src_ptr, m_ptr, dst_ptr,
 | |
| 			dst_ptr->p_messbuf);
 | |
| 
 | |
| 		tabent.result= OK;
 | |
| 		A_INSERT(i, result);
 | |
| 		tabent.flags= flags | AMF_DONE;
 | |
| 		A_INSERT(i, flags);
 | |
| 
 | |
| 		if (flags & AMF_NOTIFY)
 | |
| 		{
 | |
| 			kprintf("try_one: should notify caller\n");
 | |
| 		}
 | |
| 		return OK;
 | |
| 	}
 | |
| 	if (done)
 | |
| 		privp->s_asynsize= 0;
 | |
| 	return EAGAIN;
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				lock_notify				     *
 | |
|  *===========================================================================*/
 | |
| PUBLIC int lock_notify(src_e, dst_e)
 | |
| int src_e;			/* (endpoint) sender of the notification */
 | |
| int dst_e;			/* (endpoint) who is to be notified */
 | |
| {
 | |
| /* Safe gateway to mini_notify() for tasks and interrupt handlers. The sender
 | |
|  * is explicitely given to prevent confusion where the call comes from. MINIX 
 | |
|  * kernel is not reentrant, which means to interrupts are disabled after 
 | |
|  * the first kernel entry (hardware interrupt, trap, or exception). Locking
 | |
|  * is done by temporarily disabling interrupts. 
 | |
|  */
 | |
|   int result, src, dst;
 | |
| 
 | |
|   if(!isokendpt(src_e, &src) || !isokendpt(dst_e, &dst))
 | |
| 	return EDEADSRCDST;
 | |
| 
 | |
|   /* Exception or interrupt occurred, thus already locked. */
 | |
|   if (k_reenter >= 0) {
 | |
|       result = mini_notify(proc_addr(src), dst); 
 | |
|   }
 | |
| 
 | |
|   /* Call from task level, locking is required. */
 | |
|   else {
 | |
|       lock;
 | |
|       result = mini_notify(proc_addr(src), dst); 
 | |
|       unlock;
 | |
|   }
 | |
|   return(result);
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				soft_notify				     *
 | |
|  *===========================================================================*/
 | |
| PUBLIC int soft_notify(dst_e)
 | |
| int dst_e;			/* (endpoint) who is to be notified */
 | |
| {
 | |
| 	int dst, u = 0;
 | |
| 	struct proc *dstp, *sys = proc_addr(SYSTEM);
 | |
| 
 | |
| /* Delayed interface to notify() from SYSTEM that is safe/easy to call
 | |
|  * from more places than notify().
 | |
|  */
 | |
| 	if(!intr_disabled()) { lock; u = 1; }
 | |
| 
 | |
| 	{
 | |
| 		if(!isokendpt(dst_e, &dst))
 | |
| 			minix_panic("soft_notify to dead ep", dst_e);
 | |
| 
 | |
| 		dstp = proc_addr(dst);
 | |
| 
 | |
| 		if(!dstp->p_softnotified) {
 | |
| 			dstp->next_soft_notify = softnotify;
 | |
| 			softnotify = dstp;
 | |
| 			dstp->p_softnotified = 1;
 | |
| 	
 | |
| 			if (RTS_ISSET(sys, RECEIVING)) {
 | |
| 				sys->p_messbuf->m_source = SYSTEM;
 | |
| 				RTS_UNSET(sys, RECEIVING);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if(u) { unlock; }
 | |
| 
 | |
| 	return OK;
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				enqueue					     * 
 | |
|  *===========================================================================*/
 | |
| PUBLIC void enqueue(rp)
 | |
| register struct proc *rp;	/* this process is now runnable */
 | |
| {
 | |
| /* Add 'rp' to one of the queues of runnable processes.  This function is 
 | |
|  * responsible for inserting a process into one of the scheduling queues. 
 | |
|  * The mechanism is implemented here.   The actual scheduling policy is
 | |
|  * defined in sched() and pick_proc().
 | |
|  */
 | |
|   int q;	 				/* scheduling queue to use */
 | |
|   int front;					/* add to front or back */
 | |
| 
 | |
| #if DEBUG_SCHED_CHECK
 | |
|   if(!intr_disabled()) { minix_panic("enqueue with interrupts enabled", NO_NUM); }
 | |
|   CHECK_RUNQUEUES;
 | |
|   if (rp->p_ready) minix_panic("enqueue already ready process", NO_NUM);
 | |
| #endif
 | |
| 
 | |
|   /* Determine where to insert to process. */
 | |
|   sched(rp, &q, &front);
 | |
| 
 | |
|   /* Now add the process to the queue. */
 | |
|   if (rdy_head[q] == NIL_PROC) {		/* add to empty queue */
 | |
|       rdy_head[q] = rdy_tail[q] = rp; 		/* create a new queue */
 | |
|       rp->p_nextready = NIL_PROC;		/* mark new end */
 | |
|   } 
 | |
|   else if (front) {				/* add to head of queue */
 | |
|       rp->p_nextready = rdy_head[q];		/* chain head of queue */
 | |
|       rdy_head[q] = rp;				/* set new queue head */
 | |
|   } 
 | |
|   else {					/* add to tail of queue */
 | |
|       rdy_tail[q]->p_nextready = rp;		/* chain tail of queue */	
 | |
|       rdy_tail[q] = rp;				/* set new queue tail */
 | |
|       rp->p_nextready = NIL_PROC;		/* mark new end */
 | |
|   }
 | |
| 
 | |
|   /* Now select the next process to run, if there isn't a current
 | |
|    * process yet or current process isn't ready any more, or
 | |
|    * it's PREEMPTIBLE.
 | |
|    */
 | |
|   if(!proc_ptr || proc_ptr->p_rts_flags ||
 | |
|     (priv(proc_ptr)->s_flags & PREEMPTIBLE)) {
 | |
|      pick_proc();
 | |
|   }
 | |
| 
 | |
| #if DEBUG_SCHED_CHECK
 | |
|   rp->p_ready = 1;
 | |
|   CHECK_RUNQUEUES;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				dequeue					     * 
 | |
|  *===========================================================================*/
 | |
| PUBLIC void dequeue(rp)
 | |
| register struct proc *rp;	/* this process is no longer runnable */
 | |
| {
 | |
| /* A process must be removed from the scheduling queues, for example, because
 | |
|  * it has blocked.  If the currently active process is removed, a new process
 | |
|  * is picked to run by calling pick_proc().
 | |
|  */
 | |
|   register int q = rp->p_priority;		/* queue to use */
 | |
|   register struct proc **xpp;			/* iterate over queue */
 | |
|   register struct proc *prev_xp;
 | |
| 
 | |
|   /* Side-effect for kernel: check if the task's stack still is ok? */
 | |
|   if (iskernelp(rp)) { 				
 | |
| 	if (*priv(rp)->s_stack_guard != STACK_GUARD)
 | |
| 		minix_panic("stack overrun by task", proc_nr(rp));
 | |
|   }
 | |
| 
 | |
| #if DEBUG_SCHED_CHECK
 | |
|   CHECK_RUNQUEUES;
 | |
|   if(!intr_disabled()) { minix_panic("dequeue with interrupts enabled", NO_NUM); }
 | |
|   if (! rp->p_ready) minix_panic("dequeue() already unready process", NO_NUM);
 | |
| #endif
 | |
| 
 | |
|   /* Now make sure that the process is not in its ready queue. Remove the 
 | |
|    * process if it is found. A process can be made unready even if it is not 
 | |
|    * running by being sent a signal that kills it.
 | |
|    */
 | |
|   prev_xp = NIL_PROC;				
 | |
|   for (xpp = &rdy_head[q]; *xpp != NIL_PROC; xpp = &(*xpp)->p_nextready) {
 | |
| 
 | |
|       if (*xpp == rp) {				/* found process to remove */
 | |
|           *xpp = (*xpp)->p_nextready;		/* replace with next chain */
 | |
|           if (rp == rdy_tail[q])		/* queue tail removed */
 | |
|               rdy_tail[q] = prev_xp;		/* set new tail */
 | |
|           if (rp == proc_ptr || rp == next_ptr)	/* active process removed */
 | |
|               pick_proc();			/* pick new process to run */
 | |
|           break;
 | |
|       }
 | |
|       prev_xp = *xpp;				/* save previous in chain */
 | |
|   }
 | |
| 
 | |
| #if DEBUG_SCHED_CHECK
 | |
|   rp->p_ready = 0;
 | |
|   CHECK_RUNQUEUES;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				sched					     * 
 | |
|  *===========================================================================*/
 | |
| PRIVATE void sched(rp, queue, front)
 | |
| register struct proc *rp;			/* process to be scheduled */
 | |
| int *queue;					/* return: queue to use */
 | |
| int *front;					/* return: front or back */
 | |
| {
 | |
| /* This function determines the scheduling policy.  It is called whenever a
 | |
|  * process must be added to one of the scheduling queues to decide where to
 | |
|  * insert it.  As a side-effect the process' priority may be updated.  
 | |
|  */
 | |
|   int time_left = (rp->p_ticks_left > 0);	/* quantum fully consumed */
 | |
| 
 | |
|   /* Check whether the process has time left. Otherwise give a new quantum 
 | |
|    * and lower the process' priority, unless the process already is in the 
 | |
|    * lowest queue.  
 | |
|    */
 | |
|   if (! time_left) {				/* quantum consumed ? */
 | |
|       rp->p_ticks_left = rp->p_quantum_size; 	/* give new quantum */
 | |
|       if (rp->p_priority < (IDLE_Q-1)) {  	 
 | |
|           rp->p_priority += 1;			/* lower priority */
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   /* If there is time left, the process is added to the front of its queue, 
 | |
|    * so that it can immediately run. The queue to use simply is always the
 | |
|    * process' current priority. 
 | |
|    */
 | |
|   *queue = rp->p_priority;
 | |
|   *front = time_left;
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				pick_proc				     * 
 | |
|  *===========================================================================*/
 | |
| PRIVATE void pick_proc()
 | |
| {
 | |
| /* Decide who to run now.  A new process is selected by setting 'next_ptr'.
 | |
|  * When a billable process is selected, record it in 'bill_ptr', so that the 
 | |
|  * clock task can tell who to bill for system time.
 | |
|  */
 | |
|   register struct proc *rp;			/* process to run */
 | |
|   int q;					/* iterate over queues */
 | |
| 
 | |
|   /* Check each of the scheduling queues for ready processes. The number of
 | |
|    * queues is defined in proc.h, and priorities are set in the task table.
 | |
|    * The lowest queue contains IDLE, which is always ready.
 | |
|    */
 | |
|   for (q=0; q < NR_SCHED_QUEUES; q++) {	
 | |
|       if ( (rp = rdy_head[q]) != NIL_PROC) {
 | |
|           next_ptr = rp;			/* run process 'rp' next */
 | |
| #if 0
 | |
| 	  if(rp->p_endpoint != 4 && rp->p_endpoint != 5 && rp->p_endpoint != IDLE && rp->p_endpoint != SYSTEM)
 | |
| 	  	kprintf("[run %s]",  rp->p_name);
 | |
| #endif
 | |
|           if (priv(rp)->s_flags & BILLABLE)	 	
 | |
|               bill_ptr = rp;			/* bill for system time */
 | |
|           return;				 
 | |
|       }
 | |
|   }
 | |
|   minix_panic("no ready process", NO_NUM);
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				balance_queues				     *
 | |
|  *===========================================================================*/
 | |
| #define Q_BALANCE_TICKS	 100
 | |
| PUBLIC void balance_queues(tp)
 | |
| timer_t *tp;					/* watchdog timer pointer */
 | |
| {
 | |
| /* Check entire process table and give all process a higher priority. This
 | |
|  * effectively means giving a new quantum. If a process already is at its 
 | |
|  * maximum priority, its quantum will be renewed.
 | |
|  */
 | |
|   static timer_t queue_timer;			/* timer structure to use */
 | |
|   register struct proc* rp;			/* process table pointer  */
 | |
|   clock_t next_period;				/* time of next period  */
 | |
|   int ticks_added = 0;				/* total time added */
 | |
| 
 | |
|   for (rp=BEG_PROC_ADDR; rp<END_PROC_ADDR; rp++) {
 | |
|       if (! isemptyp(rp)) {				/* check slot use */
 | |
| 	  lock;
 | |
| 	  if (rp->p_priority > rp->p_max_priority) {	/* update priority? */
 | |
| 	      if (rp->p_rts_flags == 0) dequeue(rp);	/* take off queue */
 | |
| 	      ticks_added += rp->p_quantum_size;	/* do accounting */
 | |
| 	      rp->p_priority -= 1;			/* raise priority */
 | |
| 	      if (rp->p_rts_flags == 0) enqueue(rp);	/* put on queue */
 | |
| 	  }
 | |
| 	  else {
 | |
| 	      ticks_added += rp->p_quantum_size - rp->p_ticks_left;
 | |
|               rp->p_ticks_left = rp->p_quantum_size; 	/* give new quantum */
 | |
| 	  }
 | |
| 	  unlock;
 | |
|       }
 | |
|   }
 | |
| #if DEBUG
 | |
|   kprintf("ticks_added: %d\n", ticks_added);
 | |
| #endif
 | |
| 
 | |
|   /* Now schedule a new watchdog timer to balance the queues again.  The 
 | |
|    * period depends on the total amount of quantum ticks added.
 | |
|    */
 | |
|   next_period = MAX(Q_BALANCE_TICKS, ticks_added);	/* calculate next */
 | |
|   set_timer(&queue_timer, get_uptime() + next_period, balance_queues);
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				lock_send				     *
 | |
|  *===========================================================================*/
 | |
| PUBLIC int lock_send(dst_e, m_ptr)
 | |
| int dst_e;			/* to whom is message being sent? */
 | |
| message *m_ptr;			/* pointer to message buffer */
 | |
| {
 | |
| /* Safe gateway to mini_send() for tasks. */
 | |
|   int result;
 | |
|   lock;
 | |
|   result = mini_send(proc_ptr, dst_e, m_ptr, 0);
 | |
|   unlock;
 | |
|   return(result);
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				lock_enqueue				     *
 | |
|  *===========================================================================*/
 | |
| PUBLIC void lock_enqueue(rp)
 | |
| struct proc *rp;		/* this process is now runnable */
 | |
| {
 | |
| /* Safe gateway to enqueue() for tasks. */
 | |
|   lock;
 | |
|   enqueue(rp);
 | |
|   unlock;
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				lock_dequeue				     *
 | |
|  *===========================================================================*/
 | |
| PUBLIC void lock_dequeue(rp)
 | |
| struct proc *rp;		/* this process is no longer runnable */
 | |
| {
 | |
| /* Safe gateway to dequeue() for tasks. */
 | |
|   if (k_reenter >= 0) {
 | |
| 	/* We're in an exception or interrupt, so don't lock (and ... 
 | |
| 	 * don't unlock).
 | |
| 	 */
 | |
| 	dequeue(rp);
 | |
|   } else {
 | |
| 	lock;
 | |
| 	dequeue(rp);
 | |
| 	unlock;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				endpoint_lookup				     *
 | |
|  *===========================================================================*/
 | |
| PUBLIC struct proc *endpoint_lookup(endpoint_t e)
 | |
| {
 | |
| 	int n;
 | |
| 
 | |
| 	if(!isokendpt(e, &n)) return NULL;
 | |
| 
 | |
| 	return proc_addr(n);
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				isokendpt_f				     *
 | |
|  *===========================================================================*/
 | |
| #if DEBUG_ENABLE_IPC_WARNINGS
 | |
| PUBLIC int isokendpt_f(file, line, e, p, fatalflag)
 | |
| char *file;
 | |
| int line;
 | |
| #else
 | |
| PUBLIC int isokendpt_f(e, p, fatalflag)
 | |
| #endif
 | |
| endpoint_t e;
 | |
| int *p, fatalflag;
 | |
| {
 | |
| 	int ok = 0;
 | |
| 	/* Convert an endpoint number into a process number.
 | |
| 	 * Return nonzero if the process is alive with the corresponding
 | |
| 	 * generation number, zero otherwise.
 | |
| 	 *
 | |
| 	 * This function is called with file and line number by the
 | |
| 	 * isokendpt_d macro if DEBUG_ENABLE_IPC_WARNINGS is defined,
 | |
| 	 * otherwise without. This allows us to print the where the
 | |
| 	 * conversion was attempted, making the errors verbose without
 | |
| 	 * adding code for that at every call.
 | |
| 	 * 
 | |
| 	 * If fatalflag is nonzero, we must panic if the conversion doesn't
 | |
| 	 * succeed.
 | |
| 	 */
 | |
| 	*p = _ENDPOINT_P(e);
 | |
| 	if(!isokprocn(*p)) {
 | |
| #if DEBUG_ENABLE_IPC_WARNINGS
 | |
| #if 0
 | |
| 		kprintf("kernel:%s:%d: bad endpoint %d: proc %d out of range\n",
 | |
| 		file, line, e, *p);
 | |
| #endif
 | |
| #endif
 | |
| 	} else if(isemptyn(*p)) {
 | |
| #if DEBUG_ENABLE_IPC_WARNINGS
 | |
| #if 0
 | |
| 	kprintf("kernel:%s:%d: bad endpoint %d: proc %d empty\n", file, line, e, *p);
 | |
| #endif
 | |
| #endif
 | |
| 	} else if(proc_addr(*p)->p_endpoint != e) {
 | |
| #if DEBUG_ENABLE_IPC_WARNINGS
 | |
| #if 0
 | |
| 		kprintf("kernel:%s:%d: bad endpoint %d: proc %d has ept %d (generation %d vs. %d)\n", file, line,
 | |
| 		e, *p, proc_addr(*p)->p_endpoint,
 | |
| 		_ENDPOINT_G(e), _ENDPOINT_G(proc_addr(*p)->p_endpoint));
 | |
| #endif
 | |
| #endif
 | |
| 	} else ok = 1;
 | |
| 	if(!ok && fatalflag) {
 | |
| 		minix_panic("invalid endpoint ", e);
 | |
| 	}
 | |
| 	return ok;
 | |
| }
 | |
| 
 |