119 lines
		
	
	
		
			2.1 KiB
		
	
	
	
		
			C
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			119 lines
		
	
	
		
			2.1 KiB
		
	
	
	
		
			C
		
	
	
		
			Executable File
		
	
	
	
	
| /*
 | |
|  * (c) copyright 1988 by the Vrije Universiteit, Amsterdam, The Netherlands.
 | |
|  * See the copyright notice in the ACK home directory, in the file "Copyright".
 | |
|  *
 | |
|  * Author: Ceriel J.H. Jacobs
 | |
|  */
 | |
| 
 | |
| /* $Header$ */
 | |
| #define __NO_DEFS
 | |
| #include <math.h>
 | |
| #include <pc_err.h>
 | |
| extern	_trp();
 | |
| 
 | |
| #if __STDC__
 | |
| #include <float.h>
 | |
| #include <pc_math.h>
 | |
| #define M_MIN_D	DBL_MIN
 | |
| #define M_MAX_D	DBL_MAX
 | |
| #define M_DMINEXP DBL_MIN_EXP
 | |
| #endif
 | |
| #undef HUGE
 | |
| #define HUGE	HUGE_VAL
 | |
| 
 | |
| static double
 | |
| Ldexp(fl,exp)
 | |
| 	double fl;
 | |
| 	int exp;
 | |
| {
 | |
| 	extern double _fef();
 | |
| 	int sign = 1;
 | |
| 	int currexp;
 | |
| 
 | |
| 	if (fl<0) {
 | |
| 		fl = -fl;
 | |
| 		sign = -1;
 | |
| 	}
 | |
| 	fl = _fef(fl,&currexp);
 | |
| 	exp += currexp;
 | |
| 	if (exp > 0) {
 | |
| 		while (exp>30) {
 | |
| 			fl *= (double) (1L << 30);
 | |
| 			exp -= 30;
 | |
| 		}
 | |
| 		fl *= (double) (1L << exp);
 | |
| 	}
 | |
| 	else	{
 | |
| 		while (exp<-30) {
 | |
| 			fl /= (double) (1L << 30);
 | |
| 			exp += 30;
 | |
| 		}
 | |
| 		fl /= (double) (1L << -exp);
 | |
| 	}
 | |
| 	return sign * fl;
 | |
| }
 | |
| 
 | |
| double
 | |
| _exp(x)
 | |
| 	double x;
 | |
| {
 | |
| 	/*	Algorithm and coefficients from:
 | |
| 			"Software manual for the elementary functions"
 | |
| 			by W.J. Cody and W. Waite, Prentice-Hall, 1980
 | |
| 	*/
 | |
| 
 | |
| 	static double p[] = {
 | |
| 	        0.25000000000000000000e+0,
 | |
| 	        0.75753180159422776666e-2,
 | |
| 		0.31555192765684646356e-4
 | |
| 	};
 | |
| 
 | |
| 	static double q[] = {
 | |
| 	        0.50000000000000000000e+0,
 | |
| 	        0.56817302698551221787e-1,
 | |
| 	        0.63121894374398503557e-3,
 | |
| 		0.75104028399870046114e-6
 | |
| 	};
 | |
| 	double	xn, g;
 | |
| 	int	n;
 | |
| 	int	negative = x < 0;
 | |
| 
 | |
| 	if (x <= M_LN_MIN_D) {
 | |
| 		g = M_MIN_D/4.0;
 | |
| 
 | |
| 		if (g != 0.0) {
 | |
| 			/* unnormalized numbers apparently exist */
 | |
| 			if (x < (M_LN2 * (M_DMINEXP - 53))) return 0.0;
 | |
| 		}
 | |
| 		else {
 | |
| 			if (x < M_LN_MIN_D) return 0.0;
 | |
| 			return M_MIN_D;
 | |
| 		}
 | |
| 	}
 | |
| 	if (x >= M_LN_MAX_D) {
 | |
| 		if (x > M_LN_MAX_D) {
 | |
| 			_trp(EEXP);
 | |
| 			return HUGE;
 | |
| 		}
 | |
| 		return M_MAX_D;
 | |
| 	}
 | |
| 	if (negative) x = -x;
 | |
| 
 | |
| 	n = x * M_LOG2E + 0.5;	/* 1/ln(2) = log2(e), 0.5 added for rounding */
 | |
| 	xn = n;
 | |
| 	{
 | |
| 		double	x1 = (long) x;
 | |
| 		double	x2 = x - x1;
 | |
| 
 | |
| 		g = ((x1-xn*0.693359375)+x2) - xn*(-2.1219444005469058277e-4);
 | |
| 	}
 | |
| 	if (negative) {
 | |
| 		g = -g;
 | |
| 		n = -n;
 | |
| 	}
 | |
| 	xn = g * g;
 | |
| 	x = g * POLYNOM2(xn, p);
 | |
| 	n += 1;
 | |
| 	return (Ldexp(0.5 + x/(POLYNOM3(xn, q) - x), n));
 | |
| }
 | 
