 f14fb60209
			
		
	
	
		f14fb60209
		
	
	
	
	
		
			
			* Updating common/lib * Updating lib/csu * Updating lib/libc * Updating libexec/ld.elf_so * Corrected test on __minix in featuretest to actually follow the meaning of the comment. * Cleaned up _REENTRANT-related defintions. * Disabled -D_REENTRANT for libfetch * Removing some unneeded __NBSD_LIBC defines and tests Change-Id: Ic1394baef74d11b9f86b312f5ff4bbc3cbf72ce2
		
			
				
	
	
		
			1467 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1467 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*	$NetBSD: radixtree.c,v 1.17 2011/11/02 13:49:43 yamt Exp $	*/
 | |
| 
 | |
| /*-
 | |
|  * Copyright (c)2011 YAMAMOTO Takashi,
 | |
|  * All rights reserved.
 | |
|  *
 | |
|  * Redistribution and use in source and binary forms, with or without
 | |
|  * modification, are permitted provided that the following conditions
 | |
|  * are met:
 | |
|  * 1. Redistributions of source code must retain the above copyright
 | |
|  *    notice, this list of conditions and the following disclaimer.
 | |
|  * 2. Redistributions in binary form must reproduce the above copyright
 | |
|  *    notice, this list of conditions and the following disclaimer in the
 | |
|  *    documentation and/or other materials provided with the distribution.
 | |
|  *
 | |
|  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
 | |
|  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 | |
|  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 | |
|  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 | |
|  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 | |
|  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 | |
|  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 | |
|  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 | |
|  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 | |
|  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 | |
|  * SUCH DAMAGE.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * radixtree.c
 | |
|  *
 | |
|  * this is an implementation of radix tree, whose keys are uint64_t and leafs
 | |
|  * are user provided pointers.
 | |
|  *
 | |
|  * leaf nodes are just void * and this implementation doesn't care about
 | |
|  * what they actually point to.  however, this implementation has an assumption
 | |
|  * about their alignment.  specifically, this implementation assumes that their
 | |
|  * 2 LSBs are zero and uses them internally.
 | |
|  *
 | |
|  * intermediate nodes are automatically allocated and freed internally and
 | |
|  * basically users don't need to care about them.  only radix_tree_insert_node
 | |
|  * function can allocate memory for intermediate nodes and thus can fail for
 | |
|  * ENOMEM.
 | |
|  *
 | |
|  * efficiency:
 | |
|  * it's designed to work efficiently with dense index distribution.
 | |
|  * the memory consumption (number of necessary intermediate nodes)
 | |
|  * heavily depends on index distribution.  basically, more dense index
 | |
|  * distribution consumes less nodes per item.
 | |
|  * approximately,
 | |
|  * the best case: about RADIX_TREE_PTR_PER_NODE items per intermediate node.
 | |
|  * the worst case: RADIX_TREE_MAX_HEIGHT intermediate nodes per item.
 | |
|  *
 | |
|  * gang lookup:
 | |
|  * this implementation provides a way to lookup many nodes quickly via
 | |
|  * radix_tree_gang_lookup_node function and its varients.
 | |
|  *
 | |
|  * tags:
 | |
|  * this implementation provides tagging functionality to allow quick
 | |
|  * scanning of a subset of leaf nodes.  leaf nodes are untagged when
 | |
|  * inserted into the tree and can be tagged by radix_tree_set_tag function.
 | |
|  * radix_tree_gang_lookup_tagged_node function and its variants returns
 | |
|  * only leaf nodes with the given tag.  to reduce amount of nodes to visit for
 | |
|  * these functions, this implementation keeps tagging information in internal
 | |
|  * intermediate nodes and quickly skips uninterested parts of a tree.
 | |
|  */
 | |
| 
 | |
| #include <sys/cdefs.h>
 | |
| 
 | |
| #if defined(_KERNEL) || defined(_STANDALONE)
 | |
| __KERNEL_RCSID(0, "$NetBSD: radixtree.c,v 1.17 2011/11/02 13:49:43 yamt Exp $");
 | |
| #include <sys/param.h>
 | |
| #include <sys/errno.h>
 | |
| #include <sys/pool.h>
 | |
| #include <sys/radixtree.h>
 | |
| #include <lib/libkern/libkern.h>
 | |
| #if defined(_STANDALONE)
 | |
| #include <lib/libsa/stand.h>
 | |
| #endif /* defined(_STANDALONE) */
 | |
| #else /* defined(_KERNEL) || defined(_STANDALONE) */
 | |
| __RCSID("$NetBSD: radixtree.c,v 1.17 2011/11/02 13:49:43 yamt Exp $");
 | |
| #include <assert.h>
 | |
| #include <errno.h>
 | |
| #include <stdbool.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #if 1
 | |
| #define KASSERT assert
 | |
| #else
 | |
| #define KASSERT(a)	/* nothing */
 | |
| #endif
 | |
| #endif /* defined(_KERNEL) || defined(_STANDALONE) */
 | |
| 
 | |
| #include <sys/radixtree.h>
 | |
| 
 | |
| #define	RADIX_TREE_BITS_PER_HEIGHT	4	/* XXX tune */
 | |
| #define	RADIX_TREE_PTR_PER_NODE		(1 << RADIX_TREE_BITS_PER_HEIGHT)
 | |
| #define	RADIX_TREE_MAX_HEIGHT		(64 / RADIX_TREE_BITS_PER_HEIGHT)
 | |
| #define	RADIX_TREE_INVALID_HEIGHT	(RADIX_TREE_MAX_HEIGHT + 1)
 | |
| __CTASSERT((64 % RADIX_TREE_BITS_PER_HEIGHT) == 0);
 | |
| 
 | |
| __CTASSERT(((1 << RADIX_TREE_TAG_ID_MAX) & (sizeof(int) - 1)) == 0);
 | |
| #define	RADIX_TREE_TAG_MASK	((1 << RADIX_TREE_TAG_ID_MAX) - 1)
 | |
| 
 | |
| static inline void *
 | |
| entry_ptr(void *p)
 | |
| {
 | |
| 
 | |
| 	return (void *)((uintptr_t)p & ~RADIX_TREE_TAG_MASK);
 | |
| }
 | |
| 
 | |
| static inline unsigned int
 | |
| entry_tagmask(void *p)
 | |
| {
 | |
| 
 | |
| 	return (uintptr_t)p & RADIX_TREE_TAG_MASK;
 | |
| }
 | |
| 
 | |
| static inline void *
 | |
| entry_compose(void *p, unsigned int tagmask)
 | |
| {
 | |
| 
 | |
| 	return (void *)((uintptr_t)p | tagmask);
 | |
| }
 | |
| 
 | |
| static inline bool
 | |
| entry_match_p(void *p, unsigned int tagmask)
 | |
| {
 | |
| 
 | |
| 	KASSERT(entry_ptr(p) != NULL || entry_tagmask(p) == 0);
 | |
| 	if (p == NULL) {
 | |
| 		return false;
 | |
| 	}
 | |
| 	if (tagmask == 0) {
 | |
| 		return true;
 | |
| 	}
 | |
| 	return (entry_tagmask(p) & tagmask) != 0;
 | |
| }
 | |
| 
 | |
| static inline unsigned int
 | |
| tagid_to_mask(radix_tree_tagid_t id)
 | |
| {
 | |
| 
 | |
| 	KASSERT(id >= 0);
 | |
| 	KASSERT(id < RADIX_TREE_TAG_ID_MAX);
 | |
| 	return 1U << id;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * radix_tree_node: an intermediate node
 | |
|  *
 | |
|  * we don't care the type of leaf nodes.  they are just void *.
 | |
|  */
 | |
| 
 | |
| struct radix_tree_node {
 | |
| 	void *n_ptrs[RADIX_TREE_PTR_PER_NODE];
 | |
| 	unsigned int n_nptrs;	/* # of non-NULL pointers in n_ptrs */
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * any_children_tagmask:
 | |
|  *
 | |
|  * return OR'ed tagmask of the given node's children.
 | |
|  */
 | |
| 
 | |
| static unsigned int
 | |
| any_children_tagmask(const struct radix_tree_node *n)
 | |
| {
 | |
| 	unsigned int mask;
 | |
| 	int i;
 | |
| 
 | |
| 	mask = 0;
 | |
| 	for (i = 0; i < RADIX_TREE_PTR_PER_NODE; i++) {
 | |
| 		mask |= (unsigned int)(uintptr_t)n->n_ptrs[i];
 | |
| 	}
 | |
| 	return mask & RADIX_TREE_TAG_MASK;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * p_refs[0].pptr == &t->t_root
 | |
|  *	:
 | |
|  * p_refs[n].pptr == &(*p_refs[n-1])->n_ptrs[x]
 | |
|  *	:
 | |
|  *	:
 | |
|  * p_refs[t->t_height].pptr == &leaf_pointer
 | |
|  */
 | |
| 
 | |
| struct radix_tree_path {
 | |
| 	struct radix_tree_node_ref {
 | |
| 		void **pptr;
 | |
| 	} p_refs[RADIX_TREE_MAX_HEIGHT + 1]; /* +1 for the root ptr */
 | |
| 	/*
 | |
| 	 * p_lastidx is either the index of the last valid element of p_refs[]
 | |
| 	 * or RADIX_TREE_INVALID_HEIGHT.
 | |
| 	 * RADIX_TREE_INVALID_HEIGHT means that radix_tree_lookup_ptr found
 | |
| 	 * that the height of the tree is not enough to cover the given index.
 | |
| 	 */
 | |
| 	unsigned int p_lastidx;
 | |
| };
 | |
| 
 | |
| static inline void **
 | |
| path_pptr(const struct radix_tree *t, const struct radix_tree_path *p,
 | |
|     unsigned int height)
 | |
| {
 | |
| 
 | |
| 	KASSERT(height <= t->t_height);
 | |
| 	return p->p_refs[height].pptr;
 | |
| }
 | |
| 
 | |
| static inline struct radix_tree_node *
 | |
| path_node(const struct radix_tree * t, const struct radix_tree_path *p,
 | |
|     unsigned int height)
 | |
| {
 | |
| 
 | |
| 	KASSERT(height <= t->t_height);
 | |
| 	return entry_ptr(*path_pptr(t, p, height));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * radix_tree_init_tree:
 | |
|  *
 | |
|  * initialize a tree.
 | |
|  */
 | |
| 
 | |
| void
 | |
| radix_tree_init_tree(struct radix_tree *t)
 | |
| {
 | |
| 
 | |
| 	t->t_height = 0;
 | |
| 	t->t_root = NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * radix_tree_init_tree:
 | |
|  *
 | |
|  * clean up a tree.
 | |
|  */
 | |
| 
 | |
| void
 | |
| radix_tree_fini_tree(struct radix_tree *t)
 | |
| {
 | |
| 
 | |
| 	KASSERT(t->t_root == NULL);
 | |
| 	KASSERT(t->t_height == 0);
 | |
| }
 | |
| 
 | |
| bool
 | |
| radix_tree_empty_tree_p(struct radix_tree *t)
 | |
| {
 | |
| 
 | |
| 	return t->t_root == NULL;
 | |
| }
 | |
| 
 | |
| bool
 | |
| radix_tree_empty_tagged_tree_p(struct radix_tree *t, radix_tree_tagid_t tagid)
 | |
| {
 | |
| 	const unsigned int tagmask = tagid_to_mask(tagid);
 | |
| 
 | |
| 	return (entry_tagmask(t->t_root) & tagmask) == 0;
 | |
| }
 | |
| 
 | |
| static void
 | |
| radix_tree_node_init(struct radix_tree_node *n)
 | |
| {
 | |
| 
 | |
| 	memset(n, 0, sizeof(*n));
 | |
| }
 | |
| 
 | |
| #if defined(_KERNEL)
 | |
| pool_cache_t radix_tree_node_cache __read_mostly;
 | |
| 
 | |
| static int
 | |
| radix_tree_node_ctor(void *dummy, void *item, int flags)
 | |
| {
 | |
| 	struct radix_tree_node *n = item;
 | |
| 
 | |
| 	KASSERT(dummy == NULL);
 | |
| 	radix_tree_node_init(n);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * radix_tree_init:
 | |
|  *
 | |
|  * initialize the subsystem.
 | |
|  */
 | |
| 
 | |
| void
 | |
| radix_tree_init(void)
 | |
| {
 | |
| 
 | |
| 	radix_tree_node_cache = pool_cache_init(sizeof(struct radix_tree_node),
 | |
| 	    0, 0, 0, "radix_tree_node", NULL, IPL_NONE, radix_tree_node_ctor,
 | |
| 	    NULL, NULL);
 | |
| 	KASSERT(radix_tree_node_cache != NULL);
 | |
| }
 | |
| #endif /* defined(_KERNEL) */
 | |
| 
 | |
| static bool __unused
 | |
| radix_tree_node_clean_p(const struct radix_tree_node *n)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	if (n->n_nptrs != 0) {
 | |
| 		return false;
 | |
| 	}
 | |
| 	for (i = 0; i < RADIX_TREE_PTR_PER_NODE; i++) {
 | |
| 		if (n->n_ptrs[i] != NULL) {
 | |
| 			return false;
 | |
| 		}
 | |
| 	}
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static struct radix_tree_node *
 | |
| radix_tree_alloc_node(void)
 | |
| {
 | |
| 	struct radix_tree_node *n;
 | |
| 
 | |
| #if defined(_KERNEL)
 | |
| 	n = pool_cache_get(radix_tree_node_cache, PR_NOWAIT);
 | |
| #else /* defined(_KERNEL) */
 | |
| #if defined(_STANDALONE)
 | |
| 	n = alloc(sizeof(*n));
 | |
| #else /* defined(_STANDALONE) */
 | |
| 	n = malloc(sizeof(*n));
 | |
| #endif /* defined(_STANDALONE) */
 | |
| 	if (n != NULL) {
 | |
| 		radix_tree_node_init(n);
 | |
| 	}
 | |
| #endif /* defined(_KERNEL) */
 | |
| 	KASSERT(n == NULL || radix_tree_node_clean_p(n));
 | |
| 	return n;
 | |
| }
 | |
| 
 | |
| static void
 | |
| radix_tree_free_node(struct radix_tree_node *n)
 | |
| {
 | |
| 
 | |
| 	KASSERT(radix_tree_node_clean_p(n));
 | |
| #if defined(_KERNEL)
 | |
| 	pool_cache_put(radix_tree_node_cache, n);
 | |
| #elif defined(_STANDALONE)
 | |
| 	dealloc(n, sizeof(*n));
 | |
| #else
 | |
| 	free(n);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static int
 | |
| radix_tree_grow(struct radix_tree *t, unsigned int newheight)
 | |
| {
 | |
| 	const unsigned int tagmask = entry_tagmask(t->t_root);
 | |
| 
 | |
| 	KASSERT(newheight <= 64 / RADIX_TREE_BITS_PER_HEIGHT);
 | |
| 	if (t->t_root == NULL) {
 | |
| 		t->t_height = newheight;
 | |
| 		return 0;
 | |
| 	}
 | |
| 	while (t->t_height < newheight) {
 | |
| 		struct radix_tree_node *n;
 | |
| 
 | |
| 		n = radix_tree_alloc_node();
 | |
| 		if (n == NULL) {
 | |
| 			/*
 | |
| 			 * don't bother to revert our changes.
 | |
| 			 * the caller will likely retry.
 | |
| 			 */
 | |
| 			return ENOMEM;
 | |
| 		}
 | |
| 		n->n_nptrs = 1;
 | |
| 		n->n_ptrs[0] = t->t_root;
 | |
| 		t->t_root = entry_compose(n, tagmask);
 | |
| 		t->t_height++;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * radix_tree_lookup_ptr:
 | |
|  *
 | |
|  * an internal helper function used for various exported functions.
 | |
|  *
 | |
|  * return the pointer to store the node for the given index.
 | |
|  *
 | |
|  * if alloc is true, try to allocate the storage.  (note for _KERNEL:
 | |
|  * in that case, this function can block.)  if the allocation failed or
 | |
|  * alloc is false, return NULL.
 | |
|  *
 | |
|  * if path is not NULL, fill it for the caller's investigation.
 | |
|  *
 | |
|  * if tagmask is not zero, search only for nodes with the tag set.
 | |
|  * note that, however, this function doesn't check the tagmask for the leaf
 | |
|  * pointer.  it's a caller's responsibility to investigate the value which
 | |
|  * is pointed by the returned pointer if necessary.
 | |
|  *
 | |
|  * while this function is a bit large, as it's called with some constant
 | |
|  * arguments, inlining might have benefits.  anyway, a compiler will decide.
 | |
|  */
 | |
| 
 | |
| static inline void **
 | |
| radix_tree_lookup_ptr(struct radix_tree *t, uint64_t idx,
 | |
|     struct radix_tree_path *path, bool alloc, const unsigned int tagmask)
 | |
| {
 | |
| 	struct radix_tree_node *n;
 | |
| 	int hshift = RADIX_TREE_BITS_PER_HEIGHT * t->t_height;
 | |
| 	int shift;
 | |
| 	void **vpp;
 | |
| 	const uint64_t mask = (UINT64_C(1) << RADIX_TREE_BITS_PER_HEIGHT) - 1;
 | |
| 	struct radix_tree_node_ref *refs = NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * check unsupported combinations
 | |
| 	 */
 | |
| 	KASSERT(tagmask == 0 || !alloc);
 | |
| 	KASSERT(path == NULL || !alloc);
 | |
| 	vpp = &t->t_root;
 | |
| 	if (path != NULL) {
 | |
| 		refs = path->p_refs;
 | |
| 		refs->pptr = vpp;
 | |
| 	}
 | |
| 	n = NULL;
 | |
| 	for (shift = 64 - RADIX_TREE_BITS_PER_HEIGHT; shift >= 0;) {
 | |
| 		struct radix_tree_node *c;
 | |
| 		void *entry;
 | |
| 		const uint64_t i = (idx >> shift) & mask;
 | |
| 
 | |
| 		if (shift >= hshift) {
 | |
| 			unsigned int newheight;
 | |
| 
 | |
| 			KASSERT(vpp == &t->t_root);
 | |
| 			if (i == 0) {
 | |
| 				shift -= RADIX_TREE_BITS_PER_HEIGHT;
 | |
| 				continue;
 | |
| 			}
 | |
| 			if (!alloc) {
 | |
| 				if (path != NULL) {
 | |
| 					KASSERT((refs - path->p_refs) == 0);
 | |
| 					path->p_lastidx =
 | |
| 					    RADIX_TREE_INVALID_HEIGHT;
 | |
| 				}
 | |
| 				return NULL;
 | |
| 			}
 | |
| 			newheight = shift / RADIX_TREE_BITS_PER_HEIGHT + 1;
 | |
| 			if (radix_tree_grow(t, newheight)) {
 | |
| 				return NULL;
 | |
| 			}
 | |
| 			hshift = RADIX_TREE_BITS_PER_HEIGHT * t->t_height;
 | |
| 		}
 | |
| 		entry = *vpp;
 | |
| 		c = entry_ptr(entry);
 | |
| 		if (c == NULL ||
 | |
| 		    (tagmask != 0 &&
 | |
| 		    (entry_tagmask(entry) & tagmask) == 0)) {
 | |
| 			if (!alloc) {
 | |
| 				if (path != NULL) {
 | |
| 					path->p_lastidx = refs - path->p_refs;
 | |
| 				}
 | |
| 				return NULL;
 | |
| 			}
 | |
| 			c = radix_tree_alloc_node();
 | |
| 			if (c == NULL) {
 | |
| 				return NULL;
 | |
| 			}
 | |
| 			*vpp = c;
 | |
| 			if (n != NULL) {
 | |
| 				KASSERT(n->n_nptrs < RADIX_TREE_PTR_PER_NODE);
 | |
| 				n->n_nptrs++;
 | |
| 			}
 | |
| 		}
 | |
| 		n = c;
 | |
| 		vpp = &n->n_ptrs[i];
 | |
| 		if (path != NULL) {
 | |
| 			refs++;
 | |
| 			refs->pptr = vpp;
 | |
| 		}
 | |
| 		shift -= RADIX_TREE_BITS_PER_HEIGHT;
 | |
| 	}
 | |
| 	if (alloc) {
 | |
| 		KASSERT(*vpp == NULL);
 | |
| 		if (n != NULL) {
 | |
| 			KASSERT(n->n_nptrs < RADIX_TREE_PTR_PER_NODE);
 | |
| 			n->n_nptrs++;
 | |
| 		}
 | |
| 	}
 | |
| 	if (path != NULL) {
 | |
| 		path->p_lastidx = refs - path->p_refs;
 | |
| 	}
 | |
| 	return vpp;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * radix_tree_insert_node:
 | |
|  *
 | |
|  * insert the node at idx.
 | |
|  * it's illegal to insert NULL.
 | |
|  * it's illegal to insert a non-aligned pointer.
 | |
|  *
 | |
|  * this function returns ENOMEM if necessary memory allocation failed.
 | |
|  * otherwise, this function returns 0.
 | |
|  *
 | |
|  * note that inserting a node can involves memory allocation for intermediate
 | |
|  * nodes.  if _KERNEL, it's done with no-sleep IPL_NONE memory allocation.
 | |
|  *
 | |
|  * for the newly inserted node, all tags are cleared.
 | |
|  */
 | |
| 
 | |
| int
 | |
| radix_tree_insert_node(struct radix_tree *t, uint64_t idx, void *p)
 | |
| {
 | |
| 	void **vpp;
 | |
| 
 | |
| 	KASSERT(p != NULL);
 | |
| 	KASSERT(entry_compose(p, 0) == p);
 | |
| 	vpp = radix_tree_lookup_ptr(t, idx, NULL, true, 0);
 | |
| 	if (vpp == NULL) {
 | |
| 		return ENOMEM;
 | |
| 	}
 | |
| 	KASSERT(*vpp == NULL);
 | |
| 	*vpp = p;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * radix_tree_replace_node:
 | |
|  *
 | |
|  * replace a node at the given index with the given node.
 | |
|  * return the old node.
 | |
|  * it's illegal to try to replace a node which has not been inserted.
 | |
|  *
 | |
|  * this function doesn't change tags.
 | |
|  */
 | |
| 
 | |
| void *
 | |
| radix_tree_replace_node(struct radix_tree *t, uint64_t idx, void *p)
 | |
| {
 | |
| 	void **vpp;
 | |
| 	void *oldp;
 | |
| 
 | |
| 	KASSERT(p != NULL);
 | |
| 	KASSERT(entry_compose(p, 0) == p);
 | |
| 	vpp = radix_tree_lookup_ptr(t, idx, NULL, false, 0);
 | |
| 	KASSERT(vpp != NULL);
 | |
| 	oldp = *vpp;
 | |
| 	KASSERT(oldp != NULL);
 | |
| 	*vpp = entry_compose(p, entry_tagmask(*vpp));
 | |
| 	return entry_ptr(oldp);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * radix_tree_remove_node:
 | |
|  *
 | |
|  * remove the node at idx.
 | |
|  * it's illegal to try to remove a node which has not been inserted.
 | |
|  */
 | |
| 
 | |
| void *
 | |
| radix_tree_remove_node(struct radix_tree *t, uint64_t idx)
 | |
| {
 | |
| 	struct radix_tree_path path;
 | |
| 	void **vpp;
 | |
| 	void *oldp;
 | |
| 	int i;
 | |
| 
 | |
| 	vpp = radix_tree_lookup_ptr(t, idx, &path, false, 0);
 | |
| 	KASSERT(vpp != NULL);
 | |
| 	oldp = *vpp;
 | |
| 	KASSERT(oldp != NULL);
 | |
| 	KASSERT(path.p_lastidx == t->t_height);
 | |
| 	KASSERT(vpp == path_pptr(t, &path, path.p_lastidx));
 | |
| 	*vpp = NULL;
 | |
| 	for (i = t->t_height - 1; i >= 0; i--) {
 | |
| 		void *entry;
 | |
| 		struct radix_tree_node ** const pptr =
 | |
| 		    (struct radix_tree_node **)path_pptr(t, &path, i);
 | |
| 		struct radix_tree_node *n;
 | |
| 
 | |
| 		KASSERT(pptr != NULL);
 | |
| 		entry = *pptr;
 | |
| 		n = entry_ptr(entry);
 | |
| 		KASSERT(n != NULL);
 | |
| 		KASSERT(n->n_nptrs > 0);
 | |
| 		n->n_nptrs--;
 | |
| 		if (n->n_nptrs > 0) {
 | |
| 			break;
 | |
| 		}
 | |
| 		radix_tree_free_node(n);
 | |
| 		*pptr = NULL;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * fix up height
 | |
| 	 */
 | |
| 	if (i < 0) {
 | |
| 		KASSERT(t->t_root == NULL);
 | |
| 		t->t_height = 0;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * update tags
 | |
| 	 */
 | |
| 	for (; i >= 0; i--) {
 | |
| 		void *entry;
 | |
| 		struct radix_tree_node ** const pptr =
 | |
| 		    (struct radix_tree_node **)path_pptr(t, &path, i);
 | |
| 		struct radix_tree_node *n;
 | |
| 		unsigned int newmask;
 | |
| 
 | |
| 		KASSERT(pptr != NULL);
 | |
| 		entry = *pptr;
 | |
| 		n = entry_ptr(entry);
 | |
| 		KASSERT(n != NULL);
 | |
| 		KASSERT(n->n_nptrs > 0);
 | |
| 		newmask = any_children_tagmask(n);
 | |
| 		if (newmask == entry_tagmask(entry)) {
 | |
| 			break;
 | |
| 		}
 | |
| 		*pptr = entry_compose(n, newmask);
 | |
| 	}
 | |
| 	/*
 | |
| 	 * XXX is it worth to try to reduce height?
 | |
| 	 * if we do that, make radix_tree_grow rollback its change as well.
 | |
| 	 */
 | |
| 	return entry_ptr(oldp);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * radix_tree_lookup_node:
 | |
|  *
 | |
|  * returns the node at idx.
 | |
|  * returns NULL if nothing is found at idx.
 | |
|  */
 | |
| 
 | |
| void *
 | |
| radix_tree_lookup_node(struct radix_tree *t, uint64_t idx)
 | |
| {
 | |
| 	void **vpp;
 | |
| 
 | |
| 	vpp = radix_tree_lookup_ptr(t, idx, NULL, false, 0);
 | |
| 	if (vpp == NULL) {
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	return entry_ptr(*vpp);
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| gang_lookup_init(struct radix_tree *t, uint64_t idx,
 | |
|     struct radix_tree_path *path, const unsigned int tagmask)
 | |
| {
 | |
| 	void **vpp;
 | |
| 
 | |
| 	vpp = radix_tree_lookup_ptr(t, idx, path, false, tagmask);
 | |
| 	KASSERT(vpp == NULL ||
 | |
| 	    vpp == path_pptr(t, path, path->p_lastidx));
 | |
| 	KASSERT(&t->t_root == path_pptr(t, path, 0));
 | |
| 	KASSERT(path->p_lastidx == RADIX_TREE_INVALID_HEIGHT ||
 | |
| 	   path->p_lastidx == t->t_height ||
 | |
| 	   !entry_match_p(*path_pptr(t, path, path->p_lastidx), tagmask));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * gang_lookup_scan:
 | |
|  *
 | |
|  * a helper routine for radix_tree_gang_lookup_node and its variants.
 | |
|  */
 | |
| 
 | |
| static inline unsigned int
 | |
| __attribute__((__always_inline__))
 | |
| gang_lookup_scan(struct radix_tree *t, struct radix_tree_path *path,
 | |
|     void **results, unsigned int maxresults, const unsigned int tagmask,
 | |
|     bool reverse)
 | |
| {
 | |
| 
 | |
| 	/*
 | |
| 	 * we keep the path updated only for lastidx-1.
 | |
| 	 * vpp is what path_pptr(t, path, lastidx) would be.
 | |
| 	 */
 | |
| 	void **vpp;
 | |
| 	unsigned int nfound;
 | |
| 	unsigned int lastidx;
 | |
| 	/*
 | |
| 	 * set up scan direction dependant constants so that we can iterate
 | |
| 	 * n_ptrs as the following.
 | |
| 	 *
 | |
| 	 *	for (i = first; i != guard; i += step)
 | |
| 	 *		visit n->n_ptrs[i];
 | |
| 	 */
 | |
| 	const int step = reverse ? -1 : 1;
 | |
| 	const unsigned int first = reverse ? RADIX_TREE_PTR_PER_NODE - 1 : 0;
 | |
| 	const unsigned int last = reverse ? 0 : RADIX_TREE_PTR_PER_NODE - 1;
 | |
| 	const unsigned int guard = last + step;
 | |
| 
 | |
| 	KASSERT(maxresults > 0);
 | |
| 	KASSERT(&t->t_root == path_pptr(t, path, 0));
 | |
| 	lastidx = path->p_lastidx;
 | |
| 	KASSERT(lastidx == RADIX_TREE_INVALID_HEIGHT ||
 | |
| 	   lastidx == t->t_height ||
 | |
| 	   !entry_match_p(*path_pptr(t, path, lastidx), tagmask));
 | |
| 	nfound = 0;
 | |
| 	if (lastidx == RADIX_TREE_INVALID_HEIGHT) {
 | |
| 		if (reverse) {
 | |
| 			lastidx = 0;
 | |
| 			vpp = path_pptr(t, path, lastidx);
 | |
| 			goto descend;
 | |
| 		}
 | |
| 		return 0;
 | |
| 	}
 | |
| 	vpp = path_pptr(t, path, lastidx);
 | |
| 	while (/*CONSTCOND*/true) {
 | |
| 		struct radix_tree_node *n;
 | |
| 		unsigned int i;
 | |
| 
 | |
| 		if (entry_match_p(*vpp, tagmask)) {
 | |
| 			KASSERT(lastidx == t->t_height);
 | |
| 			/*
 | |
| 			 * record the matching non-NULL leaf.
 | |
| 			 */
 | |
| 			results[nfound] = entry_ptr(*vpp);
 | |
| 			nfound++;
 | |
| 			if (nfound == maxresults) {
 | |
| 				return nfound;
 | |
| 			}
 | |
| 		}
 | |
| scan_siblings:
 | |
| 		/*
 | |
| 		 * try to find the next matching non-NULL sibling.
 | |
| 		 */
 | |
| 		if (lastidx == 0) {
 | |
| 			/*
 | |
| 			 * the root has no siblings.
 | |
| 			 * we've done.
 | |
| 			 */
 | |
| 			KASSERT(vpp == &t->t_root);
 | |
| 			break;
 | |
| 		}
 | |
| 		n = path_node(t, path, lastidx - 1);
 | |
| 		if (*vpp != NULL && n->n_nptrs == 1) {
 | |
| 			/*
 | |
| 			 * optimization; if the node has only a single pointer
 | |
| 			 * and we've already visited it, there's no point to
 | |
| 			 * keep scanning in this node.
 | |
| 			 */
 | |
| 			goto no_siblings;
 | |
| 		}
 | |
| 		for (i = vpp - n->n_ptrs + step; i != guard; i += step) {
 | |
| 			KASSERT(i < RADIX_TREE_PTR_PER_NODE);
 | |
| 			if (entry_match_p(n->n_ptrs[i], tagmask)) {
 | |
| 				vpp = &n->n_ptrs[i];
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 		if (i == guard) {
 | |
| no_siblings:
 | |
| 			/*
 | |
| 			 * not found.  go to parent.
 | |
| 			 */
 | |
| 			lastidx--;
 | |
| 			vpp = path_pptr(t, path, lastidx);
 | |
| 			goto scan_siblings;
 | |
| 		}
 | |
| descend:
 | |
| 		/*
 | |
| 		 * following the left-most (or right-most in the case of
 | |
| 		 * reverse scan) child node, decend until reaching the leaf or
 | |
| 		 * an non-matching entry.
 | |
| 		 */
 | |
| 		while (entry_match_p(*vpp, tagmask) && lastidx < t->t_height) {
 | |
| 			/*
 | |
| 			 * save vpp in the path so that we can come back to this
 | |
| 			 * node after finishing visiting children.
 | |
| 			 */
 | |
| 			path->p_refs[lastidx].pptr = vpp;
 | |
| 			n = entry_ptr(*vpp);
 | |
| 			vpp = &n->n_ptrs[first];
 | |
| 			lastidx++;
 | |
| 		}
 | |
| 	}
 | |
| 	return nfound;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * radix_tree_gang_lookup_node:
 | |
|  *
 | |
|  * search nodes starting from idx in the ascending order.
 | |
|  * results should be an array large enough to hold maxresults pointers.
 | |
|  * returns the number of nodes found, up to maxresults.
 | |
|  * returning less than maxresults means there are no more nodes.
 | |
|  *
 | |
|  * the result of this function is semantically equivalent to what could be
 | |
|  * obtained by repeated calls of radix_tree_lookup_node with increasing index.
 | |
|  * but this function is much faster when node indexes are distributed sparsely.
 | |
|  *
 | |
|  * note that this function doesn't return exact values of node indexes of
 | |
|  * found nodes.  if they are important for a caller, it's the caller's
 | |
|  * responsibility to check them, typically by examinining the returned nodes
 | |
|  * using some caller-specific knowledge about them.
 | |
|  */
 | |
| 
 | |
| unsigned int
 | |
| radix_tree_gang_lookup_node(struct radix_tree *t, uint64_t idx,
 | |
|     void **results, unsigned int maxresults)
 | |
| {
 | |
| 	struct radix_tree_path path;
 | |
| 
 | |
| 	gang_lookup_init(t, idx, &path, 0);
 | |
| 	return gang_lookup_scan(t, &path, results, maxresults, 0, false);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * radix_tree_gang_lookup_node_reverse:
 | |
|  *
 | |
|  * same as radix_tree_gang_lookup_node except that this one scans the
 | |
|  * tree in the reverse order.  ie. descending index values.
 | |
|  */
 | |
| 
 | |
| unsigned int
 | |
| radix_tree_gang_lookup_node_reverse(struct radix_tree *t, uint64_t idx,
 | |
|     void **results, unsigned int maxresults)
 | |
| {
 | |
| 	struct radix_tree_path path;
 | |
| 
 | |
| 	gang_lookup_init(t, idx, &path, 0);
 | |
| 	return gang_lookup_scan(t, &path, results, maxresults, 0, true);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * radix_tree_gang_lookup_tagged_node:
 | |
|  *
 | |
|  * same as radix_tree_gang_lookup_node except that this one only returns
 | |
|  * nodes tagged with tagid.
 | |
|  */
 | |
| 
 | |
| unsigned int
 | |
| radix_tree_gang_lookup_tagged_node(struct radix_tree *t, uint64_t idx,
 | |
|     void **results, unsigned int maxresults, radix_tree_tagid_t tagid)
 | |
| {
 | |
| 	struct radix_tree_path path;
 | |
| 	const unsigned int tagmask = tagid_to_mask(tagid);
 | |
| 
 | |
| 	gang_lookup_init(t, idx, &path, tagmask);
 | |
| 	return gang_lookup_scan(t, &path, results, maxresults, tagmask, false);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * radix_tree_gang_lookup_tagged_node_reverse:
 | |
|  *
 | |
|  * same as radix_tree_gang_lookup_tagged_node except that this one scans the
 | |
|  * tree in the reverse order.  ie. descending index values.
 | |
|  */
 | |
| 
 | |
| unsigned int
 | |
| radix_tree_gang_lookup_tagged_node_reverse(struct radix_tree *t, uint64_t idx,
 | |
|     void **results, unsigned int maxresults, radix_tree_tagid_t tagid)
 | |
| {
 | |
| 	struct radix_tree_path path;
 | |
| 	const unsigned int tagmask = tagid_to_mask(tagid);
 | |
| 
 | |
| 	gang_lookup_init(t, idx, &path, tagmask);
 | |
| 	return gang_lookup_scan(t, &path, results, maxresults, tagmask, true);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * radix_tree_get_tag:
 | |
|  *
 | |
|  * return if the tag is set for the node at the given index.  (true if set)
 | |
|  * it's illegal to call this function for a node which has not been inserted.
 | |
|  */
 | |
| 
 | |
| bool
 | |
| radix_tree_get_tag(struct radix_tree *t, uint64_t idx,
 | |
|     radix_tree_tagid_t tagid)
 | |
| {
 | |
| #if 1
 | |
| 	const unsigned int tagmask = tagid_to_mask(tagid);
 | |
| 	void **vpp;
 | |
| 
 | |
| 	vpp = radix_tree_lookup_ptr(t, idx, NULL, false, tagmask);
 | |
| 	if (vpp == NULL) {
 | |
| 		return false;
 | |
| 	}
 | |
| 	KASSERT(*vpp != NULL);
 | |
| 	return (entry_tagmask(*vpp) & tagmask) != 0;
 | |
| #else
 | |
| 	const unsigned int tagmask = tagid_to_mask(tagid);
 | |
| 	void **vpp;
 | |
| 
 | |
| 	vpp = radix_tree_lookup_ptr(t, idx, NULL, false, 0);
 | |
| 	KASSERT(vpp != NULL);
 | |
| 	return (entry_tagmask(*vpp) & tagmask) != 0;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * radix_tree_set_tag:
 | |
|  *
 | |
|  * set the tag for the node at the given index.
 | |
|  * it's illegal to call this function for a node which has not been inserted.
 | |
|  */
 | |
| 
 | |
| void
 | |
| radix_tree_set_tag(struct radix_tree *t, uint64_t idx,
 | |
|     radix_tree_tagid_t tagid)
 | |
| {
 | |
| 	struct radix_tree_path path;
 | |
| 	const unsigned int tagmask = tagid_to_mask(tagid);
 | |
| 	void **vpp;
 | |
| 	int i;
 | |
| 
 | |
| 	vpp = radix_tree_lookup_ptr(t, idx, &path, false, 0);
 | |
| 	KASSERT(vpp != NULL);
 | |
| 	KASSERT(*vpp != NULL);
 | |
| 	KASSERT(path.p_lastidx == t->t_height);
 | |
| 	KASSERT(vpp == path_pptr(t, &path, path.p_lastidx));
 | |
| 	for (i = t->t_height; i >= 0; i--) {
 | |
| 		void ** const pptr = (void **)path_pptr(t, &path, i);
 | |
| 		void *entry;
 | |
| 
 | |
| 		KASSERT(pptr != NULL);
 | |
| 		entry = *pptr;
 | |
| 		if ((entry_tagmask(entry) & tagmask) != 0) {
 | |
| 			break;
 | |
| 		}
 | |
| 		*pptr = (void *)((uintptr_t)entry | tagmask);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * radix_tree_clear_tag:
 | |
|  *
 | |
|  * clear the tag for the node at the given index.
 | |
|  * it's illegal to call this function for a node which has not been inserted.
 | |
|  */
 | |
| 
 | |
| void
 | |
| radix_tree_clear_tag(struct radix_tree *t, uint64_t idx,
 | |
|     radix_tree_tagid_t tagid)
 | |
| {
 | |
| 	struct radix_tree_path path;
 | |
| 	const unsigned int tagmask = tagid_to_mask(tagid);
 | |
| 	void **vpp;
 | |
| 	int i;
 | |
| 
 | |
| 	vpp = radix_tree_lookup_ptr(t, idx, &path, false, 0);
 | |
| 	KASSERT(vpp != NULL);
 | |
| 	KASSERT(*vpp != NULL);
 | |
| 	KASSERT(path.p_lastidx == t->t_height);
 | |
| 	KASSERT(vpp == path_pptr(t, &path, path.p_lastidx));
 | |
| 	/*
 | |
| 	 * if already cleared, nothing to do
 | |
| 	 */
 | |
| 	if ((entry_tagmask(*vpp) & tagmask) == 0) {
 | |
| 		return;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * clear the tag only if no children have the tag.
 | |
| 	 */
 | |
| 	for (i = t->t_height; i >= 0; i--) {
 | |
| 		void ** const pptr = (void **)path_pptr(t, &path, i);
 | |
| 		void *entry;
 | |
| 
 | |
| 		KASSERT(pptr != NULL);
 | |
| 		entry = *pptr;
 | |
| 		KASSERT((entry_tagmask(entry) & tagmask) != 0);
 | |
| 		*pptr = entry_compose(entry_ptr(entry),
 | |
| 		    entry_tagmask(entry) & ~tagmask);
 | |
| 		/*
 | |
| 		 * check if we should proceed to process the next level.
 | |
| 		 */
 | |
| 		if (0 < i) {
 | |
| 			struct radix_tree_node *n = path_node(t, &path, i - 1);
 | |
| 
 | |
| 			if ((any_children_tagmask(n) & tagmask) != 0) {
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #if defined(UNITTEST)
 | |
| 
 | |
| #include <inttypes.h>
 | |
| #include <stdio.h>
 | |
| 
 | |
| static void
 | |
| radix_tree_dump_node(const struct radix_tree *t, void *vp,
 | |
|     uint64_t offset, unsigned int height)
 | |
| {
 | |
| 	struct radix_tree_node *n;
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	for (i = 0; i < t->t_height - height; i++) {
 | |
| 		printf(" ");
 | |
| 	}
 | |
| 	if (entry_tagmask(vp) == 0) {
 | |
| 		printf("[%" PRIu64 "] %p", offset, entry_ptr(vp));
 | |
| 	} else {
 | |
| 		printf("[%" PRIu64 "] %p (tagmask=0x%x)", offset, entry_ptr(vp),
 | |
| 		    entry_tagmask(vp));
 | |
| 	}
 | |
| 	if (height == 0) {
 | |
| 		printf(" (leaf)\n");
 | |
| 		return;
 | |
| 	}
 | |
| 	n = entry_ptr(vp);
 | |
| 	assert(any_children_tagmask(n) == entry_tagmask(vp));
 | |
| 	printf(" (%u children)\n", n->n_nptrs);
 | |
| 	for (i = 0; i < __arraycount(n->n_ptrs); i++) {
 | |
| 		void *c;
 | |
| 
 | |
| 		c = n->n_ptrs[i];
 | |
| 		if (c == NULL) {
 | |
| 			continue;
 | |
| 		}
 | |
| 		radix_tree_dump_node(t, c,
 | |
| 		    offset + i * (UINT64_C(1) <<
 | |
| 		    (RADIX_TREE_BITS_PER_HEIGHT * (height - 1))), height - 1);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void radix_tree_dump(const struct radix_tree *);
 | |
| 
 | |
| void
 | |
| radix_tree_dump(const struct radix_tree *t)
 | |
| {
 | |
| 
 | |
| 	printf("tree %p height=%u\n", t, t->t_height);
 | |
| 	radix_tree_dump_node(t, t->t_root, 0, t->t_height);
 | |
| }
 | |
| 
 | |
| static void
 | |
| test1(void)
 | |
| {
 | |
| 	struct radix_tree s;
 | |
| 	struct radix_tree *t = &s;
 | |
| 	void *results[3];
 | |
| 
 | |
| 	radix_tree_init_tree(t);
 | |
| 	radix_tree_dump(t);
 | |
| 	assert(radix_tree_lookup_node(t, 0) == NULL);
 | |
| 	assert(radix_tree_lookup_node(t, 1000) == NULL);
 | |
| 	assert(radix_tree_gang_lookup_node(t, 0, results, 3) == 0);
 | |
| 	assert(radix_tree_gang_lookup_node(t, 1000, results, 3) == 0);
 | |
| 	assert(radix_tree_gang_lookup_node_reverse(t, 0, results, 3) == 0);
 | |
| 	assert(radix_tree_gang_lookup_node_reverse(t, 1000, results, 3) == 0);
 | |
| 	assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 3, 0) == 0);
 | |
| 	assert(radix_tree_gang_lookup_tagged_node(t, 1000, results, 3, 0) == 0);
 | |
| 	assert(radix_tree_gang_lookup_tagged_node_reverse(t, 0, results, 3, 0)
 | |
| 	    == 0);
 | |
| 	assert(radix_tree_gang_lookup_tagged_node_reverse(t, 1000, results, 3,
 | |
| 	    0) == 0);
 | |
| 	assert(radix_tree_empty_tree_p(t));
 | |
| 	assert(radix_tree_empty_tagged_tree_p(t, 0));
 | |
| 	assert(radix_tree_empty_tagged_tree_p(t, 1));
 | |
| 	assert(radix_tree_insert_node(t, 0, (void *)0xdeadbea0) == 0);
 | |
| 	assert(!radix_tree_empty_tree_p(t));
 | |
| 	assert(radix_tree_empty_tagged_tree_p(t, 0));
 | |
| 	assert(radix_tree_empty_tagged_tree_p(t, 1));
 | |
| 	assert(radix_tree_lookup_node(t, 0) == (void *)0xdeadbea0);
 | |
| 	assert(radix_tree_lookup_node(t, 1000) == NULL);
 | |
| 	memset(results, 0, sizeof(results));
 | |
| 	assert(radix_tree_gang_lookup_node(t, 0, results, 3) == 1);
 | |
| 	assert(results[0] == (void *)0xdeadbea0);
 | |
| 	assert(radix_tree_gang_lookup_node(t, 1000, results, 3) == 0);
 | |
| 	memset(results, 0, sizeof(results));
 | |
| 	assert(radix_tree_gang_lookup_node_reverse(t, 0, results, 3) == 1);
 | |
| 	assert(results[0] == (void *)0xdeadbea0);
 | |
| 	memset(results, 0, sizeof(results));
 | |
| 	assert(radix_tree_gang_lookup_node_reverse(t, 1000, results, 3) == 1);
 | |
| 	assert(results[0] == (void *)0xdeadbea0);
 | |
| 	assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 3, 0)
 | |
| 	    == 0);
 | |
| 	assert(radix_tree_gang_lookup_tagged_node_reverse(t, 0, results, 3, 0)
 | |
| 	    == 0);
 | |
| 	assert(radix_tree_insert_node(t, 1000, (void *)0xdeadbea0) == 0);
 | |
| 	assert(radix_tree_remove_node(t, 0) == (void *)0xdeadbea0);
 | |
| 	assert(!radix_tree_empty_tree_p(t));
 | |
| 	radix_tree_dump(t);
 | |
| 	assert(radix_tree_lookup_node(t, 0) == NULL);
 | |
| 	assert(radix_tree_lookup_node(t, 1000) == (void *)0xdeadbea0);
 | |
| 	memset(results, 0, sizeof(results));
 | |
| 	assert(radix_tree_gang_lookup_node(t, 0, results, 3) == 1);
 | |
| 	assert(results[0] == (void *)0xdeadbea0);
 | |
| 	memset(results, 0, sizeof(results));
 | |
| 	assert(radix_tree_gang_lookup_node(t, 1000, results, 3) == 1);
 | |
| 	assert(results[0] == (void *)0xdeadbea0);
 | |
| 	assert(radix_tree_gang_lookup_node_reverse(t, 0, results, 3) == 0);
 | |
| 	memset(results, 0, sizeof(results));
 | |
| 	assert(radix_tree_gang_lookup_node_reverse(t, 1000, results, 3) == 1);
 | |
| 	assert(results[0] == (void *)0xdeadbea0);
 | |
| 	assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 3, 0)
 | |
| 	    == 0);
 | |
| 	assert(radix_tree_gang_lookup_tagged_node_reverse(t, 0, results, 3, 0)
 | |
| 	    == 0);
 | |
| 	assert(!radix_tree_get_tag(t, 1000, 0));
 | |
| 	assert(!radix_tree_get_tag(t, 1000, 1));
 | |
| 	assert(radix_tree_empty_tagged_tree_p(t, 0));
 | |
| 	assert(radix_tree_empty_tagged_tree_p(t, 1));
 | |
| 	radix_tree_set_tag(t, 1000, 1);
 | |
| 	assert(!radix_tree_get_tag(t, 1000, 0));
 | |
| 	assert(radix_tree_get_tag(t, 1000, 1));
 | |
| 	assert(radix_tree_empty_tagged_tree_p(t, 0));
 | |
| 	assert(!radix_tree_empty_tagged_tree_p(t, 1));
 | |
| 	radix_tree_dump(t);
 | |
| 	assert(radix_tree_lookup_node(t, 1000) == (void *)0xdeadbea0);
 | |
| 	assert(radix_tree_insert_node(t, 0, (void *)0xbea0) == 0);
 | |
| 	radix_tree_dump(t);
 | |
| 	assert(radix_tree_lookup_node(t, 0) == (void *)0xbea0);
 | |
| 	assert(radix_tree_lookup_node(t, 1000) == (void *)0xdeadbea0);
 | |
| 	assert(radix_tree_insert_node(t, UINT64_C(10000000000), (void *)0xdea0)
 | |
| 	    == 0);
 | |
| 	radix_tree_dump(t);
 | |
| 	assert(radix_tree_lookup_node(t, 0) == (void *)0xbea0);
 | |
| 	assert(radix_tree_lookup_node(t, 1000) == (void *)0xdeadbea0);
 | |
| 	assert(radix_tree_lookup_node(t, UINT64_C(10000000000)) ==
 | |
| 	    (void *)0xdea0);
 | |
| 	radix_tree_dump(t);
 | |
| 	assert(!radix_tree_get_tag(t, 0, 1));
 | |
| 	assert(radix_tree_get_tag(t, 1000, 1));
 | |
| 	assert(!radix_tree_get_tag(t, UINT64_C(10000000000), 1));
 | |
| 	radix_tree_set_tag(t, 0, 1);;
 | |
| 	radix_tree_set_tag(t, UINT64_C(10000000000), 1);
 | |
| 	radix_tree_dump(t);
 | |
| 	assert(radix_tree_get_tag(t, 0, 1));
 | |
| 	assert(radix_tree_get_tag(t, 1000, 1));
 | |
| 	assert(radix_tree_get_tag(t, UINT64_C(10000000000), 1));
 | |
| 	radix_tree_clear_tag(t, 0, 1);;
 | |
| 	radix_tree_clear_tag(t, UINT64_C(10000000000), 1);
 | |
| 	radix_tree_dump(t);
 | |
| 	assert(!radix_tree_get_tag(t, 0, 1));
 | |
| 	assert(radix_tree_get_tag(t, 1000, 1));
 | |
| 	assert(!radix_tree_get_tag(t, UINT64_C(10000000000), 1));
 | |
| 	radix_tree_dump(t);
 | |
| 	assert(radix_tree_replace_node(t, 1000, (void *)0x12345678) ==
 | |
| 	    (void *)0xdeadbea0);
 | |
| 	assert(!radix_tree_get_tag(t, 1000, 0));
 | |
| 	assert(radix_tree_get_tag(t, 1000, 1));
 | |
| 	assert(radix_tree_gang_lookup_node(t, 0, results, 3) == 3);
 | |
| 	assert(results[0] == (void *)0xbea0);
 | |
| 	assert(results[1] == (void *)0x12345678);
 | |
| 	assert(results[2] == (void *)0xdea0);
 | |
| 	assert(radix_tree_gang_lookup_node(t, 1, results, 3) == 2);
 | |
| 	assert(results[0] == (void *)0x12345678);
 | |
| 	assert(results[1] == (void *)0xdea0);
 | |
| 	assert(radix_tree_gang_lookup_node(t, 1001, results, 3) == 1);
 | |
| 	assert(results[0] == (void *)0xdea0);
 | |
| 	assert(radix_tree_gang_lookup_node(t, UINT64_C(10000000001), results, 3)
 | |
| 	    == 0);
 | |
| 	assert(radix_tree_gang_lookup_node(t, UINT64_C(1000000000000), results,
 | |
| 	    3) == 0);
 | |
| 	assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 100, 1) == 1);
 | |
| 	assert(results[0] == (void *)0x12345678);
 | |
| 	assert(entry_tagmask(t->t_root) != 0);
 | |
| 	assert(radix_tree_remove_node(t, 1000) == (void *)0x12345678);
 | |
| 	assert(entry_tagmask(t->t_root) == 0);
 | |
| 	radix_tree_dump(t);
 | |
| 	assert(radix_tree_remove_node(t, UINT64_C(10000000000)) ==
 | |
| 	    (void *)0xdea0);
 | |
| 	radix_tree_dump(t);
 | |
| 	assert(radix_tree_remove_node(t, 0) == (void *)0xbea0);
 | |
| 	radix_tree_dump(t);
 | |
| 	radix_tree_fini_tree(t);
 | |
| }
 | |
| 
 | |
| #include <sys/time.h>
 | |
| 
 | |
| struct testnode {
 | |
| 	uint64_t idx;
 | |
| 	bool tagged[RADIX_TREE_TAG_ID_MAX];
 | |
| };
 | |
| 
 | |
| static void
 | |
| printops(const char *title, const char *name, int tag, unsigned int n,
 | |
|     const struct timeval *stv, const struct timeval *etv)
 | |
| {
 | |
| 	uint64_t s = stv->tv_sec * 1000000 + stv->tv_usec;
 | |
| 	uint64_t e = etv->tv_sec * 1000000 + etv->tv_usec;
 | |
| 
 | |
| 	printf("RESULT %s %s %d %lf op/s\n", title, name, tag,
 | |
| 	    (double)n / (e - s) * 1000000);
 | |
| }
 | |
| 
 | |
| #define	TEST2_GANG_LOOKUP_NODES	16
 | |
| 
 | |
| static bool
 | |
| test2_should_tag(unsigned int i, radix_tree_tagid_t tagid)
 | |
| {
 | |
| 
 | |
| 	if (tagid == 0) {
 | |
| 		return (i & 0x3) == 0;	/* 25% */
 | |
| 	} else {
 | |
| 		return (i % 7) == 0;	/* 14% */
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void
 | |
| test2(const char *title, bool dense)
 | |
| {
 | |
| 	struct radix_tree s;
 | |
| 	struct radix_tree *t = &s;
 | |
| 	struct testnode *n;
 | |
| 	unsigned int i;
 | |
| 	unsigned int nnodes = 100000;
 | |
| 	unsigned int removed;
 | |
| 	radix_tree_tagid_t tag;
 | |
| 	unsigned int ntagged[RADIX_TREE_TAG_ID_MAX];
 | |
| 	struct testnode *nodes;
 | |
| 	struct timeval stv;
 | |
| 	struct timeval etv;
 | |
| 
 | |
| 	nodes = malloc(nnodes * sizeof(*nodes));
 | |
| 	for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
 | |
| 		ntagged[tag] = 0;
 | |
| 	}
 | |
| 	radix_tree_init_tree(t);
 | |
| 	for (i = 0; i < nnodes; i++) {
 | |
| 		n = &nodes[i];
 | |
| 		n->idx = random();
 | |
| 		if (sizeof(long) == 4) {
 | |
| 			n->idx <<= 32;
 | |
| 			n->idx |= (uint32_t)random();
 | |
| 		}
 | |
| 		if (dense) {
 | |
| 			n->idx %= nnodes * 2;
 | |
| 		}
 | |
| 		while (radix_tree_lookup_node(t, n->idx) != NULL) {
 | |
| 			n->idx++;
 | |
| 		}
 | |
| 		radix_tree_insert_node(t, n->idx, n);
 | |
| 		for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
 | |
| 			n->tagged[tag] = test2_should_tag(i, tag);
 | |
| 			if (n->tagged[tag]) {
 | |
| 				radix_tree_set_tag(t, n->idx, tag);
 | |
| 				ntagged[tag]++;
 | |
| 			}
 | |
| 			assert(n->tagged[tag] ==
 | |
| 			    radix_tree_get_tag(t, n->idx, tag));
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	gettimeofday(&stv, NULL);
 | |
| 	for (i = 0; i < nnodes; i++) {
 | |
| 		n = &nodes[i];
 | |
| 		assert(radix_tree_lookup_node(t, n->idx) == n);
 | |
| 	}
 | |
| 	gettimeofday(&etv, NULL);
 | |
| 	printops(title, "lookup", 0, nnodes, &stv, &etv);
 | |
| 
 | |
| 	for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
 | |
| 		unsigned int count = 0;
 | |
| 
 | |
| 		gettimeofday(&stv, NULL);
 | |
| 		for (i = 0; i < nnodes; i++) {
 | |
| 			bool tagged;
 | |
| 
 | |
| 			n = &nodes[i];
 | |
| 			tagged = radix_tree_get_tag(t, n->idx, tag);
 | |
| 			assert(n->tagged[tag] == tagged);
 | |
| 			if (tagged) {
 | |
| 				count++;
 | |
| 			}
 | |
| 		}
 | |
| 		gettimeofday(&etv, NULL);
 | |
| 		assert(ntagged[tag] == count);
 | |
| 		printops(title, "get_tag", tag, nnodes, &stv, &etv);
 | |
| 	}
 | |
| 
 | |
| 	gettimeofday(&stv, NULL);
 | |
| 	for (i = 0; i < nnodes; i++) {
 | |
| 		n = &nodes[i];
 | |
| 		radix_tree_remove_node(t, n->idx);
 | |
| 	}
 | |
| 	gettimeofday(&etv, NULL);
 | |
| 	printops(title, "remove", 0, nnodes, &stv, &etv);
 | |
| 
 | |
| 	gettimeofday(&stv, NULL);
 | |
| 	for (i = 0; i < nnodes; i++) {
 | |
| 		n = &nodes[i];
 | |
| 		radix_tree_insert_node(t, n->idx, n);
 | |
| 	}
 | |
| 	gettimeofday(&etv, NULL);
 | |
| 	printops(title, "insert", 0, nnodes, &stv, &etv);
 | |
| 
 | |
| 	for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
 | |
| 		ntagged[tag] = 0;
 | |
| 		gettimeofday(&stv, NULL);
 | |
| 		for (i = 0; i < nnodes; i++) {
 | |
| 			n = &nodes[i];
 | |
| 			if (n->tagged[tag]) {
 | |
| 				radix_tree_set_tag(t, n->idx, tag);
 | |
| 				ntagged[tag]++;
 | |
| 			}
 | |
| 		}
 | |
| 		gettimeofday(&etv, NULL);
 | |
| 		printops(title, "set_tag", tag, ntagged[tag], &stv, &etv);
 | |
| 	}
 | |
| 
 | |
| 	gettimeofday(&stv, NULL);
 | |
| 	{
 | |
| 		struct testnode *results[TEST2_GANG_LOOKUP_NODES];
 | |
| 		uint64_t nextidx;
 | |
| 		unsigned int nfound;
 | |
| 		unsigned int total;
 | |
| 
 | |
| 		nextidx = 0;
 | |
| 		total = 0;
 | |
| 		while ((nfound = radix_tree_gang_lookup_node(t, nextidx,
 | |
| 		    (void *)results, __arraycount(results))) > 0) {
 | |
| 			nextidx = results[nfound - 1]->idx + 1;
 | |
| 			total += nfound;
 | |
| 			if (nextidx == 0) {
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 		assert(total == nnodes);
 | |
| 	}
 | |
| 	gettimeofday(&etv, NULL);
 | |
| 	printops(title, "ganglookup", 0, nnodes, &stv, &etv);
 | |
| 
 | |
| 	gettimeofday(&stv, NULL);
 | |
| 	{
 | |
| 		struct testnode *results[TEST2_GANG_LOOKUP_NODES];
 | |
| 		uint64_t nextidx;
 | |
| 		unsigned int nfound;
 | |
| 		unsigned int total;
 | |
| 
 | |
| 		nextidx = UINT64_MAX;
 | |
| 		total = 0;
 | |
| 		while ((nfound = radix_tree_gang_lookup_node_reverse(t, nextidx,
 | |
| 		    (void *)results, __arraycount(results))) > 0) {
 | |
| 			nextidx = results[nfound - 1]->idx - 1;
 | |
| 			total += nfound;
 | |
| 			if (nextidx == UINT64_MAX) {
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 		assert(total == nnodes);
 | |
| 	}
 | |
| 	gettimeofday(&etv, NULL);
 | |
| 	printops(title, "ganglookup_reverse", 0, nnodes, &stv, &etv);
 | |
| 
 | |
| 	for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
 | |
| 		gettimeofday(&stv, NULL);
 | |
| 		{
 | |
| 			struct testnode *results[TEST2_GANG_LOOKUP_NODES];
 | |
| 			uint64_t nextidx;
 | |
| 			unsigned int nfound;
 | |
| 			unsigned int total;
 | |
| 
 | |
| 			nextidx = 0;
 | |
| 			total = 0;
 | |
| 			while ((nfound = radix_tree_gang_lookup_tagged_node(t,
 | |
| 			    nextidx, (void *)results, __arraycount(results),
 | |
| 			    tag)) > 0) {
 | |
| 				nextidx = results[nfound - 1]->idx + 1;
 | |
| 				total += nfound;
 | |
| 			}
 | |
| 			assert(total == ntagged[tag]);
 | |
| 		}
 | |
| 		gettimeofday(&etv, NULL);
 | |
| 		printops(title, "ganglookup_tag", tag, ntagged[tag], &stv,
 | |
| 		    &etv);
 | |
| 	}
 | |
| 
 | |
| 	for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
 | |
| 		gettimeofday(&stv, NULL);
 | |
| 		{
 | |
| 			struct testnode *results[TEST2_GANG_LOOKUP_NODES];
 | |
| 			uint64_t nextidx;
 | |
| 			unsigned int nfound;
 | |
| 			unsigned int total;
 | |
| 
 | |
| 			nextidx = UINT64_MAX;
 | |
| 			total = 0;
 | |
| 			while ((nfound =
 | |
| 			    radix_tree_gang_lookup_tagged_node_reverse(t,
 | |
| 			    nextidx, (void *)results, __arraycount(results),
 | |
| 			    tag)) > 0) {
 | |
| 				nextidx = results[nfound - 1]->idx - 1;
 | |
| 				total += nfound;
 | |
| 				if (nextidx == UINT64_MAX) {
 | |
| 					break;
 | |
| 				}
 | |
| 			}
 | |
| 			assert(total == ntagged[tag]);
 | |
| 		}
 | |
| 		gettimeofday(&etv, NULL);
 | |
| 		printops(title, "ganglookup_tag_reverse", tag, ntagged[tag],
 | |
| 		    &stv, &etv);
 | |
| 	}
 | |
| 
 | |
| 	removed = 0;
 | |
| 	for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
 | |
| 		unsigned int total;
 | |
| 
 | |
| 		total = 0;
 | |
| 		gettimeofday(&stv, NULL);
 | |
| 		{
 | |
| 			struct testnode *results[TEST2_GANG_LOOKUP_NODES];
 | |
| 			uint64_t nextidx;
 | |
| 			unsigned int nfound;
 | |
| 
 | |
| 			nextidx = 0;
 | |
| 			while ((nfound = radix_tree_gang_lookup_tagged_node(t,
 | |
| 			    nextidx, (void *)results, __arraycount(results),
 | |
| 			    tag)) > 0) {
 | |
| 				for (i = 0; i < nfound; i++) {
 | |
| 					radix_tree_remove_node(t,
 | |
| 					    results[i]->idx);
 | |
| 				}
 | |
| 				nextidx = results[nfound - 1]->idx + 1;
 | |
| 				total += nfound;
 | |
| 				if (nextidx == 0) {
 | |
| 					break;
 | |
| 				}
 | |
| 			}
 | |
| 			assert(tag != 0 || total == ntagged[tag]);
 | |
| 			assert(total <= ntagged[tag]);
 | |
| 		}
 | |
| 		gettimeofday(&etv, NULL);
 | |
| 		printops(title, "ganglookup_tag+remove", tag, total, &stv,
 | |
| 		    &etv);
 | |
| 		removed += total;
 | |
| 	}
 | |
| 
 | |
| 	gettimeofday(&stv, NULL);
 | |
| 	{
 | |
| 		struct testnode *results[TEST2_GANG_LOOKUP_NODES];
 | |
| 		uint64_t nextidx;
 | |
| 		unsigned int nfound;
 | |
| 		unsigned int total;
 | |
| 
 | |
| 		nextidx = 0;
 | |
| 		total = 0;
 | |
| 		while ((nfound = radix_tree_gang_lookup_node(t, nextidx,
 | |
| 		    (void *)results, __arraycount(results))) > 0) {
 | |
| 			for (i = 0; i < nfound; i++) {
 | |
| 				assert(results[i] == radix_tree_remove_node(t,
 | |
| 				    results[i]->idx));
 | |
| 			}
 | |
| 			nextidx = results[nfound - 1]->idx + 1;
 | |
| 			total += nfound;
 | |
| 			if (nextidx == 0) {
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 		assert(total == nnodes - removed);
 | |
| 	}
 | |
| 	gettimeofday(&etv, NULL);
 | |
| 	printops(title, "ganglookup+remove", 0, nnodes - removed, &stv, &etv);
 | |
| 
 | |
| 	assert(radix_tree_empty_tree_p(t));
 | |
| 	assert(radix_tree_empty_tagged_tree_p(t, 0));
 | |
| 	assert(radix_tree_empty_tagged_tree_p(t, 1));
 | |
| 	radix_tree_fini_tree(t);
 | |
| 	free(nodes);
 | |
| }
 | |
| 
 | |
| int
 | |
| main(int argc, char *argv[])
 | |
| {
 | |
| 
 | |
| 	test1();
 | |
| 	test2("dense", true);
 | |
| 	test2("sparse", false);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #endif /* defined(UNITTEST) */
 |