 360de619c0
			
		
	
	
		360de619c0
		
	
	
	
	
		
			
			- removes p_delivermsg_lin item from the process structure and code related to it - as the send part, the receive does not need to use the PHYS_COPY_CATCH() and umap_local() couple. - The address space of the target process is installed before delivermsg() is called. - unlike the linear address, the virtual address does not change when paging is turned on nor after fork().
		
			
				
	
	
		
			1455 lines
		
	
	
		
			43 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1455 lines
		
	
	
		
			43 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* This file contains essentially all of the process and message handling.
 | |
|  * Together with "mpx.s" it forms the lowest layer of the MINIX kernel.
 | |
|  * There is one entry point from the outside:
 | |
|  *
 | |
|  *   sys_call: 	      a system call, i.e., the kernel is trapped with an INT
 | |
|  *
 | |
|  * Changes:
 | |
|  *   Aug 19, 2005     rewrote scheduling code  (Jorrit N. Herder)
 | |
|  *   Jul 25, 2005     rewrote system call handling  (Jorrit N. Herder)
 | |
|  *   May 26, 2005     rewrote message passing functions  (Jorrit N. Herder)
 | |
|  *   May 24, 2005     new notification system call  (Jorrit N. Herder)
 | |
|  *   Oct 28, 2004     nonblocking send and receive calls  (Jorrit N. Herder)
 | |
|  *
 | |
|  * The code here is critical to make everything work and is important for the
 | |
|  * overall performance of the system. A large fraction of the code deals with
 | |
|  * list manipulation. To make this both easy to understand and fast to execute 
 | |
|  * pointer pointers are used throughout the code. Pointer pointers prevent
 | |
|  * exceptions for the head or tail of a linked list. 
 | |
|  *
 | |
|  *  node_t *queue, *new_node;	// assume these as global variables
 | |
|  *  node_t **xpp = &queue; 	// get pointer pointer to head of queue 
 | |
|  *  while (*xpp != NULL) 	// find last pointer of the linked list
 | |
|  *      xpp = &(*xpp)->next;	// get pointer to next pointer 
 | |
|  *  *xpp = new_node;		// now replace the end (the NULL pointer) 
 | |
|  *  new_node->next = NULL;	// and mark the new end of the list
 | |
|  * 
 | |
|  * For example, when adding a new node to the end of the list, one normally 
 | |
|  * makes an exception for an empty list and looks up the end of the list for 
 | |
|  * nonempty lists. As shown above, this is not required with pointer pointers.
 | |
|  */
 | |
| 
 | |
| #include <minix/com.h>
 | |
| #include <minix/endpoint.h>
 | |
| #include <stddef.h>
 | |
| #include <signal.h>
 | |
| #include <minix/syslib.h>
 | |
| #include <assert.h>
 | |
| 
 | |
| #include "debug.h"
 | |
| #include "kernel.h"
 | |
| #include "proc.h"
 | |
| #include "vm.h"
 | |
| #include "clock.h"
 | |
| 
 | |
| /* Scheduling and message passing functions */
 | |
| FORWARD _PROTOTYPE( void idle, (void));
 | |
| /**
 | |
|  * Made public for use in clock.c (for user-space scheduling)
 | |
| FORWARD _PROTOTYPE( int mini_send, (struct proc *caller_ptr, endpoint_t dst_e,
 | |
| 		message *m_ptr, int flags));
 | |
| */
 | |
| FORWARD _PROTOTYPE( int mini_receive, (struct proc *caller_ptr, endpoint_t src,
 | |
| 		message *m_ptr, int flags));
 | |
| FORWARD _PROTOTYPE( int mini_senda, (struct proc *caller_ptr,
 | |
| 	asynmsg_t *table, size_t size));
 | |
| FORWARD _PROTOTYPE( int deadlock, (int function,
 | |
| 		register struct proc *caller, proc_nr_t src_dst));
 | |
| FORWARD _PROTOTYPE( int try_async, (struct proc *caller_ptr));
 | |
| FORWARD _PROTOTYPE( int try_one, (struct proc *src_ptr, struct proc *dst_ptr,
 | |
| 		int *postponed));
 | |
| FORWARD _PROTOTYPE( struct proc * pick_proc, (void));
 | |
| FORWARD _PROTOTYPE( void enqueue_head, (struct proc *rp));
 | |
| 
 | |
| #define PICK_ANY	1
 | |
| #define PICK_HIGHERONLY	2
 | |
| 
 | |
| #define BuildNotifyMessage(m_ptr, src, dst_ptr) \
 | |
| 	(m_ptr)->m_type = NOTIFY_FROM(src);				\
 | |
| 	(m_ptr)->NOTIFY_TIMESTAMP = get_uptime();			\
 | |
| 	switch (src) {							\
 | |
| 	case HARDWARE:							\
 | |
| 		(m_ptr)->NOTIFY_ARG = priv(dst_ptr)->s_int_pending;	\
 | |
| 		priv(dst_ptr)->s_int_pending = 0;			\
 | |
| 		break;							\
 | |
| 	case SYSTEM:							\
 | |
| 		(m_ptr)->NOTIFY_ARG = priv(dst_ptr)->s_sig_pending;	\
 | |
| 		priv(dst_ptr)->s_sig_pending = 0;			\
 | |
| 		break;							\
 | |
| 	}
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				idle					     * 
 | |
|  *===========================================================================*/
 | |
| PRIVATE void idle(void)
 | |
| {
 | |
| 	/* This function is called whenever there is no work to do.
 | |
| 	 * Halt the CPU, and measure how many timestamp counter ticks are
 | |
| 	 * spent not doing anything. This allows test setups to measure
 | |
| 	 * the CPU utiliziation of certain workloads with high precision.
 | |
| 	 */
 | |
| 
 | |
| 	/* start accounting for the idle time */
 | |
| 	context_stop(proc_addr(KERNEL));
 | |
| 	halt_cpu();
 | |
| 	/*
 | |
| 	 * end of accounting for the idle task does not happen here, the kernel
 | |
| 	 * is handling stuff for quite a while before it gets back here!
 | |
| 	 */
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				switch_to_user				     * 
 | |
|  *===========================================================================*/
 | |
| PUBLIC void switch_to_user(void)
 | |
| {
 | |
| 	/* This function is called an instant before proc_ptr is
 | |
| 	 * to be scheduled again.
 | |
| 	 */
 | |
| 
 | |
| 	/*
 | |
| 	 * if the current process is still runnable check the misc flags and let
 | |
| 	 * it run unless it becomes not runnable in the meantime
 | |
| 	 */
 | |
| 	if (proc_is_runnable(proc_ptr))
 | |
| 		goto check_misc_flags;
 | |
| 	/*
 | |
| 	 * if a process becomes not runnable while handling the misc flags, we
 | |
| 	 * need to pick a new one here and start from scratch. Also if the
 | |
| 	 * current process wasn' runnable, we pick a new one here
 | |
| 	 */
 | |
| not_runnable_pick_new:
 | |
| 	if (proc_is_preempted(proc_ptr)) {
 | |
| 		proc_ptr->p_rts_flags &= ~RTS_PREEMPTED;
 | |
| 		if (proc_is_runnable(proc_ptr)) {
 | |
| 			if (!is_zero64(proc_ptr->p_cpu_time_left))
 | |
| 				enqueue_head(proc_ptr);
 | |
| 			else
 | |
| 				enqueue(proc_ptr);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * if we have no process to run, set IDLE as the current process for
 | |
| 	 * time accounting and put the cpu in and idle state. After the next
 | |
| 	 * timer interrupt the execution resumes here and we can pick another
 | |
| 	 * process. If there is still nothing runnable we "schedule" IDLE again
 | |
| 	 */
 | |
| 	while (!(proc_ptr = pick_proc())) {
 | |
| 		proc_ptr = proc_addr(IDLE);
 | |
| 		if (priv(proc_ptr)->s_flags & BILLABLE)
 | |
| 			bill_ptr = proc_ptr;
 | |
| 		idle();
 | |
| 	}
 | |
| 
 | |
| 	switch_address_space(proc_ptr);
 | |
| 
 | |
| check_misc_flags:
 | |
| 
 | |
| 	assert(proc_ptr);
 | |
| 	assert(proc_is_runnable(proc_ptr));
 | |
| 	while (proc_ptr->p_misc_flags &
 | |
| 		(MF_KCALL_RESUME | MF_DELIVERMSG |
 | |
| 		 MF_SC_DEFER | MF_SC_TRACE | MF_SC_ACTIVE)) {
 | |
| 
 | |
| 		assert(proc_is_runnable(proc_ptr));
 | |
| 		if (proc_ptr->p_misc_flags & MF_KCALL_RESUME) {
 | |
| 			kernel_call_resume(proc_ptr);
 | |
| 		}
 | |
| 		else if (proc_ptr->p_misc_flags & MF_DELIVERMSG) {
 | |
| 			TRACE(VF_SCHEDULING, printf("delivering to %s / %d\n",
 | |
| 				proc_ptr->p_name, proc_ptr->p_endpoint););
 | |
| 			delivermsg(proc_ptr);
 | |
| 		}
 | |
| 		else if (proc_ptr->p_misc_flags & MF_SC_DEFER) {
 | |
| 			/* Perform the system call that we deferred earlier. */
 | |
| 
 | |
| 			assert (!(proc_ptr->p_misc_flags & MF_SC_ACTIVE));
 | |
| 
 | |
| 			arch_do_syscall(proc_ptr);
 | |
| 
 | |
| 			/* If the process is stopped for signal delivery, and
 | |
| 			 * not blocked sending a message after the system call,
 | |
| 			 * inform PM.
 | |
| 			 */
 | |
| 			if ((proc_ptr->p_misc_flags & MF_SIG_DELAY) &&
 | |
| 					!RTS_ISSET(proc_ptr, RTS_SENDING))
 | |
| 				sig_delay_done(proc_ptr);
 | |
| 		}
 | |
| 		else if (proc_ptr->p_misc_flags & MF_SC_TRACE) {
 | |
| 			/* Trigger a system call leave event if this was a
 | |
| 			 * system call. We must do this after processing the
 | |
| 			 * other flags above, both for tracing correctness and
 | |
| 			 * to be able to use 'break'.
 | |
| 			 */
 | |
| 			if (!(proc_ptr->p_misc_flags & MF_SC_ACTIVE))
 | |
| 				break;
 | |
| 
 | |
| 			proc_ptr->p_misc_flags &=
 | |
| 				~(MF_SC_TRACE | MF_SC_ACTIVE);
 | |
| 
 | |
| 			/* Signal the "leave system call" event.
 | |
| 			 * Block the process.
 | |
| 			 */
 | |
| 			cause_sig(proc_nr(proc_ptr), SIGTRAP);
 | |
| 		}
 | |
| 		else if (proc_ptr->p_misc_flags & MF_SC_ACTIVE) {
 | |
| 			/* If MF_SC_ACTIVE was set, remove it now:
 | |
| 			 * we're leaving the system call.
 | |
| 			 */
 | |
| 			proc_ptr->p_misc_flags &= ~MF_SC_ACTIVE;
 | |
| 
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		if (!proc_is_runnable(proc_ptr))
 | |
| 			break;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * check the quantum left before it runs again. We must do it only here
 | |
| 	 * as we are sure that a possible out-of-quantum message to the
 | |
| 	 * scheduler will not collide with the regular ipc
 | |
| 	 */
 | |
| 	if (is_zero64(proc_ptr->p_cpu_time_left))
 | |
| 		proc_no_time(proc_ptr);
 | |
| 	/*
 | |
| 	 * After handling the misc flags the selected process might not be
 | |
| 	 * runnable anymore. We have to checkit and schedule another one
 | |
| 	 */
 | |
| 	if (!proc_is_runnable(proc_ptr))
 | |
| 		goto not_runnable_pick_new;
 | |
| 
 | |
| 	TRACE(VF_SCHEDULING, printf("starting %s / %d\n",
 | |
| 		proc_ptr->p_name, proc_ptr->p_endpoint););
 | |
| #if DEBUG_TRACE
 | |
| 	proc_ptr->p_schedules++;
 | |
| #endif
 | |
| 
 | |
| 
 | |
| 	proc_ptr = arch_finish_switch_to_user();
 | |
| 	assert(!is_zero64(proc_ptr->p_cpu_time_left));
 | |
| 
 | |
| 	context_stop(proc_addr(KERNEL));
 | |
| 
 | |
| 	/* If the process isn't the owner of FPU, enable the FPU exception */
 | |
| 	if(fpu_owner != proc_ptr)
 | |
| 		enable_fpu_exception();
 | |
| 	else
 | |
| 		disable_fpu_exception();
 | |
| 	/*
 | |
| 	 * restore_user_context() carries out the actual mode switch from kernel
 | |
| 	 * to userspace. This function does not return
 | |
| 	 */
 | |
| 	restore_user_context(proc_ptr);
 | |
| 	NOT_REACHABLE;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * handler for all synchronous IPC calls
 | |
|  */
 | |
| PRIVATE int do_sync_ipc(struct proc * caller_ptr, /* who made the call */
 | |
| 			int call_nr,	/* system call number and flags */
 | |
| 			endpoint_t src_dst_e,	/* src or dst of the call */
 | |
| 			message *m_ptr)	/* users pointer to a message */
 | |
| {
 | |
|   int result;					/* the system call's result */
 | |
|   int src_dst_p;				/* Process slot number */
 | |
| 
 | |
|   /* Check destination. RECEIVE is the only call that accepts ANY (in addition
 | |
|    * to a real endpoint). The other calls (SEND, SENDREC, and NOTIFY) require an
 | |
|    * endpoint to corresponds to a process. In addition, it is necessary to check
 | |
|    * whether a process is allowed to send to a given destination.
 | |
|    */
 | |
|   assert(call_nr != SENDA);
 | |
| 
 | |
|   if (src_dst_e == ANY)
 | |
|   {
 | |
| 	if (call_nr != RECEIVE)
 | |
| 	{
 | |
| #if 0
 | |
| 		printf("sys_call: trap %d by %d with bad endpoint %d\n", 
 | |
| 			call_nr, proc_nr(caller_ptr), src_dst_e);
 | |
| #endif
 | |
| 		return EINVAL;
 | |
| 	}
 | |
| 	src_dst_p = (int) src_dst_e;
 | |
|   }
 | |
|   else
 | |
|   {
 | |
| 	/* Require a valid source and/or destination process. */
 | |
| 	if(!isokendpt(src_dst_e, &src_dst_p)) {
 | |
| #if 0
 | |
| 		printf("sys_call: trap %d by %d with bad endpoint %d\n", 
 | |
| 			call_nr, proc_nr(caller_ptr), src_dst_e);
 | |
| #endif
 | |
| 		return EDEADSRCDST;
 | |
| 	}
 | |
| 
 | |
| 	/* If the call is to send to a process, i.e., for SEND, SENDNB,
 | |
| 	 * SENDREC or NOTIFY, verify that the caller is allowed to send to
 | |
| 	 * the given destination. 
 | |
| 	 */
 | |
| 	if (call_nr != RECEIVE)
 | |
| 	{
 | |
| 		if (!may_send_to(caller_ptr, src_dst_p)) {
 | |
| #if DEBUG_ENABLE_IPC_WARNINGS
 | |
| 			printf(
 | |
| 			"sys_call: ipc mask denied trap %d from %d to %d\n",
 | |
| 				call_nr, caller_ptr->p_endpoint, src_dst_e);
 | |
| #endif
 | |
| 			return(ECALLDENIED);	/* call denied by ipc mask */
 | |
| 		}
 | |
| 	}
 | |
|   }
 | |
| 
 | |
|   /* Only allow non-negative call_nr values less than 32 */
 | |
|   if (call_nr < 0 || call_nr >= 32)
 | |
|   {
 | |
| #if DEBUG_ENABLE_IPC_WARNINGS
 | |
|       printf("sys_call: trap %d not allowed, caller %d, src_dst %d\n", 
 | |
|           call_nr, proc_nr(caller_ptr), src_dst_p);
 | |
| #endif
 | |
| 	return(ETRAPDENIED);		/* trap denied by mask or kernel */
 | |
|   }
 | |
| 
 | |
|   /* Check if the process has privileges for the requested call. Calls to the 
 | |
|    * kernel may only be SENDREC, because tasks always reply and may not block 
 | |
|    * if the caller doesn't do receive(). 
 | |
|    */
 | |
|   if (!(priv(caller_ptr)->s_trap_mask & (1 << call_nr))) {
 | |
| #if DEBUG_ENABLE_IPC_WARNINGS
 | |
|       printf("sys_call: trap %d not allowed, caller %d, src_dst %d\n", 
 | |
|           call_nr, proc_nr(caller_ptr), src_dst_p);
 | |
| #endif
 | |
| 	return(ETRAPDENIED);		/* trap denied by mask or kernel */
 | |
|   }
 | |
| 
 | |
|   if (call_nr != SENDREC && call_nr != RECEIVE && iskerneln(src_dst_p)) {
 | |
| #if DEBUG_ENABLE_IPC_WARNINGS
 | |
|       printf("sys_call: trap %d not allowed, caller %d, src_dst %d\n", 
 | |
|           call_nr, proc_nr(caller_ptr), src_dst_e);
 | |
| #endif
 | |
| 	return(ETRAPDENIED);		/* trap denied by mask or kernel */
 | |
|   }
 | |
| 
 | |
|   switch(call_nr) {
 | |
|   case SENDREC:
 | |
| 	/* A flag is set so that notifications cannot interrupt SENDREC. */
 | |
| 	caller_ptr->p_misc_flags |= MF_REPLY_PEND;
 | |
| 	/* fall through */
 | |
|   case SEND:			
 | |
| 	result = mini_send(caller_ptr, src_dst_e, m_ptr, 0);
 | |
| 	if (call_nr == SEND || result != OK)
 | |
| 		break;				/* done, or SEND failed */
 | |
| 	/* fall through for SENDREC */
 | |
|   case RECEIVE:			
 | |
| 	if (call_nr == RECEIVE) {
 | |
| 		caller_ptr->p_misc_flags &= ~MF_REPLY_PEND;
 | |
| 		IPC_STATUS_CLEAR(caller_ptr);  /* clear IPC status code */
 | |
| 	}
 | |
| 	result = mini_receive(caller_ptr, src_dst_e, m_ptr, 0);
 | |
| 	break;
 | |
|   case NOTIFY:
 | |
| 	result = mini_notify(caller_ptr, src_dst_e);
 | |
| 	break;
 | |
|   case SENDNB:
 | |
|         result = mini_send(caller_ptr, src_dst_e, m_ptr, NON_BLOCKING);
 | |
|         break;
 | |
|   default:
 | |
| 	result = EBADCALL;			/* illegal system call */
 | |
|   }
 | |
| 
 | |
|   /* Now, return the result of the system call to the caller. */
 | |
|   return(result);
 | |
| }
 | |
| 
 | |
| PUBLIC int do_ipc(reg_t r1, reg_t r2, reg_t r3)
 | |
| {
 | |
|   struct proc * caller_ptr = proc_ptr;	/* always the current process */
 | |
|   int call_nr = (int) r1;
 | |
| 
 | |
|   assert(!RTS_ISSET(caller_ptr, RTS_SLOT_FREE));
 | |
| 
 | |
|   /* If this process is subject to system call tracing, handle that first. */
 | |
|   if (caller_ptr->p_misc_flags & (MF_SC_TRACE | MF_SC_DEFER)) {
 | |
| 	/* Are we tracing this process, and is it the first sys_call entry? */
 | |
| 	if ((caller_ptr->p_misc_flags & (MF_SC_TRACE | MF_SC_DEFER)) ==
 | |
| 							MF_SC_TRACE) {
 | |
| 		/* We must notify the tracer before processing the actual
 | |
| 		 * system call. If we don't, the tracer could not obtain the
 | |
| 		 * input message. Postpone the entire system call.
 | |
| 		 */
 | |
| 		caller_ptr->p_misc_flags &= ~MF_SC_TRACE;
 | |
| 		caller_ptr->p_misc_flags |= MF_SC_DEFER;
 | |
| 
 | |
| 		/* Signal the "enter system call" event. Block the process. */
 | |
| 		cause_sig(proc_nr(caller_ptr), SIGTRAP);
 | |
| 
 | |
| 		/* Preserve the return register's value. */
 | |
| 		return caller_ptr->p_reg.retreg;
 | |
| 	}
 | |
| 
 | |
| 	/* If the MF_SC_DEFER flag is set, the syscall is now being resumed. */
 | |
| 	caller_ptr->p_misc_flags &= ~MF_SC_DEFER;
 | |
| 
 | |
| 	assert (!(caller_ptr->p_misc_flags & MF_SC_ACTIVE));
 | |
| 
 | |
| 	/* Set a flag to allow reliable tracing of leaving the system call. */
 | |
| 	caller_ptr->p_misc_flags |= MF_SC_ACTIVE;
 | |
|   }
 | |
| 
 | |
|   if(caller_ptr->p_misc_flags & MF_DELIVERMSG) {
 | |
| 	panic("sys_call: MF_DELIVERMSG on for %s / %d\n",
 | |
| 		caller_ptr->p_name, caller_ptr->p_endpoint);
 | |
|   }
 | |
| 
 | |
|   /* Now check if the call is known and try to perform the request. The only
 | |
|    * system calls that exist in MINIX are sending and receiving messages.
 | |
|    *   - SENDREC: combines SEND and RECEIVE in a single system call
 | |
|    *   - SEND:    sender blocks until its message has been delivered
 | |
|    *   - RECEIVE: receiver blocks until an acceptable message has arrived
 | |
|    *   - NOTIFY:  asynchronous call; deliver notification or mark pending
 | |
|    *   - SENDA:   list of asynchronous send requests
 | |
|    */
 | |
|   switch(call_nr) {
 | |
|   	case SENDREC:
 | |
|   	case SEND:			
 | |
|   	case RECEIVE:			
 | |
|   	case NOTIFY:
 | |
|   	case SENDNB:
 | |
|   	    return do_sync_ipc(caller_ptr, call_nr, (endpoint_t) r2,
 | |
| 			    (message *) r3);
 | |
|   	case SENDA:
 | |
|   	{
 | |
|   	    /*
 | |
|   	     * Get and check the size of the argument in bytes as it is a
 | |
|   	     * table
 | |
|   	     */
 | |
|   	    size_t msg_size = (size_t) r2;
 | |
|   
 | |
|   	    /* Limit size to something reasonable. An arbitrary choice is 16
 | |
|   	     * times the number of process table entries.
 | |
|   	     */
 | |
|   	    if (msg_size > 16*(NR_TASKS + NR_PROCS))
 | |
| 	        return EDOM;
 | |
|   	    return mini_senda(caller_ptr, (asynmsg_t *) r3, msg_size);
 | |
|   	}
 | |
|   	default:
 | |
| 	return EBADCALL;		/* illegal system call */
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				deadlock				     * 
 | |
|  *===========================================================================*/
 | |
| PRIVATE int deadlock(function, cp, src_dst) 
 | |
| int function;					/* trap number */
 | |
| register struct proc *cp;			/* pointer to caller */
 | |
| proc_nr_t src_dst;				/* src or dst process */
 | |
| {
 | |
| /* Check for deadlock. This can happen if 'caller_ptr' and 'src_dst' have
 | |
|  * a cyclic dependency of blocking send and receive calls. The only cyclic 
 | |
|  * depency that is not fatal is if the caller and target directly SEND(REC)
 | |
|  * and RECEIVE to each other. If a deadlock is found, the group size is 
 | |
|  * returned. Otherwise zero is returned. 
 | |
|  */
 | |
|   register struct proc *xp;			/* process pointer */
 | |
|   int group_size = 1;				/* start with only caller */
 | |
| #if DEBUG_ENABLE_IPC_WARNINGS
 | |
|   static struct proc *processes[NR_PROCS + NR_TASKS];
 | |
|   processes[0] = cp;
 | |
| #endif
 | |
| 
 | |
|   /* FIXME: this compares a proc_nr_t with a endpoint_t */
 | |
|   while (src_dst != ANY) { 			/* check while process nr */
 | |
|       endpoint_t dep;
 | |
|       xp = proc_addr(src_dst);			/* follow chain of processes */
 | |
| #if DEBUG_ENABLE_IPC_WARNINGS
 | |
|       processes[group_size] = xp;
 | |
| #endif
 | |
|       group_size ++;				/* extra process in group */
 | |
| 
 | |
|       /* Check whether the last process in the chain has a dependency. If it 
 | |
|        * has not, the cycle cannot be closed and we are done.
 | |
|        */
 | |
|       if((dep = P_BLOCKEDON(xp)) == NONE)
 | |
| 	return 0;
 | |
| 
 | |
|       if(dep == ANY)
 | |
|        /* FIXME: this assigns a proc_nr_t to a endpoint_t */
 | |
| 	src_dst = ANY;
 | |
|       else
 | |
| 	okendpt(dep, &src_dst);
 | |
| 
 | |
|       /* Now check if there is a cyclic dependency. For group sizes of two,  
 | |
|        * a combination of SEND(REC) and RECEIVE is not fatal. Larger groups
 | |
|        * or other combinations indicate a deadlock.  
 | |
|        */
 | |
|       if (src_dst == proc_nr(cp)) {		/* possible deadlock */
 | |
| 	  if (group_size == 2) {		/* caller and src_dst */
 | |
| 	      /* The function number is magically converted to flags. */
 | |
| 	      if ((xp->p_rts_flags ^ (function << 2)) & RTS_SENDING) { 
 | |
| 	          return(0);			/* not a deadlock */
 | |
| 	      }
 | |
| 	  }
 | |
| #if DEBUG_ENABLE_IPC_WARNINGS
 | |
| 	  {
 | |
| 		int i;
 | |
| 		printf("deadlock between these processes:\n");
 | |
| 		for(i = 0; i < group_size; i++) {
 | |
| 			printf(" %10s ", processes[i]->p_name);
 | |
| 		}
 | |
| 		printf("\n\n");
 | |
| 		for(i = 0; i < group_size; i++) {
 | |
| 			print_proc(processes[i]);
 | |
| 			proc_stacktrace(processes[i]);
 | |
| 		}
 | |
| 	  }
 | |
| #endif
 | |
|           return(group_size);			/* deadlock found */
 | |
|       }
 | |
|   }
 | |
|   return(0);					/* not a deadlock */
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				mini_send				     * 
 | |
|  *===========================================================================*/
 | |
| PUBLIC int mini_send(
 | |
|   register struct proc *caller_ptr,	/* who is trying to send a message? */
 | |
|   endpoint_t dst_e,			/* to whom is message being sent? */
 | |
|   message *m_ptr,			/* pointer to message buffer */
 | |
|   const int flags
 | |
| )
 | |
| {
 | |
| /* Send a message from 'caller_ptr' to 'dst'. If 'dst' is blocked waiting
 | |
|  * for this message, copy the message to it and unblock 'dst'. If 'dst' is
 | |
|  * not waiting at all, or is waiting for another source, queue 'caller_ptr'.
 | |
|  */
 | |
|   register struct proc *dst_ptr;
 | |
|   register struct proc **xpp;
 | |
|   int dst_p;
 | |
|   dst_p = _ENDPOINT_P(dst_e);
 | |
|   dst_ptr = proc_addr(dst_p);
 | |
| 
 | |
|   if (RTS_ISSET(dst_ptr, RTS_NO_ENDPOINT))
 | |
|   {
 | |
| 	return EDEADSRCDST;
 | |
|   }
 | |
| 
 | |
|   /* Check if 'dst' is blocked waiting for this message. The destination's 
 | |
|    * RTS_SENDING flag may be set when its SENDREC call blocked while sending.  
 | |
|    */
 | |
|   if (WILLRECEIVE(dst_ptr, caller_ptr->p_endpoint)) {
 | |
| 	int call;
 | |
| 	/* Destination is indeed waiting for this message. */
 | |
| 	assert(!(dst_ptr->p_misc_flags & MF_DELIVERMSG));	
 | |
| 
 | |
| 	if (!(flags & FROM_KERNEL)) {
 | |
| 		if(copy_msg_from_user(caller_ptr, m_ptr, &dst_ptr->p_delivermsg))
 | |
| 			return EFAULT;
 | |
| 	} else {
 | |
| 		dst_ptr->p_delivermsg = *m_ptr;
 | |
| 		IPC_STATUS_ADD_FLAGS(dst_ptr, IPC_FLG_MSG_FROM_KERNEL);
 | |
| 	}
 | |
| 
 | |
| 	dst_ptr->p_delivermsg.m_source = caller_ptr->p_endpoint;
 | |
| 	dst_ptr->p_misc_flags |= MF_DELIVERMSG;
 | |
| 
 | |
| 	call = (caller_ptr->p_misc_flags & MF_REPLY_PEND ? SENDREC
 | |
| 		: (flags & NON_BLOCKING ? SENDNB : SEND));
 | |
| 	IPC_STATUS_ADD_CALL(dst_ptr, call);
 | |
| 	RTS_UNSET(dst_ptr, RTS_RECEIVING);
 | |
|   } else {
 | |
| 	if(flags & NON_BLOCKING) {
 | |
| 		return(ENOTREADY);
 | |
| 	}
 | |
| 
 | |
| 	/* Check for a possible deadlock before actually blocking. */
 | |
| 	if (deadlock(SEND, caller_ptr, dst_p)) {
 | |
| 		return(ELOCKED);
 | |
| 	}
 | |
| 
 | |
| 	/* Destination is not waiting.  Block and dequeue caller. */
 | |
| 	if (!(flags & FROM_KERNEL)) {
 | |
| 		if(copy_msg_from_user(caller_ptr, m_ptr, &caller_ptr->p_sendmsg))
 | |
| 			return EFAULT;
 | |
| 	} else {
 | |
| 		caller_ptr->p_sendmsg = *m_ptr;
 | |
| 		/*
 | |
| 		 * we need to remember that this message is from kernel so we
 | |
| 		 * can set the delivery status flags when the message is
 | |
| 		 * actually delivered
 | |
| 		 */
 | |
| 		caller_ptr->p_misc_flags |= MF_SENDING_FROM_KERNEL;
 | |
| 	}
 | |
| 
 | |
| 	RTS_SET(caller_ptr, RTS_SENDING);
 | |
| 	caller_ptr->p_sendto_e = dst_e;
 | |
| 
 | |
| 	/* Process is now blocked.  Put in on the destination's queue. */
 | |
| 	xpp = &dst_ptr->p_caller_q;		/* find end of list */
 | |
| 	while (*xpp) xpp = &(*xpp)->p_q_link;	
 | |
| 	*xpp = caller_ptr;			/* add caller to end */
 | |
| 	caller_ptr->p_q_link = NULL;	/* mark new end of list */
 | |
|   }
 | |
|   return(OK);
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				mini_receive				     * 
 | |
|  *===========================================================================*/
 | |
| PRIVATE int mini_receive(struct proc * caller_ptr,
 | |
| 			int src_e, /* which message source is wanted */
 | |
| 			message * m_buff_usr, /* pointer to message buffer */
 | |
| 			const int flags)
 | |
| {
 | |
| /* A process or task wants to get a message.  If a message is already queued,
 | |
|  * acquire it and deblock the sender.  If no message from the desired source
 | |
|  * is available block the caller.
 | |
|  */
 | |
|   register struct proc **xpp;
 | |
|   sys_map_t *map;
 | |
|   bitchunk_t *chunk;
 | |
|   int i, r, src_id, src_proc_nr, src_p;
 | |
| 
 | |
|   assert(!(caller_ptr->p_misc_flags & MF_DELIVERMSG));
 | |
| 
 | |
|   /* This is where we want our message. */
 | |
|   caller_ptr->p_delivermsg_vir = (vir_bytes) m_buff_usr;
 | |
| 
 | |
|   if(src_e == ANY) src_p = ANY;
 | |
|   else
 | |
|   {
 | |
| 	okendpt(src_e, &src_p);
 | |
| 	if (RTS_ISSET(proc_addr(src_p), RTS_NO_ENDPOINT))
 | |
| 	{
 | |
| 		return EDEADSRCDST;
 | |
| 	}
 | |
|   }
 | |
| 
 | |
| 
 | |
|   /* Check to see if a message from desired source is already available.  The
 | |
|    * caller's RTS_SENDING flag may be set if SENDREC couldn't send. If it is
 | |
|    * set, the process should be blocked.
 | |
|    */
 | |
|   if (!RTS_ISSET(caller_ptr, RTS_SENDING)) {
 | |
| 
 | |
|     /* Check if there are pending notifications, except for SENDREC. */
 | |
|     if (! (caller_ptr->p_misc_flags & MF_REPLY_PEND)) {
 | |
| 
 | |
|         map = &priv(caller_ptr)->s_notify_pending;
 | |
|         for (chunk=&map->chunk[0]; chunk<&map->chunk[NR_SYS_CHUNKS]; chunk++) {
 | |
| 		endpoint_t hisep;
 | |
| 
 | |
|             /* Find a pending notification from the requested source. */ 
 | |
|             if (! *chunk) continue; 			/* no bits in chunk */
 | |
|             for (i=0; ! (*chunk & (1<<i)); ++i) {} 	/* look up the bit */
 | |
|             src_id = (chunk - &map->chunk[0]) * BITCHUNK_BITS + i;
 | |
|             if (src_id >= NR_SYS_PROCS) break;		/* out of range */
 | |
|             src_proc_nr = id_to_nr(src_id);		/* get source proc */
 | |
| #if DEBUG_ENABLE_IPC_WARNINGS
 | |
| 	    if(src_proc_nr == NONE) {
 | |
| 		printf("mini_receive: sending notify from NONE\n");
 | |
| 	    }
 | |
| #endif
 | |
|             if (src_e!=ANY && src_p != src_proc_nr) continue;/* source not ok */
 | |
|             *chunk &= ~(1 << i);			/* no longer pending */
 | |
| 
 | |
|             /* Found a suitable source, deliver the notification message. */
 | |
| 	    hisep = proc_addr(src_proc_nr)->p_endpoint;
 | |
| 	    assert(!(caller_ptr->p_misc_flags & MF_DELIVERMSG));	
 | |
| 	    assert(src_e == ANY || hisep == src_e);
 | |
| 
 | |
| 	    /* assemble message */
 | |
| 	    BuildNotifyMessage(&caller_ptr->p_delivermsg, src_proc_nr, caller_ptr);
 | |
| 	    caller_ptr->p_delivermsg.m_source = hisep;
 | |
| 	    caller_ptr->p_misc_flags |= MF_DELIVERMSG;
 | |
| 
 | |
| 	    IPC_STATUS_ADD_CALL(caller_ptr, NOTIFY);
 | |
| 
 | |
| 	    return(OK);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Check if there are pending senda(). */
 | |
|     if (caller_ptr->p_misc_flags & MF_ASYNMSG)
 | |
|     {
 | |
| 	if (src_e != ANY)
 | |
| 		r= try_one(proc_addr(src_p), caller_ptr, NULL);
 | |
| 	else
 | |
| 		r= try_async(caller_ptr);
 | |
| 
 | |
| 	if (r == OK) {
 | |
| 		IPC_STATUS_ADD_CALL(caller_ptr, SENDA);
 | |
| 		return OK;	/* Got a message */
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     /* Check caller queue. Use pointer pointers to keep code simple. */
 | |
|     xpp = &caller_ptr->p_caller_q;
 | |
|     while (*xpp) {
 | |
|         if (src_e == ANY || src_p == proc_nr(*xpp)) {
 | |
|             int call;
 | |
| 	    assert(!RTS_ISSET(*xpp, RTS_SLOT_FREE));
 | |
| 	    assert(!RTS_ISSET(*xpp, RTS_NO_ENDPOINT));
 | |
| 
 | |
| 	    /* Found acceptable message. Copy it and update status. */
 | |
|   	    assert(!(caller_ptr->p_misc_flags & MF_DELIVERMSG));
 | |
| 	    caller_ptr->p_delivermsg = (*xpp)->p_sendmsg;
 | |
| 	    caller_ptr->p_delivermsg.m_source = (*xpp)->p_endpoint;
 | |
| 	    caller_ptr->p_misc_flags |= MF_DELIVERMSG;
 | |
| 	    RTS_UNSET(*xpp, RTS_SENDING);
 | |
| 
 | |
| 	    call = ((*xpp)->p_misc_flags & MF_REPLY_PEND ? SENDREC : SEND);
 | |
| 	    IPC_STATUS_ADD_CALL(caller_ptr, call);
 | |
| 
 | |
| 	    /*
 | |
| 	     * if the message is originaly from the kernel on behalf of this
 | |
| 	     * process, we must send the status flags accordingly
 | |
| 	     */
 | |
| 	    if ((*xpp)->p_misc_flags & MF_SENDING_FROM_KERNEL) {
 | |
| 		IPC_STATUS_ADD_FLAGS(caller_ptr, IPC_FLG_MSG_FROM_KERNEL);
 | |
| 		/* we can clean the flag now, not need anymore */
 | |
| 		(*xpp)->p_misc_flags &= ~MF_SENDING_FROM_KERNEL;
 | |
| 	    }
 | |
| 	    if ((*xpp)->p_misc_flags & MF_SIG_DELAY)
 | |
| 		sig_delay_done(*xpp);
 | |
| 
 | |
|             *xpp = (*xpp)->p_q_link;		/* remove from queue */
 | |
|             return(OK);				/* report success */
 | |
| 	}
 | |
| 	xpp = &(*xpp)->p_q_link;		/* proceed to next */
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* No suitable message is available or the caller couldn't send in SENDREC. 
 | |
|    * Block the process trying to receive, unless the flags tell otherwise.
 | |
|    */
 | |
|   if ( ! (flags & NON_BLOCKING)) {
 | |
|       /* Check for a possible deadlock before actually blocking. */
 | |
|       if (deadlock(RECEIVE, caller_ptr, src_p)) {
 | |
|           return(ELOCKED);
 | |
|       }
 | |
| 
 | |
|       caller_ptr->p_getfrom_e = src_e;		
 | |
|       RTS_SET(caller_ptr, RTS_RECEIVING);
 | |
|       return(OK);
 | |
|   } else {
 | |
| 	return(ENOTREADY);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				mini_notify				     * 
 | |
|  *===========================================================================*/
 | |
| PUBLIC int mini_notify(
 | |
|   const struct proc *caller_ptr,	/* sender of the notification */
 | |
|   endpoint_t dst_e			/* which process to notify */
 | |
| )
 | |
| {
 | |
|   register struct proc *dst_ptr;
 | |
|   int src_id;				/* source id for late delivery */
 | |
|   int dst_p;
 | |
| 
 | |
|   if (!isokendpt(dst_e, &dst_p)) {
 | |
| 	util_stacktrace();
 | |
| 	printf("mini_notify: bogus endpoint %d\n", dst_e);
 | |
| 	return EDEADSRCDST;
 | |
|   }
 | |
| 
 | |
|   dst_ptr = proc_addr(dst_p);
 | |
| 
 | |
|   /* Check to see if target is blocked waiting for this message. A process 
 | |
|    * can be both sending and receiving during a SENDREC system call.
 | |
|    */
 | |
|     if (WILLRECEIVE(dst_ptr, caller_ptr->p_endpoint) &&
 | |
|       ! (dst_ptr->p_misc_flags & MF_REPLY_PEND)) {
 | |
|       /* Destination is indeed waiting for a message. Assemble a notification 
 | |
|        * message and deliver it. Copy from pseudo-source HARDWARE, since the
 | |
|        * message is in the kernel's address space.
 | |
|        */ 
 | |
|       assert(!(dst_ptr->p_misc_flags & MF_DELIVERMSG));
 | |
| 
 | |
|       BuildNotifyMessage(&dst_ptr->p_delivermsg, proc_nr(caller_ptr), dst_ptr);
 | |
|       dst_ptr->p_delivermsg.m_source = caller_ptr->p_endpoint;
 | |
|       dst_ptr->p_misc_flags |= MF_DELIVERMSG;
 | |
| 
 | |
|       IPC_STATUS_ADD_CALL(dst_ptr, NOTIFY);
 | |
|       RTS_UNSET(dst_ptr, RTS_RECEIVING);
 | |
| 
 | |
|       return(OK);
 | |
|   } 
 | |
| 
 | |
|   /* Destination is not ready to receive the notification. Add it to the 
 | |
|    * bit map with pending notifications. Note the indirectness: the privilege id
 | |
|    * instead of the process number is used in the pending bit map.
 | |
|    */ 
 | |
|   src_id = priv(caller_ptr)->s_id;
 | |
|   set_sys_bit(priv(dst_ptr)->s_notify_pending, src_id); 
 | |
|   return(OK);
 | |
| }
 | |
| 
 | |
| #define ASCOMPLAIN(caller, entry, field)	\
 | |
| 	printf("kernel:%s:%d: asyn failed for %s in %s "	\
 | |
| 	"(%d/%d, tab 0x%lx)\n",__FILE__,__LINE__,	\
 | |
| field, caller->p_name, entry, priv(caller)->s_asynsize, priv(caller)->s_asyntab)
 | |
| 
 | |
| #define A_RETRIEVE(entry, field)	\
 | |
|   if(data_copy(caller_ptr->p_endpoint,	\
 | |
| 	 table_v + (entry)*sizeof(asynmsg_t) + offsetof(struct asynmsg,field),\
 | |
| 		KERNEL, (vir_bytes) &tabent.field,	\
 | |
| 			sizeof(tabent.field)) != OK) {\
 | |
| 		ASCOMPLAIN(caller_ptr, entry, #field);	\
 | |
| 		return EFAULT; \
 | |
| 	}
 | |
| 
 | |
| #define A_INSERT(entry, field)	\
 | |
|   if(data_copy(KERNEL, (vir_bytes) &tabent.field, \
 | |
| 	caller_ptr->p_endpoint,	\
 | |
|  	table_v + (entry)*sizeof(asynmsg_t) + offsetof(struct asynmsg,field),\
 | |
| 		sizeof(tabent.field)) != OK) {\
 | |
| 		ASCOMPLAIN(caller_ptr, entry, #field);	\
 | |
| 		return EFAULT; \
 | |
| 	}
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				mini_senda				     *
 | |
|  *===========================================================================*/
 | |
| PRIVATE int mini_senda(struct proc *caller_ptr, asynmsg_t *table, size_t size)
 | |
| {
 | |
| 	int i, dst_p, done, do_notify;
 | |
| 	unsigned flags;
 | |
| 	struct proc *dst_ptr;
 | |
| 	struct priv *privp;
 | |
| 	asynmsg_t tabent;
 | |
| 	const vir_bytes table_v = (vir_bytes) table;
 | |
| 
 | |
| 	privp= priv(caller_ptr);
 | |
| 	if (!(privp->s_flags & SYS_PROC))
 | |
| 	{
 | |
| 		printf(
 | |
| 		"mini_senda: warning caller has no privilege structure\n");
 | |
| 		return EPERM;
 | |
| 	}
 | |
| 
 | |
| 	/* Clear table */
 | |
| 	privp->s_asyntab= -1;	
 | |
| 	privp->s_asynsize= 0;
 | |
| 
 | |
| 	if (size == 0)
 | |
| 	{
 | |
| 		/* Nothing to do, just return */
 | |
| 		return OK;
 | |
| 	}
 | |
| 
 | |
| 	/* Limit size to something reasonable. An arbitrary choice is 16
 | |
| 	 * times the number of process table entries.
 | |
| 	 *
 | |
| 	 * (this check has been duplicated in sys_call but is left here
 | |
| 	 * as a sanity check)
 | |
| 	 */
 | |
| 	if (size > 16*(NR_TASKS + NR_PROCS))
 | |
| 	{
 | |
| 		return EDOM;
 | |
| 	}
 | |
| 	
 | |
| 	/* Scan the table */
 | |
| 	do_notify= FALSE;	
 | |
| 	done= TRUE;
 | |
| 	for (i= 0; i<size; i++)
 | |
| 	{
 | |
| 
 | |
| 		/* Read status word */
 | |
| 		A_RETRIEVE(i, flags);
 | |
| 		flags= tabent.flags;
 | |
| 
 | |
| 		/* Skip empty entries */
 | |
| 		if (flags == 0)
 | |
| 			continue;
 | |
| 
 | |
| 		/* Check for reserved bits in the flags field */
 | |
| 		if (flags & ~(AMF_VALID|AMF_DONE|AMF_NOTIFY|AMF_NOREPLY) ||
 | |
| 			!(flags & AMF_VALID))
 | |
| 		{
 | |
| 			return EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		/* Skip entry if AMF_DONE is already set */
 | |
| 		if (flags & AMF_DONE)
 | |
| 			continue;
 | |
| 
 | |
| 		/* Get destination */
 | |
| 		A_RETRIEVE(i, dst);
 | |
| 
 | |
| 		if (!isokendpt(tabent.dst, &dst_p))
 | |
| 		{
 | |
| 			/* Bad destination, report the error */
 | |
| 			tabent.result= EDEADSRCDST;
 | |
| 			A_INSERT(i, result);
 | |
| 			tabent.flags= flags | AMF_DONE;
 | |
| 			A_INSERT(i, flags);
 | |
| 
 | |
| 			if (flags & AMF_NOTIFY)
 | |
| 				do_notify= 1;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (iskerneln(dst_p))
 | |
| 		{
 | |
| 			/* Asynchronous sends to the kernel are not allowed */
 | |
| 			tabent.result= ECALLDENIED;
 | |
| 			A_INSERT(i, result);
 | |
| 			tabent.flags= flags | AMF_DONE;
 | |
| 			A_INSERT(i, flags);
 | |
| 
 | |
| 			if (flags & AMF_NOTIFY)
 | |
| 				do_notify= 1;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (!may_send_to(caller_ptr, dst_p))
 | |
| 		{
 | |
| 			/* Send denied by IPC mask */
 | |
| 			tabent.result= ECALLDENIED;
 | |
| 			A_INSERT(i, result);
 | |
| 			tabent.flags= flags | AMF_DONE;
 | |
| 			A_INSERT(i, flags);
 | |
| 
 | |
| 			if (flags & AMF_NOTIFY)
 | |
| 				do_notify= 1;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| #if 0
 | |
| 		printf("mini_senda: entry[%d]: flags 0x%x dst %d/%d\n",
 | |
| 			i, tabent.flags, tabent.dst, dst_p);
 | |
| #endif
 | |
| 
 | |
| 		dst_ptr = proc_addr(dst_p);
 | |
| 
 | |
| 		/* RTS_NO_ENDPOINT should be removed */
 | |
| 		if (RTS_ISSET(dst_ptr, RTS_NO_ENDPOINT))
 | |
| 		{
 | |
| 			tabent.result= EDEADSRCDST;
 | |
| 			A_INSERT(i, result);
 | |
| 			tabent.flags= flags | AMF_DONE;
 | |
| 			A_INSERT(i, flags);
 | |
| 
 | |
| 			if (flags & AMF_NOTIFY)
 | |
| 				do_notify= TRUE;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* Check if 'dst' is blocked waiting for this message.
 | |
| 		 * If AMF_NOREPLY is set, do not satisfy the receiving part of
 | |
| 		 * a SENDREC.
 | |
| 		 */
 | |
| 		if (WILLRECEIVE(dst_ptr, caller_ptr->p_endpoint) &&
 | |
| 			(!(flags & AMF_NOREPLY) ||
 | |
| 			!(dst_ptr->p_misc_flags & MF_REPLY_PEND)))
 | |
| 		{
 | |
| 			/* Destination is indeed waiting for this message. */
 | |
| 			/* Copy message from sender. */
 | |
| 			if(copy_msg_from_user(caller_ptr, &table[i].msg,
 | |
| 						&dst_ptr->p_delivermsg))
 | |
| 				tabent.result = EFAULT;
 | |
| 			else {
 | |
| 				dst_ptr->p_delivermsg.m_source = caller_ptr->p_endpoint;
 | |
| 				dst_ptr->p_misc_flags |= MF_DELIVERMSG;
 | |
| 				IPC_STATUS_ADD_CALL(dst_ptr, SENDA);
 | |
| 				RTS_UNSET(dst_ptr, RTS_RECEIVING);
 | |
| 				tabent.result = OK;
 | |
| 			}
 | |
| 
 | |
| 			A_INSERT(i, result);
 | |
| 			tabent.flags= flags | AMF_DONE;
 | |
| 			A_INSERT(i, flags);
 | |
| 
 | |
| 			if (flags & AMF_NOTIFY)
 | |
| 				do_notify= 1;
 | |
| 			continue;
 | |
| 		}
 | |
| 		else 
 | |
| 		{
 | |
| 			/* Should inform receiver that something is pending */
 | |
| 			dst_ptr->p_misc_flags |= MF_ASYNMSG;
 | |
| 			done= FALSE;
 | |
| 			continue;
 | |
| 		} 
 | |
| 	}
 | |
| 	if (do_notify)
 | |
| 		printf("mini_senda: should notify caller\n");
 | |
| 	if (!done)
 | |
| 	{
 | |
| 		privp->s_asyntab= (vir_bytes)table;
 | |
| 		privp->s_asynsize= size;
 | |
| 	}
 | |
| 	return OK;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				try_async				     * 
 | |
|  *===========================================================================*/
 | |
| PRIVATE int try_async(caller_ptr)
 | |
| struct proc *caller_ptr;
 | |
| {
 | |
| 	int r;
 | |
| 	struct priv *privp;
 | |
| 	struct proc *src_ptr;
 | |
| 	int postponed = FALSE;
 | |
| 
 | |
| 	/* Try all privilege structures */
 | |
| 	for (privp = BEG_PRIV_ADDR; privp < END_PRIV_ADDR; ++privp) 
 | |
| 	{
 | |
| 		if (privp->s_proc_nr == NONE)
 | |
| 			continue;
 | |
| 
 | |
| 		src_ptr= proc_addr(privp->s_proc_nr);
 | |
| 
 | |
| 	  	assert(!(caller_ptr->p_misc_flags & MF_DELIVERMSG));
 | |
| 		r= try_one(src_ptr, caller_ptr, &postponed);
 | |
| 		if (r == OK)
 | |
| 			return r;
 | |
| 	}
 | |
| 
 | |
| 	/* Nothing found, clear MF_ASYNMSG unless messages were postponed */
 | |
| 	if (postponed == FALSE)
 | |
| 		caller_ptr->p_misc_flags &= ~MF_ASYNMSG;
 | |
| 
 | |
| 	return ESRCH;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				try_one					     *
 | |
|  *===========================================================================*/
 | |
| PRIVATE int try_one(struct proc *src_ptr, struct proc *dst_ptr, int *postponed)
 | |
| {
 | |
| 	int i, done;
 | |
| 	unsigned flags;
 | |
| 	size_t size;
 | |
| 	endpoint_t dst_e;
 | |
| 	struct priv *privp;
 | |
| 	asynmsg_t tabent;
 | |
| 	vir_bytes table_v;
 | |
| 	struct proc *caller_ptr;
 | |
| 
 | |
| 	privp= priv(src_ptr);
 | |
| 
 | |
| 	/* Basic validity checks */
 | |
| 	if (privp->s_id == USER_PRIV_ID) return EAGAIN;
 | |
| 	if (privp->s_asynsize == 0) return EAGAIN;
 | |
| 	if (!may_send_to(src_ptr, proc_nr(dst_ptr))) return EAGAIN;
 | |
| 
 | |
| 	size= privp->s_asynsize;
 | |
| 	table_v = privp->s_asyntab;
 | |
| 	caller_ptr = src_ptr;
 | |
| 
 | |
| 	dst_e= dst_ptr->p_endpoint;
 | |
| 
 | |
| 	/* Scan the table */
 | |
| 	done= TRUE;
 | |
| 	for (i= 0; i<size; i++)
 | |
| 	{
 | |
| 		/* Read status word */
 | |
| 		A_RETRIEVE(i, flags);
 | |
| 		flags= tabent.flags;
 | |
| 
 | |
| 		/* Skip empty entries */
 | |
| 		if (flags == 0)
 | |
| 		{
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* Check for reserved bits in the flags field */
 | |
| 		if (flags & ~(AMF_VALID|AMF_DONE|AMF_NOTIFY|AMF_NOREPLY) ||
 | |
| 			!(flags & AMF_VALID))
 | |
| 		{
 | |
| 			printf("try_one: bad bits in table\n");
 | |
| 			privp->s_asynsize= 0;
 | |
| 			return EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		/* Skip entry is AMF_DONE is already set */
 | |
| 		if (flags & AMF_DONE)
 | |
| 		{
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* Clear done. We are done when all entries are either empty
 | |
| 		 * or done at the start of the call.
 | |
| 		 */
 | |
| 		done= FALSE;
 | |
| 
 | |
| 		/* Get destination */
 | |
| 		A_RETRIEVE(i, dst);
 | |
| 
 | |
| 		if (tabent.dst != dst_e)
 | |
| 		{
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* If AMF_NOREPLY is set, do not satisfy the receiving part of
 | |
| 		 * a SENDREC. Do not unset MF_ASYNMSG later because of this,
 | |
| 		 * though: this message is still to be delivered later.
 | |
| 		 */
 | |
| 		if ((flags & AMF_NOREPLY) &&
 | |
| 			(dst_ptr->p_misc_flags & MF_REPLY_PEND))
 | |
| 		{
 | |
| 			if (postponed != NULL)
 | |
| 				*postponed = TRUE;
 | |
| 
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* Deliver message */
 | |
| 		A_RETRIEVE(i, msg);
 | |
| 		dst_ptr->p_delivermsg = tabent.msg;
 | |
| 		dst_ptr->p_delivermsg.m_source = src_ptr->p_endpoint;
 | |
| 		dst_ptr->p_misc_flags |= MF_DELIVERMSG;
 | |
| 
 | |
| 		tabent.result = OK;
 | |
| 		A_INSERT(i, result);
 | |
| 		tabent.flags= flags | AMF_DONE;
 | |
| 		A_INSERT(i, flags);
 | |
| 
 | |
| 		if (flags & AMF_NOTIFY)
 | |
| 		{
 | |
| 			printf("try_one: should notify caller\n");
 | |
| 		}
 | |
| 		return OK;
 | |
| 	}
 | |
| 	if (done)
 | |
| 		privp->s_asynsize= 0;
 | |
| 	return EAGAIN;
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				enqueue					     * 
 | |
|  *===========================================================================*/
 | |
| PUBLIC void enqueue(
 | |
|   register struct proc *rp	/* this process is now runnable */
 | |
| )
 | |
| {
 | |
| /* Add 'rp' to one of the queues of runnable processes.  This function is 
 | |
|  * responsible for inserting a process into one of the scheduling queues. 
 | |
|  * The mechanism is implemented here.   The actual scheduling policy is
 | |
|  * defined in sched() and pick_proc().
 | |
|  */
 | |
|   int q = rp->p_priority;	 		/* scheduling queue to use */
 | |
| 
 | |
| #if DEBUG_RACE
 | |
|   /* With DEBUG_RACE, schedule everyone at the same priority level. */
 | |
|   rp->p_priority = q = MIN_USER_Q;
 | |
| #endif
 | |
| 
 | |
|   assert(proc_is_runnable(rp));
 | |
| 
 | |
|   assert(q >= 0);
 | |
| 
 | |
|   /* Now add the process to the queue. */
 | |
|   if (!rdy_head[q]) {		/* add to empty queue */
 | |
|       rdy_head[q] = rdy_tail[q] = rp; 		/* create a new queue */
 | |
|       rp->p_nextready = NULL;		/* mark new end */
 | |
|   } 
 | |
|   else {					/* add to tail of queue */
 | |
|       rdy_tail[q]->p_nextready = rp;		/* chain tail of queue */	
 | |
|       rdy_tail[q] = rp;				/* set new queue tail */
 | |
|       rp->p_nextready = NULL;		/* mark new end */
 | |
|   }
 | |
| 
 | |
|   /*
 | |
|    * enqueueing a process with a higher priority than the current one, it gets
 | |
|    * preempted. The current process must be preemptible. Testing the priority
 | |
|    * also makes sure that a process does not preempt itself
 | |
|    */
 | |
|   assert(proc_ptr && proc_ptr_ok(proc_ptr));
 | |
|   if ((proc_ptr->p_priority > rp->p_priority) &&
 | |
| 		  (priv(proc_ptr)->s_flags & PREEMPTIBLE))
 | |
|      RTS_SET(proc_ptr, RTS_PREEMPTED); /* calls dequeue() */
 | |
| 
 | |
| #if DEBUG_SANITYCHECKS
 | |
|   assert(runqueues_ok());
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				enqueue_head				     *
 | |
|  *===========================================================================*/
 | |
| /*
 | |
|  * put a process at the front of its run queue. It comes handy when a process is
 | |
|  * preempted and removed from run queue to not to have a currently not-runnable
 | |
|  * process on a run queue. We have to put this process back at the fron to be
 | |
|  * fair
 | |
|  */
 | |
| PRIVATE void enqueue_head(struct proc *rp)
 | |
| {
 | |
|   const int q = rp->p_priority;	 		/* scheduling queue to use */
 | |
| 
 | |
|   assert(proc_ptr_ok(rp));
 | |
|   assert(proc_is_runnable(rp));
 | |
| 
 | |
|   /*
 | |
|    * the process was runnable without its quantum expired when dequeued. A
 | |
|    * process with no time left should vahe been handled else and differently
 | |
|    */
 | |
|   assert(!is_zero64(rp->p_cpu_time_left));
 | |
| 
 | |
|   assert(q >= 0);
 | |
| 
 | |
| 
 | |
|   /* Now add the process to the queue. */
 | |
|   if (!rdy_head[q]) {		/* add to empty queue */
 | |
|       rdy_head[q] = rdy_tail[q] = rp; 		/* create a new queue */
 | |
|       rp->p_nextready = NULL;		/* mark new end */
 | |
|   }
 | |
|   else						/* add to head of queue */
 | |
|       rp->p_nextready = rdy_head[q];		/* chain head of queue */
 | |
|       rdy_head[q] = rp;				/* set new queue head */
 | |
| 
 | |
| #if DEBUG_SANITYCHECKS
 | |
|   assert(runqueues_ok());
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				dequeue					     * 
 | |
|  *===========================================================================*/
 | |
| PUBLIC void dequeue(const struct proc *rp)
 | |
| /* this process is no longer runnable */
 | |
| {
 | |
| /* A process must be removed from the scheduling queues, for example, because
 | |
|  * it has blocked.  If the currently active process is removed, a new process
 | |
|  * is picked to run by calling pick_proc().
 | |
|  */
 | |
|   register int q = rp->p_priority;		/* queue to use */
 | |
|   register struct proc **xpp;			/* iterate over queue */
 | |
|   register struct proc *prev_xp;
 | |
| 
 | |
|   assert(proc_ptr_ok(rp));
 | |
|   assert(!proc_is_runnable(rp));
 | |
| 
 | |
|   /* Side-effect for kernel: check if the task's stack still is ok? */
 | |
|   assert (!iskernelp(rp) || *priv(rp)->s_stack_guard == STACK_GUARD);
 | |
| 
 | |
|   /* Now make sure that the process is not in its ready queue. Remove the 
 | |
|    * process if it is found. A process can be made unready even if it is not 
 | |
|    * running by being sent a signal that kills it.
 | |
|    */
 | |
|   prev_xp = NULL;				
 | |
|   for (xpp = &rdy_head[q]; *xpp; xpp = &(*xpp)->p_nextready) {
 | |
|       if (*xpp == rp) {				/* found process to remove */
 | |
|           *xpp = (*xpp)->p_nextready;		/* replace with next chain */
 | |
|           if (rp == rdy_tail[q]) {		/* queue tail removed */
 | |
|               rdy_tail[q] = prev_xp;		/* set new tail */
 | |
| 	  }
 | |
| 
 | |
|           break;
 | |
|       }
 | |
|       prev_xp = *xpp;				/* save previous in chain */
 | |
|   }
 | |
| 
 | |
| #if DEBUG_SANITYCHECKS
 | |
|   assert(runqueues_ok());
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #if DEBUG_RACE
 | |
| /*===========================================================================*
 | |
|  *				random_process				     * 
 | |
|  *===========================================================================*/
 | |
| PRIVATE struct proc *random_process(struct proc *head)
 | |
| {
 | |
| 	int i, n = 0;
 | |
| 	struct proc *rp;
 | |
| 	u64_t r;
 | |
| 	read_tsc_64(&r);
 | |
| 
 | |
| 	for(rp = head; rp; rp = rp->p_nextready)
 | |
| 		n++;
 | |
| 
 | |
| 	/* Use low-order word of TSC as pseudorandom value. */
 | |
| 	i = r.lo % n;
 | |
| 
 | |
| 	for(rp = head; i--; rp = rp->p_nextready)
 | |
| 		;
 | |
| 
 | |
| 	assert(rp);
 | |
| 
 | |
| 	return rp;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				pick_proc				     * 
 | |
|  *===========================================================================*/
 | |
| PRIVATE struct proc * pick_proc(void)
 | |
| {
 | |
| /* Decide who to run now.  A new process is selected an returned.
 | |
|  * When a billable process is selected, record it in 'bill_ptr', so that the 
 | |
|  * clock task can tell who to bill for system time.
 | |
|  */
 | |
|   register struct proc *rp;			/* process to run */
 | |
|   int q;				/* iterate over queues */
 | |
| 
 | |
|   /* Check each of the scheduling queues for ready processes. The number of
 | |
|    * queues is defined in proc.h, and priorities are set in the task table.
 | |
|    * The lowest queue contains IDLE, which is always ready.
 | |
|    */
 | |
|   for (q=0; q < NR_SCHED_QUEUES; q++) {	
 | |
| 	if(!(rp = rdy_head[q])) {
 | |
| 		TRACE(VF_PICKPROC, printf("queue %d empty\n", q););
 | |
| 		continue;
 | |
| 	}
 | |
| 
 | |
| #if DEBUG_RACE
 | |
| 	rp = random_process(rdy_head[q]);
 | |
| #endif
 | |
| 
 | |
| 	TRACE(VF_PICKPROC, printf("found %s / %d on queue %d\n", 
 | |
| 		rp->p_name, rp->p_endpoint, q););
 | |
| 	assert(proc_is_runnable(rp));
 | |
| 	if (priv(rp)->s_flags & BILLABLE)	 	
 | |
| 		bill_ptr = rp;		/* bill for system time */
 | |
| 	return rp;
 | |
|   }
 | |
|   return NULL;
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				endpoint_lookup				     *
 | |
|  *===========================================================================*/
 | |
| PUBLIC struct proc *endpoint_lookup(endpoint_t e)
 | |
| {
 | |
| 	int n;
 | |
| 
 | |
| 	if(!isokendpt(e, &n)) return NULL;
 | |
| 
 | |
| 	return proc_addr(n);
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				isokendpt_f				     *
 | |
|  *===========================================================================*/
 | |
| #if DEBUG_ENABLE_IPC_WARNINGS
 | |
| PUBLIC int isokendpt_f(file, line, e, p, fatalflag)
 | |
| const char *file;
 | |
| int line;
 | |
| #else
 | |
| PUBLIC int isokendpt_f(e, p, fatalflag)
 | |
| #endif
 | |
| endpoint_t e;
 | |
| int *p;
 | |
| const int fatalflag;
 | |
| {
 | |
| 	int ok = 0;
 | |
| 	/* Convert an endpoint number into a process number.
 | |
| 	 * Return nonzero if the process is alive with the corresponding
 | |
| 	 * generation number, zero otherwise.
 | |
| 	 *
 | |
| 	 * This function is called with file and line number by the
 | |
| 	 * isokendpt_d macro if DEBUG_ENABLE_IPC_WARNINGS is defined,
 | |
| 	 * otherwise without. This allows us to print the where the
 | |
| 	 * conversion was attempted, making the errors verbose without
 | |
| 	 * adding code for that at every call.
 | |
| 	 * 
 | |
| 	 * If fatalflag is nonzero, we must panic if the conversion doesn't
 | |
| 	 * succeed.
 | |
| 	 */
 | |
| 	*p = _ENDPOINT_P(e);
 | |
| 	if(!isokprocn(*p)) {
 | |
| #if DEBUG_ENABLE_IPC_WARNINGS
 | |
| 		printf("kernel:%s:%d: bad endpoint %d: proc %d out of range\n",
 | |
| 		file, line, e, *p);
 | |
| #endif
 | |
| 	} else if(isemptyn(*p)) {
 | |
| #if 0
 | |
| 	printf("kernel:%s:%d: bad endpoint %d: proc %d empty\n", file, line, e, *p);
 | |
| #endif
 | |
| 	} else if(proc_addr(*p)->p_endpoint != e) {
 | |
| #if DEBUG_ENABLE_IPC_WARNINGS
 | |
| 		printf("kernel:%s:%d: bad endpoint %d: proc %d has ept %d (generation %d vs. %d)\n", file, line,
 | |
| 		e, *p, proc_addr(*p)->p_endpoint,
 | |
| 		_ENDPOINT_G(e), _ENDPOINT_G(proc_addr(*p)->p_endpoint));
 | |
| #endif
 | |
| 	} else ok = 1;
 | |
| 	if(!ok && fatalflag) {
 | |
| 		panic("invalid endpoint: %d",  e);
 | |
| 	}
 | |
| 	return ok;
 | |
| }
 | |
| 
 | |
| PRIVATE void notify_scheduler(struct proc *p)
 | |
| {
 | |
| 	message m_no_quantum;
 | |
| 	int err;
 | |
| 
 | |
| 	assert(!proc_kernel_scheduler(p));
 | |
| 
 | |
| 	/* dequeue the process */
 | |
| 	RTS_SET(p, RTS_NO_QUANTUM);
 | |
| 	/*
 | |
| 	 * Notify the process's scheduler that it has run out of
 | |
| 	 * quantum. This is done by sending a message to the scheduler
 | |
| 	 * on the process's behalf
 | |
| 	 */
 | |
| 	m_no_quantum.m_source = p->p_endpoint;
 | |
| 	m_no_quantum.m_type   = SCHEDULING_NO_QUANTUM;
 | |
| 
 | |
| 	if ((err = mini_send(p, p->p_scheduler->p_endpoint,
 | |
| 					&m_no_quantum, FROM_KERNEL))) {
 | |
| 		panic("WARNING: Scheduling: mini_send returned %d\n", err);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| PUBLIC void proc_no_time(struct proc * p)
 | |
| {
 | |
| 	if (!proc_kernel_scheduler(p) && priv(p)->s_flags & PREEMPTIBLE) {
 | |
| 		/* this dequeues the process */
 | |
| 		notify_scheduler(p);
 | |
| 	}
 | |
| 	else {
 | |
| 		/*
 | |
| 		 * non-preemptible processes only need their quantum to
 | |
| 		 * be renewed. In fact, they by pass scheduling
 | |
| 		 */
 | |
| 		p->p_cpu_time_left = ms_2_cpu_time(p->p_quantum_size_ms);
 | |
| #if DEBUG_RACE
 | |
| 		RTS_SET(proc_ptr, RTS_PREEMPTED);
 | |
| 		RTS_UNSET(proc_ptr, RTS_PREEMPTED);
 | |
| #endif
 | |
| 	}
 | |
| }
 | |
| 	
 | |
| PUBLIC void copr_not_available_handler(void)
 | |
| {
 | |
| 	/*
 | |
| 	 * Disable the FPU exception (both for the kernel and for the process
 | |
| 	 * once it's scheduled), and initialize or restore the FPU state.
 | |
| 	 */
 | |
| 
 | |
| 	disable_fpu_exception();
 | |
| 
 | |
| 	/* if FPU is not owned by anyone, do not store anything */
 | |
| 	if (fpu_owner != NULL) {
 | |
| 		assert(fpu_owner != proc_ptr);
 | |
| 		save_fpu(fpu_owner);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * restore the current process' state and let it run again, do not
 | |
| 	 * schedule!
 | |
| 	 */
 | |
| 	restore_fpu(proc_ptr);
 | |
| 	fpu_owner = proc_ptr;
 | |
| 	context_stop(proc_addr(KERNEL));
 | |
| 	restore_user_context(proc_ptr);
 | |
| 	NOT_REACHABLE;
 | |
| }
 | |
| 
 | |
| PUBLIC void release_fpu(void) {
 | |
| 	fpu_owner = NULL;
 | |
| }
 |