 f14fb60209
			
		
	
	
		f14fb60209
		
	
	
	
	
		
			
			* Updating common/lib * Updating lib/csu * Updating lib/libc * Updating libexec/ld.elf_so * Corrected test on __minix in featuretest to actually follow the meaning of the comment. * Cleaned up _REENTRANT-related defintions. * Disabled -D_REENTRANT for libfetch * Removing some unneeded __NBSD_LIBC defines and tests Change-Id: Ic1394baef74d11b9f86b312f5ff4bbc3cbf72ce2
		
			
				
	
	
		
			681 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			681 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*	$NetBSD: hash_bigkey.c,v 1.24 2012/03/13 21:13:32 christos Exp $	*/
 | |
| 
 | |
| /*-
 | |
|  * Copyright (c) 1990, 1993, 1994
 | |
|  *	The Regents of the University of California.  All rights reserved.
 | |
|  *
 | |
|  * This code is derived from software contributed to Berkeley by
 | |
|  * Margo Seltzer.
 | |
|  *
 | |
|  * Redistribution and use in source and binary forms, with or without
 | |
|  * modification, are permitted provided that the following conditions
 | |
|  * are met:
 | |
|  * 1. Redistributions of source code must retain the above copyright
 | |
|  *    notice, this list of conditions and the following disclaimer.
 | |
|  * 2. Redistributions in binary form must reproduce the above copyright
 | |
|  *    notice, this list of conditions and the following disclaimer in the
 | |
|  *    documentation and/or other materials provided with the distribution.
 | |
|  * 3. Neither the name of the University nor the names of its contributors
 | |
|  *    may be used to endorse or promote products derived from this software
 | |
|  *    without specific prior written permission.
 | |
|  *
 | |
|  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
 | |
|  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 | |
|  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 | |
|  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 | |
|  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 | |
|  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 | |
|  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 | |
|  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 | |
|  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 | |
|  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 | |
|  * SUCH DAMAGE.
 | |
|  */
 | |
| 
 | |
| #if HAVE_NBTOOL_CONFIG_H
 | |
| #include "nbtool_config.h"
 | |
| #endif
 | |
| 
 | |
| #include <sys/cdefs.h>
 | |
| __RCSID("$NetBSD: hash_bigkey.c,v 1.24 2012/03/13 21:13:32 christos Exp $");
 | |
| 
 | |
| /*
 | |
|  * PACKAGE: hash
 | |
|  * DESCRIPTION:
 | |
|  *	Big key/data handling for the hashing package.
 | |
|  *
 | |
|  * ROUTINES:
 | |
|  * External
 | |
|  *	__big_keydata
 | |
|  *	__big_split
 | |
|  *	__big_insert
 | |
|  *	__big_return
 | |
|  *	__big_delete
 | |
|  *	__find_last_page
 | |
|  * Internal
 | |
|  *	collect_key
 | |
|  *	collect_data
 | |
|  */
 | |
| 
 | |
| #include <sys/param.h>
 | |
| 
 | |
| #include <errno.h>
 | |
| #include <stdio.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <assert.h>
 | |
| 
 | |
| #include <db.h>
 | |
| #include "hash.h"
 | |
| #include "page.h"
 | |
| #include "extern.h"
 | |
| 
 | |
| static int collect_key(HTAB *, BUFHEAD *, int, DBT *, int);
 | |
| static int collect_data(HTAB *, BUFHEAD *, int, int);
 | |
| 
 | |
| /*
 | |
|  * Big_insert
 | |
|  *
 | |
|  * You need to do an insert and the key/data pair is too big
 | |
|  *
 | |
|  * Returns:
 | |
|  * 0 ==> OK
 | |
|  *-1 ==> ERROR
 | |
|  */
 | |
| int
 | |
| __big_insert(HTAB *hashp, BUFHEAD *bufp, const DBT *key, const DBT *val)
 | |
| {
 | |
| 	uint16_t *p, n;
 | |
| 	size_t key_size, val_size;
 | |
| 	uint16_t space, move_bytes, off;
 | |
| 	char *cp, *key_data, *val_data;
 | |
| 	size_t temp;
 | |
| 
 | |
| 	cp = bufp->page;		/* Character pointer of p. */
 | |
| 	p = (uint16_t *)(void *)cp;
 | |
| 
 | |
| 	key_data = (char *)key->data;
 | |
| 	_DBFIT(key->size, int);
 | |
| 	key_size = key->size;
 | |
| 	val_data = (char *)val->data;
 | |
| 	_DBFIT(val->size, int);
 | |
| 	val_size = val->size;
 | |
| 
 | |
| 	/* First move the Key */
 | |
| 	
 | |
| 	temp = FREESPACE(p) - BIGOVERHEAD;
 | |
| 	_DBFIT(temp, uint16_t);
 | |
| 	space = (uint16_t)temp;
 | |
| 	while (key_size) {
 | |
| 		size_t kspace = MIN(space, key_size);
 | |
| 		_DBFIT(kspace, uint16_t);
 | |
| 		move_bytes = (uint16_t)kspace;
 | |
| 		off = OFFSET(p) - move_bytes;
 | |
| 		memmove(cp + off, key_data, (size_t)move_bytes);
 | |
| 		key_size -= move_bytes;
 | |
| 		key_data += move_bytes;
 | |
| 		n = p[0];
 | |
| 		p[++n] = off;
 | |
| 		p[0] = ++n;
 | |
| 		temp = off - PAGE_META(n);
 | |
| 		_DBFIT(temp, uint16_t);
 | |
| 		FREESPACE(p) = (uint16_t)temp;
 | |
| 		OFFSET(p) = off;
 | |
| 		p[n] = PARTIAL_KEY;
 | |
| 		bufp = __add_ovflpage(hashp, bufp);
 | |
| 		if (!bufp)
 | |
| 			return (-1);
 | |
| 		n = p[0];
 | |
| 		if (!key_size) {
 | |
| 			space = FREESPACE(p);
 | |
| 			if (space) {
 | |
| 				size_t vspace = MIN(space, val_size);
 | |
| 				_DBFIT(vspace, uint16_t);
 | |
| 				move_bytes = (uint16_t)vspace;
 | |
| 				/*
 | |
| 				 * If the data would fit exactly in the
 | |
| 				 * remaining space, we must overflow it to the
 | |
| 				 * next page; otherwise the invariant that the
 | |
| 				 * data must end on a page with FREESPACE
 | |
| 				 * non-zero would fail.
 | |
| 				 */
 | |
| 				if (space == val_size && val_size == val->size)
 | |
| 					goto toolarge;
 | |
| 				off = OFFSET(p) - move_bytes;
 | |
| 				memmove(cp + off, val_data, (size_t)move_bytes);
 | |
| 				val_data += move_bytes;
 | |
| 				val_size -= move_bytes;
 | |
| 				p[n] = off;
 | |
| 				p[n - 2] = FULL_KEY_DATA;
 | |
| 				FREESPACE(p) = FREESPACE(p) - move_bytes;
 | |
| 				OFFSET(p) = off;
 | |
| 			} else {
 | |
| 			toolarge:
 | |
| 				p[n - 2] = FULL_KEY;
 | |
| 			}
 | |
| 		}
 | |
| 		p = (uint16_t *)(void *)bufp->page;
 | |
| 		cp = bufp->page;
 | |
| 		bufp->flags |= BUF_MOD;
 | |
| 		temp = FREESPACE(p) - BIGOVERHEAD;
 | |
| 		_DBFIT(temp, uint16_t);
 | |
| 		space = (uint16_t)temp;
 | |
| 	}
 | |
| 
 | |
| 	/* Now move the data */
 | |
| 	temp = FREESPACE(p) - BIGOVERHEAD;
 | |
| 	_DBFIT(temp, uint16_t);
 | |
| 	space = (uint16_t)temp;
 | |
| 	while (val_size) {
 | |
| 		size_t vspace = MIN(space, val_size);
 | |
| 		_DBFIT(vspace, uint16_t);
 | |
| 		move_bytes = (uint16_t)vspace;
 | |
| 		/*
 | |
| 		 * Here's the hack to make sure that if the data ends on the
 | |
| 		 * same page as the key ends, FREESPACE is at least one.
 | |
| 		 */
 | |
| 		if (space == val_size && val_size == val->size)
 | |
| 			move_bytes--;
 | |
| 		off = OFFSET(p) - move_bytes;
 | |
| 		memmove(cp + off, val_data, (size_t)move_bytes);
 | |
| 		val_size -= move_bytes;
 | |
| 		val_data += move_bytes;
 | |
| 		n = p[0];
 | |
| 		p[++n] = off;
 | |
| 		p[0] = ++n;
 | |
| 		temp = off - PAGE_META(n);
 | |
| 		_DBFIT(temp, uint16_t);
 | |
| 		FREESPACE(p) = (uint16_t)temp;
 | |
| 		OFFSET(p) = off;
 | |
| 		if (val_size) {
 | |
| 			p[n] = FULL_KEY;
 | |
| 			bufp = __add_ovflpage(hashp, bufp);
 | |
| 			if (!bufp)
 | |
| 				return (-1);
 | |
| 			cp = bufp->page;
 | |
| 			p = (uint16_t *)(void *)cp;
 | |
| 		} else
 | |
| 			p[n] = FULL_KEY_DATA;
 | |
| 		bufp->flags |= BUF_MOD;
 | |
| 		temp = FREESPACE(p) - BIGOVERHEAD;
 | |
| 		_DBFIT(temp, uint16_t);
 | |
| 		space = (uint16_t)temp;
 | |
| 	}
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called when bufp's page  contains a partial key (index should be 1)
 | |
|  *
 | |
|  * All pages in the big key/data pair except bufp are freed.  We cannot
 | |
|  * free bufp because the page pointing to it is lost and we can't get rid
 | |
|  * of its pointer.
 | |
|  *
 | |
|  * Returns:
 | |
|  * 0 => OK
 | |
|  *-1 => ERROR
 | |
|  */
 | |
| int
 | |
| __big_delete(HTAB *hashp, BUFHEAD *bufp)
 | |
| {
 | |
| 	BUFHEAD *last_bfp, *rbufp;
 | |
| 	uint16_t *bp, pageno;
 | |
| 	int key_done, n;
 | |
| 	size_t temp;
 | |
| 
 | |
| 	rbufp = bufp;
 | |
| 	last_bfp = NULL;
 | |
| 	bp = (uint16_t *)(void *)bufp->page;
 | |
| 	pageno = 0;
 | |
| 	key_done = 0;
 | |
| 
 | |
| 	while (!key_done || (bp[2] != FULL_KEY_DATA)) {
 | |
| 		if (bp[2] == FULL_KEY || bp[2] == FULL_KEY_DATA)
 | |
| 			key_done = 1;
 | |
| 
 | |
| 		/*
 | |
| 		 * If there is freespace left on a FULL_KEY_DATA page, then
 | |
| 		 * the data is short and fits entirely on this page, and this
 | |
| 		 * is the last page.
 | |
| 		 */
 | |
| 		if (bp[2] == FULL_KEY_DATA && FREESPACE(bp))
 | |
| 			break;
 | |
| 		pageno = bp[bp[0] - 1];
 | |
| 		rbufp->flags |= BUF_MOD;
 | |
| 		rbufp = __get_buf(hashp, (uint32_t)pageno, rbufp, 0);
 | |
| 		if (last_bfp)
 | |
| 			__free_ovflpage(hashp, last_bfp);
 | |
| 		last_bfp = rbufp;
 | |
| 		if (!rbufp)
 | |
| 			return (-1);		/* Error. */
 | |
| 		bp = (uint16_t *)(void *)rbufp->page;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If we get here then rbufp points to the last page of the big
 | |
| 	 * key/data pair.  Bufp points to the first one -- it should now be
 | |
| 	 * empty pointing to the next page after this pair.  Can't free it
 | |
| 	 * because we don't have the page pointing to it.
 | |
| 	 */
 | |
| 
 | |
| 	/* This is information from the last page of the pair. */
 | |
| 	n = bp[0];
 | |
| 	pageno = bp[n - 1];
 | |
| 
 | |
| 	/* Now, bp is the first page of the pair. */
 | |
| 	bp = (uint16_t *)(void *)bufp->page;
 | |
| 	if (n > 2) {
 | |
| 		/* There is an overflow page. */
 | |
| 		bp[1] = pageno;
 | |
| 		bp[2] = OVFLPAGE;
 | |
| 		bufp->ovfl = rbufp->ovfl;
 | |
| 	} else
 | |
| 		/* This is the last page. */
 | |
| 		bufp->ovfl = NULL;
 | |
| 	n -= 2;
 | |
| 	bp[0] = n;
 | |
| 	temp = hashp->BSIZE - PAGE_META(n);
 | |
| 	_DBFIT(temp, uint16_t);
 | |
| 	FREESPACE(bp) = (uint16_t)temp;
 | |
| 	OFFSET(bp) = hashp->BSIZE;
 | |
| 
 | |
| 	bufp->flags |= BUF_MOD;
 | |
| 	if (rbufp)
 | |
| 		__free_ovflpage(hashp, rbufp);
 | |
| 	if (last_bfp && last_bfp != rbufp)
 | |
| 		__free_ovflpage(hashp, last_bfp);
 | |
| 
 | |
| 	hashp->NKEYS--;
 | |
| 	return (0);
 | |
| }
 | |
| /*
 | |
|  * Returns:
 | |
|  *  0 = key not found
 | |
|  * -1 = get next overflow page
 | |
|  * -2 means key not found and this is big key/data
 | |
|  * -3 error
 | |
|  */
 | |
| int
 | |
| __find_bigpair(HTAB *hashp, BUFHEAD *bufp, int ndx, char *key, int size)
 | |
| {
 | |
| 	uint16_t *bp;
 | |
| 	char *p;
 | |
| 	int ksize;
 | |
| 	uint16_t bytes;
 | |
| 	char *kkey;
 | |
| 
 | |
| 	bp = (uint16_t *)(void *)bufp->page;
 | |
| 	p = bufp->page;
 | |
| 	ksize = size;
 | |
| 	kkey = key;
 | |
| 
 | |
| 	for (bytes = hashp->BSIZE - bp[ndx];
 | |
| 	    bytes <= size && bp[ndx + 1] == PARTIAL_KEY;
 | |
| 	    bytes = hashp->BSIZE - bp[ndx]) {
 | |
| 		if (memcmp(p + bp[ndx], kkey, (size_t)bytes))
 | |
| 			return (-2);
 | |
| 		kkey += bytes;
 | |
| 		ksize -= bytes;
 | |
| 		bufp = __get_buf(hashp, (uint32_t)bp[ndx + 2], bufp, 0);
 | |
| 		if (!bufp)
 | |
| 			return (-3);
 | |
| 		p = bufp->page;
 | |
| 		bp = (uint16_t *)(void *)p;
 | |
| 		ndx = 1;
 | |
| 	}
 | |
| 
 | |
| 	if (bytes != ksize || memcmp(p + bp[ndx], kkey, (size_t)bytes)) {
 | |
| #ifdef HASH_STATISTICS
 | |
| 		++hash_collisions;
 | |
| #endif
 | |
| 		return (-2);
 | |
| 	} else
 | |
| 		return (ndx);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Given the buffer pointer of the first overflow page of a big pair,
 | |
|  * find the end of the big pair
 | |
|  *
 | |
|  * This will set bpp to the buffer header of the last page of the big pair.
 | |
|  * It will return the pageno of the overflow page following the last page
 | |
|  * of the pair; 0 if there isn't any (i.e. big pair is the last key in the
 | |
|  * bucket)
 | |
|  */
 | |
| uint16_t
 | |
| __find_last_page(HTAB *hashp, BUFHEAD **bpp)
 | |
| {
 | |
| 	BUFHEAD *bufp;
 | |
| 	uint16_t *bp, pageno;
 | |
| 	int n;
 | |
| 
 | |
| 	bufp = *bpp;
 | |
| 	bp = (uint16_t *)(void *)bufp->page;
 | |
| 	for (;;) {
 | |
| 		n = bp[0];
 | |
| 
 | |
| 		/*
 | |
| 		 * This is the last page if: the tag is FULL_KEY_DATA and
 | |
| 		 * either only 2 entries OVFLPAGE marker is explicit there
 | |
| 		 * is freespace on the page.
 | |
| 		 */
 | |
| 		if (bp[2] == FULL_KEY_DATA &&
 | |
| 		    ((n == 2) || (bp[n] == OVFLPAGE) || (FREESPACE(bp))))
 | |
| 			break;
 | |
| 
 | |
| 		pageno = bp[n - 1];
 | |
| 		bufp = __get_buf(hashp, (uint32_t)pageno, bufp, 0);
 | |
| 		if (!bufp)
 | |
| 			return (0);	/* Need to indicate an error! */
 | |
| 		bp = (uint16_t *)(void *)bufp->page;
 | |
| 	}
 | |
| 
 | |
| 	*bpp = bufp;
 | |
| 	if (bp[0] > 2)
 | |
| 		return (bp[3]);
 | |
| 	else
 | |
| 		return (0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return the data for the key/data pair that begins on this page at this
 | |
|  * index (index should always be 1).
 | |
|  */
 | |
| int
 | |
| __big_return(HTAB *hashp, BUFHEAD *bufp, int ndx, DBT *val, int set_current)
 | |
| {
 | |
| 	BUFHEAD *save_p;
 | |
| 	uint16_t *bp, len, off, save_addr;
 | |
| 	char *tp;
 | |
| 
 | |
| 	bp = (uint16_t *)(void *)bufp->page;
 | |
| 	while (bp[ndx + 1] == PARTIAL_KEY) {
 | |
| 		bufp = __get_buf(hashp, (uint32_t)bp[bp[0] - 1], bufp, 0);
 | |
| 		if (!bufp)
 | |
| 			return (-1);
 | |
| 		bp = (uint16_t *)(void *)bufp->page;
 | |
| 		ndx = 1;
 | |
| 	}
 | |
| 
 | |
| 	if (bp[ndx + 1] == FULL_KEY) {
 | |
| 		bufp = __get_buf(hashp, (uint32_t)bp[bp[0] - 1], bufp, 0);
 | |
| 		if (!bufp)
 | |
| 			return (-1);
 | |
| 		bp = (uint16_t *)(void *)bufp->page;
 | |
| 		save_p = bufp;
 | |
| 		save_addr = save_p->addr;
 | |
| 		off = bp[1];
 | |
| 		len = 0;
 | |
| 	} else
 | |
| 		if (!FREESPACE(bp)) {
 | |
| 			/*
 | |
| 			 * This is a hack.  We can't distinguish between
 | |
| 			 * FULL_KEY_DATA that contains complete data or
 | |
| 			 * incomplete data, so we require that if the data
 | |
| 			 * is complete, there is at least 1 byte of free
 | |
| 			 * space left.
 | |
| 			 */
 | |
| 			off = bp[bp[0]];
 | |
| 			len = bp[1] - off;
 | |
| 			save_p = bufp;
 | |
| 			save_addr = bufp->addr;
 | |
| 			bufp = __get_buf(hashp, (uint32_t)bp[bp[0] - 1], bufp,
 | |
| 			    0);
 | |
| 			if (!bufp)
 | |
| 				return (-1);
 | |
| 			bp = (uint16_t *)(void *)bufp->page;
 | |
| 		} else {
 | |
| 			/* The data is all on one page. */
 | |
| 			tp = (char *)(void *)bp;
 | |
| 			off = bp[bp[0]];
 | |
| 			val->data = (uint8_t *)tp + off;
 | |
| 			val->size = bp[1] - off;
 | |
| 			if (set_current) {
 | |
| 				if (bp[0] == 2) {	/* No more buckets in
 | |
| 							 * chain */
 | |
| 					hashp->cpage = NULL;
 | |
| 					hashp->cbucket++;
 | |
| 					hashp->cndx = 1;
 | |
| 				} else {
 | |
| 					hashp->cpage = __get_buf(hashp,
 | |
| 					    (uint32_t)bp[bp[0] - 1], bufp, 0);
 | |
| 					if (!hashp->cpage)
 | |
| 						return (-1);
 | |
| 					hashp->cndx = 1;
 | |
| 					if (!((uint16_t *)(void *)
 | |
| 					    hashp->cpage->page)[0]) {
 | |
| 						hashp->cbucket++;
 | |
| 						hashp->cpage = NULL;
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 			return (0);
 | |
| 		}
 | |
| 
 | |
| 	val->size = collect_data(hashp, bufp, (int)len, set_current);
 | |
| 	if (val->size == (size_t)-1)
 | |
| 		return (-1);
 | |
| 	if (save_p->addr != save_addr) {
 | |
| 		/* We are pretty short on buffers. */
 | |
| 		errno = EINVAL;			/* OUT OF BUFFERS */
 | |
| 		return (-1);
 | |
| 	}
 | |
| 	memmove(hashp->tmp_buf, (save_p->page) + off, (size_t)len);
 | |
| 	val->data = (uint8_t *)hashp->tmp_buf;
 | |
| 	return (0);
 | |
| }
 | |
| /*
 | |
|  * Count how big the total datasize is by recursing through the pages.  Then
 | |
|  * allocate a buffer and copy the data as you recurse up.
 | |
|  */
 | |
| static int
 | |
| collect_data(HTAB *hashp, BUFHEAD *bufp, int len, int set)
 | |
| {
 | |
| 	uint16_t *bp;
 | |
| 	char *p;
 | |
| 	BUFHEAD *xbp;
 | |
| 	uint16_t save_addr;
 | |
| 	int mylen, totlen;
 | |
| 
 | |
| 	p = bufp->page;
 | |
| 	bp = (uint16_t *)(void *)p;
 | |
| 	mylen = hashp->BSIZE - bp[1];
 | |
| 	save_addr = bufp->addr;
 | |
| 
 | |
| 	if (bp[2] == FULL_KEY_DATA) {		/* End of Data */
 | |
| 		totlen = len + mylen;
 | |
| 		if (hashp->tmp_buf)
 | |
| 			free(hashp->tmp_buf);
 | |
| 		if ((hashp->tmp_buf = calloc(1, (size_t)totlen)) == NULL)
 | |
| 			return (-1);
 | |
| 		if (set) {
 | |
| 			hashp->cndx = 1;
 | |
| 			if (bp[0] == 2) {	/* No more buckets in chain */
 | |
| 				hashp->cpage = NULL;
 | |
| 				hashp->cbucket++;
 | |
| 			} else {
 | |
| 				hashp->cpage =
 | |
| 				    __get_buf(hashp, (uint32_t)bp[bp[0] - 1],
 | |
| 				    bufp, 0);
 | |
| 				if (!hashp->cpage)
 | |
| 					return (-1);
 | |
| 				else if (!((uint16_t *)(void *)hashp->cpage->page)[0]) {
 | |
| 					hashp->cbucket++;
 | |
| 					hashp->cpage = NULL;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	} else {
 | |
| 		xbp = __get_buf(hashp, (uint32_t)bp[bp[0] - 1], bufp, 0);
 | |
| 		if (!xbp || ((totlen =
 | |
| 		    collect_data(hashp, xbp, len + mylen, set)) < 1))
 | |
| 			return (-1);
 | |
| 	}
 | |
| 	if (bufp->addr != save_addr) {
 | |
| 		errno = EINVAL;			/* Out of buffers. */
 | |
| 		return (-1);
 | |
| 	}
 | |
| 	memmove(&hashp->tmp_buf[len], (bufp->page) + bp[1], (size_t)mylen);
 | |
| 	return (totlen);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Fill in the key and data for this big pair.
 | |
|  */
 | |
| int
 | |
| __big_keydata(HTAB *hashp, BUFHEAD *bufp, DBT *key, DBT *val, int set)
 | |
| {
 | |
| 	key->size = collect_key(hashp, bufp, 0, val, set);
 | |
| 	if (key->size == (size_t)-1)
 | |
| 		return (-1);
 | |
| 	key->data = (uint8_t *)hashp->tmp_key;
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Count how big the total key size is by recursing through the pages.  Then
 | |
|  * collect the data, allocate a buffer and copy the key as you recurse up.
 | |
|  */
 | |
| static int
 | |
| collect_key(HTAB *hashp, BUFHEAD *bufp, int len, DBT *val, int set)
 | |
| {
 | |
| 	BUFHEAD *xbp;
 | |
| 	char *p;
 | |
| 	int mylen, totlen;
 | |
| 	uint16_t *bp, save_addr;
 | |
| 
 | |
| 	p = bufp->page;
 | |
| 	bp = (uint16_t *)(void *)p;
 | |
| 	mylen = hashp->BSIZE - bp[1];
 | |
| 
 | |
| 	save_addr = bufp->addr;
 | |
| 	totlen = len + mylen;
 | |
| 	if (bp[2] == FULL_KEY || bp[2] == FULL_KEY_DATA) {    /* End of Key. */
 | |
| 		if (hashp->tmp_key != NULL)
 | |
| 			free(hashp->tmp_key);
 | |
| 		if ((hashp->tmp_key = calloc(1, (size_t)totlen)) == NULL)
 | |
| 			return (-1);
 | |
| 		if (__big_return(hashp, bufp, 1, val, set))
 | |
| 			return (-1);
 | |
| 	} else {
 | |
| 		xbp = __get_buf(hashp, (uint32_t)bp[bp[0] - 1], bufp, 0);
 | |
| 		if (!xbp || ((totlen =
 | |
| 		    collect_key(hashp, xbp, totlen, val, set)) < 1))
 | |
| 			return (-1);
 | |
| 	}
 | |
| 	if (bufp->addr != save_addr) {
 | |
| 		errno = EINVAL;		/* MIS -- OUT OF BUFFERS */
 | |
| 		return (-1);
 | |
| 	}
 | |
| 	memmove(&hashp->tmp_key[len], (bufp->page) + bp[1], (size_t)mylen);
 | |
| 	return (totlen);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns:
 | |
|  *  0 => OK
 | |
|  * -1 => error
 | |
|  */
 | |
| int
 | |
| __big_split(
 | |
| 	HTAB *hashp,
 | |
| 	BUFHEAD *op,	/* Pointer to where to put keys that go in old bucket */
 | |
| 	BUFHEAD *np,	/* Pointer to new bucket page */
 | |
| 			/* Pointer to first page containing the big key/data */
 | |
| 	BUFHEAD *big_keyp,
 | |
| 	int addr,	/* Address of big_keyp */
 | |
| 	uint32_t   obucket,/* Old Bucket */
 | |
| 	SPLIT_RETURN *ret
 | |
| )
 | |
| {
 | |
| 	BUFHEAD *tmpp;
 | |
| 	uint16_t *tp;
 | |
| 	BUFHEAD *bp;
 | |
| 	DBT key, val;
 | |
| 	uint32_t change;
 | |
| 	uint16_t free_space, n, off;
 | |
| 	size_t temp;
 | |
| 
 | |
| 	bp = big_keyp;
 | |
| 
 | |
| 	/* Now figure out where the big key/data goes */
 | |
| 	if (__big_keydata(hashp, big_keyp, &key, &val, 0))
 | |
| 		return (-1);
 | |
| 	change = (__call_hash(hashp, key.data, (int)key.size) != obucket);
 | |
| 
 | |
| 	if ((ret->next_addr = __find_last_page(hashp, &big_keyp)) != 0) {
 | |
| 		if (!(ret->nextp =
 | |
| 		    __get_buf(hashp, (uint32_t)ret->next_addr, big_keyp, 0)))
 | |
| 			return (-1);
 | |
| 	} else
 | |
| 		ret->nextp = NULL;
 | |
| 
 | |
| 	/* Now make one of np/op point to the big key/data pair */
 | |
| 	_DIAGASSERT(np->ovfl == NULL);
 | |
| 	if (change)
 | |
| 		tmpp = np;
 | |
| 	else
 | |
| 		tmpp = op;
 | |
| 
 | |
| 	tmpp->flags |= BUF_MOD;
 | |
| #ifdef DEBUG1
 | |
| 	(void)fprintf(stderr,
 | |
| 	    "BIG_SPLIT: %d->ovfl was %d is now %d\n", tmpp->addr,
 | |
| 	    (tmpp->ovfl ? tmpp->ovfl->addr : 0), (bp ? bp->addr : 0));
 | |
| #endif
 | |
| 	tmpp->ovfl = bp;	/* one of op/np point to big_keyp */
 | |
| 	tp = (uint16_t *)(void *)tmpp->page;
 | |
| 	_DIAGASSERT(FREESPACE(tp) >= OVFLSIZE);
 | |
| 	n = tp[0];
 | |
| 	off = OFFSET(tp);
 | |
| 	free_space = FREESPACE(tp);
 | |
| 	tp[++n] = (uint16_t)addr;
 | |
| 	tp[++n] = OVFLPAGE;
 | |
| 	tp[0] = n;
 | |
| 	OFFSET(tp) = off;
 | |
| 	temp = free_space - OVFLSIZE;
 | |
| 	_DBFIT(temp, uint16_t);
 | |
| 	FREESPACE(tp) = (uint16_t)temp;
 | |
| 
 | |
| 	/*
 | |
| 	 * Finally, set the new and old return values. BIG_KEYP contains a
 | |
| 	 * pointer to the last page of the big key_data pair. Make sure that
 | |
| 	 * big_keyp has no following page (2 elements) or create an empty
 | |
| 	 * following page.
 | |
| 	 */
 | |
| 
 | |
| 	ret->newp = np;
 | |
| 	ret->oldp = op;
 | |
| 
 | |
| 	tp = (uint16_t *)(void *)big_keyp->page;
 | |
| 	big_keyp->flags |= BUF_MOD;
 | |
| 	if (tp[0] > 2) {
 | |
| 		/*
 | |
| 		 * There may be either one or two offsets on this page.  If
 | |
| 		 * there is one, then the overflow page is linked on normally
 | |
| 		 * and tp[4] is OVFLPAGE.  If there are two, tp[4] contains
 | |
| 		 * the second offset and needs to get stuffed in after the
 | |
| 		 * next overflow page is added.
 | |
| 		 */
 | |
| 		n = tp[4];
 | |
| 		free_space = FREESPACE(tp);
 | |
| 		off = OFFSET(tp);
 | |
| 		tp[0] -= 2;
 | |
| 		temp = free_space + OVFLSIZE;
 | |
| 		_DBFIT(temp, uint16_t);
 | |
| 		FREESPACE(tp) = (uint16_t)temp;
 | |
| 		OFFSET(tp) = off;
 | |
| 		tmpp = __add_ovflpage(hashp, big_keyp);
 | |
| 		if (!tmpp)
 | |
| 			return (-1);
 | |
| 		tp[4] = n;
 | |
| 	} else
 | |
| 		tmpp = big_keyp;
 | |
| 
 | |
| 	if (change)
 | |
| 		ret->newp = tmpp;
 | |
| 	else
 | |
| 		ret->oldp = tmpp;
 | |
| 	return (0);
 | |
| }
 |