 f14fb60209
			
		
	
	
		f14fb60209
		
	
	
	
	
		
			
			* Updating common/lib * Updating lib/csu * Updating lib/libc * Updating libexec/ld.elf_so * Corrected test on __minix in featuretest to actually follow the meaning of the comment. * Cleaned up _REENTRANT-related defintions. * Disabled -D_REENTRANT for libfetch * Removing some unneeded __NBSD_LIBC defines and tests Change-Id: Ic1394baef74d11b9f86b312f5ff4bbc3cbf72ce2
		
			
				
	
	
		
			967 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			967 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*	$NetBSD: hash_page.c,v 1.25 2012/03/13 21:13:33 christos Exp $	*/
 | |
| 
 | |
| /*-
 | |
|  * Copyright (c) 1990, 1993, 1994
 | |
|  *	The Regents of the University of California.  All rights reserved.
 | |
|  *
 | |
|  * This code is derived from software contributed to Berkeley by
 | |
|  * Margo Seltzer.
 | |
|  *
 | |
|  * Redistribution and use in source and binary forms, with or without
 | |
|  * modification, are permitted provided that the following conditions
 | |
|  * are met:
 | |
|  * 1. Redistributions of source code must retain the above copyright
 | |
|  *    notice, this list of conditions and the following disclaimer.
 | |
|  * 2. Redistributions in binary form must reproduce the above copyright
 | |
|  *    notice, this list of conditions and the following disclaimer in the
 | |
|  *    documentation and/or other materials provided with the distribution.
 | |
|  * 3. Neither the name of the University nor the names of its contributors
 | |
|  *    may be used to endorse or promote products derived from this software
 | |
|  *    without specific prior written permission.
 | |
|  *
 | |
|  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
 | |
|  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 | |
|  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 | |
|  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 | |
|  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 | |
|  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 | |
|  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 | |
|  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 | |
|  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 | |
|  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 | |
|  * SUCH DAMAGE.
 | |
|  */
 | |
| 
 | |
| #if HAVE_NBTOOL_CONFIG_H
 | |
| #include "nbtool_config.h"
 | |
| #endif
 | |
| 
 | |
| #include <sys/cdefs.h>
 | |
| __RCSID("$NetBSD: hash_page.c,v 1.25 2012/03/13 21:13:33 christos Exp $");
 | |
| 
 | |
| /*
 | |
|  * PACKAGE:  hashing
 | |
|  *
 | |
|  * DESCRIPTION:
 | |
|  *	Page manipulation for hashing package.
 | |
|  *
 | |
|  * ROUTINES:
 | |
|  *
 | |
|  * External
 | |
|  *	__get_page
 | |
|  *	__add_ovflpage
 | |
|  * Internal
 | |
|  *	overflow_page
 | |
|  *	open_temp
 | |
|  */
 | |
| 
 | |
| #include "namespace.h"
 | |
| 
 | |
| #include <sys/types.h>
 | |
| 
 | |
| #include <errno.h>
 | |
| #include <fcntl.h>
 | |
| #include <signal.h>
 | |
| #include <stdio.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <unistd.h>
 | |
| #include <paths.h>
 | |
| #include <assert.h>
 | |
| 
 | |
| #include <db.h>
 | |
| #include "hash.h"
 | |
| #include "page.h"
 | |
| #include "extern.h"
 | |
| 
 | |
| static uint32_t	*fetch_bitmap(HTAB *, int);
 | |
| static uint32_t	 first_free(uint32_t);
 | |
| static int	 open_temp(HTAB *);
 | |
| static uint16_t	 overflow_page(HTAB *);
 | |
| static void	 putpair(char *, const DBT *, const DBT *);
 | |
| static void	 squeeze_key(uint16_t *, const DBT *, const DBT *);
 | |
| static int	 ugly_split(HTAB *, uint32_t, BUFHEAD *, BUFHEAD *, int, int);
 | |
| 
 | |
| #define	PAGE_INIT(P) { \
 | |
| 	((uint16_t *)(void *)(P))[0] = 0; \
 | |
| 	temp = 3 * sizeof(uint16_t); \
 | |
| 	_DIAGASSERT((size_t)hashp->BSIZE >= temp); \
 | |
| 	((uint16_t *)(void *)(P))[1] = (uint16_t)(hashp->BSIZE - temp); \
 | |
| 	((uint16_t *)(void *)(P))[2] = hashp->BSIZE; \
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is called AFTER we have verified that there is room on the page for
 | |
|  * the pair (PAIRFITS has returned true) so we go right ahead and start moving
 | |
|  * stuff on.
 | |
|  */
 | |
| static void
 | |
| putpair(char *p, const DBT *key, const DBT *val)
 | |
| {
 | |
| 	uint16_t *bp, n, off;
 | |
| 	size_t temp;
 | |
| 
 | |
| 	bp = (uint16_t *)(void *)p;
 | |
| 
 | |
| 	/* Enter the key first. */
 | |
| 	n = bp[0];
 | |
| 
 | |
| 	temp = OFFSET(bp);
 | |
| 	_DIAGASSERT(temp >= key->size);
 | |
| 	off = (uint16_t)(temp - key->size);
 | |
| 	memmove(p + off, key->data, key->size);
 | |
| 	bp[++n] = off;
 | |
| 
 | |
| 	/* Now the data. */
 | |
| 	_DIAGASSERT(off >= val->size);
 | |
| 	off -= (uint16_t)val->size;
 | |
| 	memmove(p + off, val->data, val->size);
 | |
| 	bp[++n] = off;
 | |
| 
 | |
| 	/* Adjust page info. */
 | |
| 	bp[0] = n;
 | |
| 	temp = (n + 3) * sizeof(uint16_t);
 | |
| 	_DIAGASSERT(off >= temp);
 | |
| 	bp[n + 1] = (uint16_t)(off - temp);
 | |
| 	bp[n + 2] = off;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns:
 | |
|  *	 0 OK
 | |
|  *	-1 error
 | |
|  */
 | |
| int
 | |
| __delpair(HTAB *hashp, BUFHEAD *bufp, int ndx)
 | |
| {
 | |
| 	uint16_t *bp, newoff;
 | |
| 	int n;
 | |
| 	uint16_t pairlen;
 | |
| 	size_t temp;
 | |
| 
 | |
| 	bp = (uint16_t *)(void *)bufp->page;
 | |
| 	n = bp[0];
 | |
| 
 | |
| 	if (bp[ndx + 1] < REAL_KEY)
 | |
| 		return (__big_delete(hashp, bufp));
 | |
| 	if (ndx != 1)
 | |
| 		newoff = bp[ndx - 1];
 | |
| 	else
 | |
| 		newoff = hashp->BSIZE;
 | |
| 	pairlen = newoff - bp[ndx + 1];
 | |
| 
 | |
| 	if (ndx != (n - 1)) {
 | |
| 		/* Hard Case -- need to shuffle keys */
 | |
| 		int i;
 | |
| 		char *src = bufp->page + (int)OFFSET(bp);
 | |
| 		char *dst = src + (int)pairlen;
 | |
| 		memmove(dst, src, (size_t)(bp[ndx + 1] - OFFSET(bp)));
 | |
| 
 | |
| 		/* Now adjust the pointers */
 | |
| 		for (i = ndx + 2; i <= n; i += 2) {
 | |
| 			if (bp[i + 1] == OVFLPAGE) {
 | |
| 				bp[i - 2] = bp[i];
 | |
| 				bp[i - 1] = bp[i + 1];
 | |
| 			} else {
 | |
| 				bp[i - 2] = bp[i] + pairlen;
 | |
| 				bp[i - 1] = bp[i + 1] + pairlen;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	/* Finally adjust the page data */
 | |
| 	bp[n] = OFFSET(bp) + pairlen;
 | |
| 	temp = bp[n + 1] + pairlen + 2 * sizeof(uint16_t);
 | |
| 	_DIAGASSERT(temp <= 0xffff);
 | |
| 	bp[n - 1] = (uint16_t)temp;
 | |
| 	bp[0] = n - 2;
 | |
| 	hashp->NKEYS--;
 | |
| 
 | |
| 	bufp->flags |= BUF_MOD;
 | |
| 	return (0);
 | |
| }
 | |
| /*
 | |
|  * Returns:
 | |
|  *	 0 ==> OK
 | |
|  *	-1 ==> Error
 | |
|  */
 | |
| int
 | |
| __split_page(HTAB *hashp, uint32_t obucket, uint32_t nbucket)
 | |
| {
 | |
| 	BUFHEAD *new_bufp, *old_bufp;
 | |
| 	uint16_t *ino;
 | |
| 	char *np;
 | |
| 	DBT key, val;
 | |
| 	int n, ndx, retval;
 | |
| 	uint16_t copyto, diff, off, moved;
 | |
| 	char *op;
 | |
| 	size_t temp;
 | |
| 
 | |
| 	copyto = (uint16_t)hashp->BSIZE;
 | |
| 	off = (uint16_t)hashp->BSIZE;
 | |
| 	old_bufp = __get_buf(hashp, obucket, NULL, 0);
 | |
| 	if (old_bufp == NULL)
 | |
| 		return (-1);
 | |
| 	new_bufp = __get_buf(hashp, nbucket, NULL, 0);
 | |
| 	if (new_bufp == NULL)
 | |
| 		return (-1);
 | |
| 
 | |
| 	old_bufp->flags |= (BUF_MOD | BUF_PIN);
 | |
| 	new_bufp->flags |= (BUF_MOD | BUF_PIN);
 | |
| 
 | |
| 	ino = (uint16_t *)(void *)(op = old_bufp->page);
 | |
| 	np = new_bufp->page;
 | |
| 
 | |
| 	moved = 0;
 | |
| 
 | |
| 	for (n = 1, ndx = 1; n < ino[0]; n += 2) {
 | |
| 		if (ino[n + 1] < REAL_KEY) {
 | |
| 			retval = ugly_split(hashp, obucket, old_bufp, new_bufp,
 | |
| 			    (int)copyto, (int)moved);
 | |
| 			old_bufp->flags &= ~BUF_PIN;
 | |
| 			new_bufp->flags &= ~BUF_PIN;
 | |
| 			return (retval);
 | |
| 
 | |
| 		}
 | |
| 		key.data = (uint8_t *)op + ino[n];
 | |
| 		key.size = off - ino[n];
 | |
| 
 | |
| 		if (__call_hash(hashp, key.data, (int)key.size) == obucket) {
 | |
| 			/* Don't switch page */
 | |
| 			diff = copyto - off;
 | |
| 			if (diff) {
 | |
| 				copyto = ino[n + 1] + diff;
 | |
| 				memmove(op + copyto, op + ino[n + 1],
 | |
| 				    (size_t)(off - ino[n + 1]));
 | |
| 				ino[ndx] = copyto + ino[n] - ino[n + 1];
 | |
| 				ino[ndx + 1] = copyto;
 | |
| 			} else
 | |
| 				copyto = ino[n + 1];
 | |
| 			ndx += 2;
 | |
| 		} else {
 | |
| 			/* Switch page */
 | |
| 			val.data = (uint8_t *)op + ino[n + 1];
 | |
| 			val.size = ino[n] - ino[n + 1];
 | |
| 			putpair(np, &key, &val);
 | |
| 			moved += 2;
 | |
| 		}
 | |
| 
 | |
| 		off = ino[n + 1];
 | |
| 	}
 | |
| 
 | |
| 	/* Now clean up the page */
 | |
| 	ino[0] -= moved;
 | |
| 	temp = sizeof(uint16_t) * (ino[0] + 3);
 | |
| 	_DIAGASSERT(copyto >= temp);
 | |
| 	FREESPACE(ino) = (uint16_t)(copyto - temp);
 | |
| 	OFFSET(ino) = copyto;
 | |
| 
 | |
| #ifdef DEBUG3
 | |
| 	(void)fprintf(stderr, "split %d/%d\n",
 | |
| 	    ((uint16_t *)np)[0] / 2,
 | |
| 	    ((uint16_t *)op)[0] / 2);
 | |
| #endif
 | |
| 	/* unpin both pages */
 | |
| 	old_bufp->flags &= ~BUF_PIN;
 | |
| 	new_bufp->flags &= ~BUF_PIN;
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called when we encounter an overflow or big key/data page during split
 | |
|  * handling.  This is special cased since we have to begin checking whether
 | |
|  * the key/data pairs fit on their respective pages and because we may need
 | |
|  * overflow pages for both the old and new pages.
 | |
|  *
 | |
|  * The first page might be a page with regular key/data pairs in which case
 | |
|  * we have a regular overflow condition and just need to go on to the next
 | |
|  * page or it might be a big key/data pair in which case we need to fix the
 | |
|  * big key/data pair.
 | |
|  *
 | |
|  * Returns:
 | |
|  *	 0 ==> success
 | |
|  *	-1 ==> failure
 | |
|  */
 | |
| static int
 | |
| ugly_split(
 | |
| 	HTAB *hashp,
 | |
| 	uint32_t obucket,	/* Same as __split_page. */
 | |
| 	BUFHEAD *old_bufp,
 | |
| 	BUFHEAD *new_bufp,
 | |
| 	int copyto,	/* First byte on page which contains key/data values. */
 | |
| 	int moved	/* Number of pairs moved to new page. */
 | |
| )
 | |
| {
 | |
| 	BUFHEAD *bufp;	/* Buffer header for ino */
 | |
| 	uint16_t *ino;	/* Page keys come off of */
 | |
| 	uint16_t *np;	/* New page */
 | |
| 	uint16_t *op;	/* Page keys go on to if they aren't moving */
 | |
| 	size_t temp;
 | |
| 
 | |
| 	BUFHEAD *last_bfp;	/* Last buf header OVFL needing to be freed */
 | |
| 	DBT key, val;
 | |
| 	SPLIT_RETURN ret;
 | |
| 	uint16_t n, off, ov_addr, scopyto;
 | |
| 	char *cino;		/* Character value of ino */
 | |
| 
 | |
| 	bufp = old_bufp;
 | |
| 	ino = (uint16_t *)(void *)old_bufp->page;
 | |
| 	np = (uint16_t *)(void *)new_bufp->page;
 | |
| 	op = (uint16_t *)(void *)old_bufp->page;
 | |
| 	last_bfp = NULL;
 | |
| 	scopyto = (uint16_t)copyto;	/* ANSI */
 | |
| 
 | |
| 	n = ino[0] - 1;
 | |
| 	while (n < ino[0]) {
 | |
| 		if (ino[2] < REAL_KEY && ino[2] != OVFLPAGE) {
 | |
| 			if (__big_split(hashp, old_bufp,
 | |
| 			    new_bufp, bufp, (int)bufp->addr, obucket, &ret))
 | |
| 				return (-1);
 | |
| 			old_bufp = ret.oldp;
 | |
| 			if (!old_bufp)
 | |
| 				return (-1);
 | |
| 			op = (uint16_t *)(void *)old_bufp->page;
 | |
| 			new_bufp = ret.newp;
 | |
| 			if (!new_bufp)
 | |
| 				return (-1);
 | |
| 			np = (uint16_t *)(void *)new_bufp->page;
 | |
| 			bufp = ret.nextp;
 | |
| 			if (!bufp)
 | |
| 				return (0);
 | |
| 			cino = (char *)bufp->page;
 | |
| 			ino = (uint16_t *)(void *)cino;
 | |
| 			last_bfp = ret.nextp;
 | |
| 		} else if (ino[n + 1] == OVFLPAGE) {
 | |
| 			ov_addr = ino[n];
 | |
| 			/*
 | |
| 			 * Fix up the old page -- the extra 2 are the fields
 | |
| 			 * which contained the overflow information.
 | |
| 			 */
 | |
| 			ino[0] -= (moved + 2);
 | |
| 			temp = sizeof(uint16_t) * (ino[0] + 3);
 | |
| 			_DIAGASSERT(scopyto >= temp);
 | |
| 			FREESPACE(ino) = (uint16_t)(scopyto - temp);
 | |
| 			OFFSET(ino) = scopyto;
 | |
| 
 | |
| 			bufp = __get_buf(hashp, (uint32_t)ov_addr, bufp, 0);
 | |
| 			if (!bufp)
 | |
| 				return (-1);
 | |
| 
 | |
| 			ino = (uint16_t *)(void *)bufp->page;
 | |
| 			n = 1;
 | |
| 			scopyto = hashp->BSIZE;
 | |
| 			moved = 0;
 | |
| 
 | |
| 			if (last_bfp)
 | |
| 				__free_ovflpage(hashp, last_bfp);
 | |
| 			last_bfp = bufp;
 | |
| 		}
 | |
| 		/* Move regular sized pairs of there are any */
 | |
| 		off = hashp->BSIZE;
 | |
| 		for (n = 1; (n < ino[0]) && (ino[n + 1] >= REAL_KEY); n += 2) {
 | |
| 			cino = (char *)(void *)ino;
 | |
| 			key.data = (uint8_t *)cino + ino[n];
 | |
| 			key.size = off - ino[n];
 | |
| 			val.data = (uint8_t *)cino + ino[n + 1];
 | |
| 			val.size = ino[n] - ino[n + 1];
 | |
| 			off = ino[n + 1];
 | |
| 
 | |
| 			if (__call_hash(hashp, key.data, (int)key.size) == obucket) {
 | |
| 				/* Keep on old page */
 | |
| 				if (PAIRFITS(op, (&key), (&val)))
 | |
| 					putpair((char *)(void *)op, &key, &val);
 | |
| 				else {
 | |
| 					old_bufp =
 | |
| 					    __add_ovflpage(hashp, old_bufp);
 | |
| 					if (!old_bufp)
 | |
| 						return (-1);
 | |
| 					op = (uint16_t *)(void *)old_bufp->page;
 | |
| 					putpair((char *)(void *)op, &key, &val);
 | |
| 				}
 | |
| 				old_bufp->flags |= BUF_MOD;
 | |
| 			} else {
 | |
| 				/* Move to new page */
 | |
| 				if (PAIRFITS(np, (&key), (&val)))
 | |
| 					putpair((char *)(void *)np, &key, &val);
 | |
| 				else {
 | |
| 					new_bufp =
 | |
| 					    __add_ovflpage(hashp, new_bufp);
 | |
| 					if (!new_bufp)
 | |
| 						return (-1);
 | |
| 					np = (uint16_t *)(void *)new_bufp->page;
 | |
| 					putpair((char *)(void *)np, &key, &val);
 | |
| 				}
 | |
| 				new_bufp->flags |= BUF_MOD;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	if (last_bfp)
 | |
| 		__free_ovflpage(hashp, last_bfp);
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Add the given pair to the page
 | |
|  *
 | |
|  * Returns:
 | |
|  *	0 ==> OK
 | |
|  *	1 ==> failure
 | |
|  */
 | |
| int
 | |
| __addel(HTAB *hashp, BUFHEAD *bufp, const DBT *key, const DBT *val)
 | |
| {
 | |
| 	uint16_t *bp, *sop;
 | |
| 	int do_expand;
 | |
| 
 | |
| 	bp = (uint16_t *)(void *)bufp->page;
 | |
| 	do_expand = 0;
 | |
| 	while (bp[0] && (bp[2] < REAL_KEY || bp[bp[0]] < REAL_KEY))
 | |
| 		/* Exception case */
 | |
| 		if (bp[2] == FULL_KEY_DATA && bp[0] == 2)
 | |
| 			/* This is the last page of a big key/data pair
 | |
| 			   and we need to add another page */
 | |
| 			break;
 | |
| 		else if (bp[2] < REAL_KEY && bp[bp[0]] != OVFLPAGE) {
 | |
| 			bufp = __get_buf(hashp, (uint32_t)bp[bp[0] - 1], bufp,
 | |
| 			    0);
 | |
| 			if (!bufp)
 | |
| 				return (-1);
 | |
| 			bp = (uint16_t *)(void *)bufp->page;
 | |
| 		} else if (bp[bp[0]] != OVFLPAGE) {
 | |
| 			/* Short key/data pairs, no more pages */
 | |
| 			break;
 | |
| 		} else {
 | |
| 			/* Try to squeeze key on this page */
 | |
| 			if (bp[2] >= REAL_KEY &&
 | |
| 			    FREESPACE(bp) >= PAIRSIZE(key, val)) {
 | |
| 				squeeze_key(bp, key, val);
 | |
| 				goto stats;
 | |
| 			} else {
 | |
| 				bufp = __get_buf(hashp,
 | |
| 				    (uint32_t)bp[bp[0] - 1], bufp, 0);
 | |
| 				if (!bufp)
 | |
| 					return (-1);
 | |
| 				bp = (uint16_t *)(void *)bufp->page;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 	if (PAIRFITS(bp, key, val))
 | |
| 		putpair(bufp->page, key, val);
 | |
| 	else {
 | |
| 		do_expand = 1;
 | |
| 		bufp = __add_ovflpage(hashp, bufp);
 | |
| 		if (!bufp)
 | |
| 			return (-1);
 | |
| 		sop = (uint16_t *)(void *)bufp->page;
 | |
| 
 | |
| 		if (PAIRFITS(sop, key, val))
 | |
| 			putpair((char *)(void *)sop, key, val);
 | |
| 		else
 | |
| 			if (__big_insert(hashp, bufp, key, val))
 | |
| 				return (-1);
 | |
| 	}
 | |
| stats:
 | |
| 	bufp->flags |= BUF_MOD;
 | |
| 	/*
 | |
| 	 * If the average number of keys per bucket exceeds the fill factor,
 | |
| 	 * expand the table.
 | |
| 	 */
 | |
| 	hashp->NKEYS++;
 | |
| 	if (do_expand ||
 | |
| 	    (hashp->NKEYS / (hashp->MAX_BUCKET + 1) > hashp->FFACTOR))
 | |
| 		return (__expand_table(hashp));
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *
 | |
|  * Returns:
 | |
|  *	pointer on success
 | |
|  *	NULL on error
 | |
|  */
 | |
| BUFHEAD *
 | |
| __add_ovflpage(HTAB *hashp, BUFHEAD *bufp)
 | |
| {
 | |
| 	uint16_t *sp;
 | |
| 	uint16_t ndx, ovfl_num;
 | |
| 	size_t temp;
 | |
| #ifdef DEBUG1
 | |
| 	int tmp1, tmp2;
 | |
| #endif
 | |
| 	sp = (uint16_t *)(void *)bufp->page;
 | |
| 
 | |
| 	/* Check if we are dynamically determining the fill factor */
 | |
| 	if (hashp->FFACTOR == DEF_FFACTOR) {
 | |
| 		hashp->FFACTOR = (uint32_t)sp[0] >> 1;
 | |
| 		if (hashp->FFACTOR < MIN_FFACTOR)
 | |
| 			hashp->FFACTOR = MIN_FFACTOR;
 | |
| 	}
 | |
| 	bufp->flags |= BUF_MOD;
 | |
| 	ovfl_num = overflow_page(hashp);
 | |
| #ifdef DEBUG1
 | |
| 	tmp1 = bufp->addr;
 | |
| 	tmp2 = bufp->ovfl ? bufp->ovfl->addr : 0;
 | |
| #endif
 | |
| 	if (!ovfl_num || !(bufp->ovfl = __get_buf(hashp, (uint32_t)ovfl_num,
 | |
| 	    bufp, 1)))
 | |
| 		return (NULL);
 | |
| 	bufp->ovfl->flags |= BUF_MOD;
 | |
| #ifdef DEBUG1
 | |
| 	(void)fprintf(stderr, "ADDOVFLPAGE: %d->ovfl was %d is now %d\n",
 | |
| 	    tmp1, tmp2, bufp->ovfl->addr);
 | |
| #endif
 | |
| 	ndx = sp[0];
 | |
| 	/*
 | |
| 	 * Since a pair is allocated on a page only if there's room to add
 | |
| 	 * an overflow page, we know that the OVFL information will fit on
 | |
| 	 * the page.
 | |
| 	 */
 | |
| 	sp[ndx + 4] = OFFSET(sp);
 | |
| 	temp = FREESPACE(sp);
 | |
| 	_DIAGASSERT(temp >= OVFLSIZE);
 | |
| 	sp[ndx + 3] = (uint16_t)(temp - OVFLSIZE);
 | |
| 	sp[ndx + 1] = ovfl_num;
 | |
| 	sp[ndx + 2] = OVFLPAGE;
 | |
| 	sp[0] = ndx + 2;
 | |
| #ifdef HASH_STATISTICS
 | |
| 	hash_overflows++;
 | |
| #endif
 | |
| 	return (bufp->ovfl);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns:
 | |
|  *	 0 indicates SUCCESS
 | |
|  *	-1 indicates FAILURE
 | |
|  */
 | |
| int
 | |
| __get_page(HTAB *hashp, char *p, uint32_t bucket, int is_bucket, int is_disk,
 | |
|     int is_bitmap)
 | |
| {
 | |
| 	int fd, page, size;
 | |
| 	ssize_t rsize;
 | |
| 	uint16_t *bp;
 | |
| 	size_t temp;
 | |
| 
 | |
| 	fd = hashp->fp;
 | |
| 	size = hashp->BSIZE;
 | |
| 
 | |
| 	if ((fd == -1) || !is_disk) {
 | |
| 		PAGE_INIT(p);
 | |
| 		return (0);
 | |
| 	}
 | |
| 	if (is_bucket)
 | |
| 		page = BUCKET_TO_PAGE(bucket);
 | |
| 	else
 | |
| 		page = OADDR_TO_PAGE(bucket);
 | |
| 	if ((rsize = pread(fd, p, (size_t)size, (off_t)page << hashp->BSHIFT)) == -1)
 | |
| 		return (-1);
 | |
| 	bp = (uint16_t *)(void *)p;
 | |
| 	if (!rsize)
 | |
| 		bp[0] = 0;	/* We hit the EOF, so initialize a new page */
 | |
| 	else
 | |
| 		if (rsize != size) {
 | |
| 			errno = EFTYPE;
 | |
| 			return (-1);
 | |
| 		}
 | |
| 	if (!is_bitmap && !bp[0]) {
 | |
| 		PAGE_INIT(p);
 | |
| 	} else
 | |
| 		if (hashp->LORDER != BYTE_ORDER) {
 | |
| 			int i, max;
 | |
| 
 | |
| 			if (is_bitmap) {
 | |
| 				max = (uint32_t)hashp->BSIZE >> 2; /* divide by 4 */
 | |
| 				for (i = 0; i < max; i++)
 | |
| 					M_32_SWAP(((int *)(void *)p)[i]);
 | |
| 			} else {
 | |
| 				M_16_SWAP(bp[0]);
 | |
| 				max = bp[0] + 2;
 | |
| 				for (i = 1; i <= max; i++)
 | |
| 					M_16_SWAP(bp[i]);
 | |
| 			}
 | |
| 		}
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Write page p to disk
 | |
|  *
 | |
|  * Returns:
 | |
|  *	 0 ==> OK
 | |
|  *	-1 ==>failure
 | |
|  */
 | |
| int
 | |
| __put_page(HTAB *hashp, char *p, uint32_t bucket, int is_bucket, int is_bitmap)
 | |
| {
 | |
| 	int fd, page, size;
 | |
| 	ssize_t wsize;
 | |
| 
 | |
| 	size = hashp->BSIZE;
 | |
| 	if ((hashp->fp == -1) && open_temp(hashp))
 | |
| 		return (-1);
 | |
| 	fd = hashp->fp;
 | |
| 
 | |
| 	if (hashp->LORDER != BYTE_ORDER) {
 | |
| 		int i;
 | |
| 		int max;
 | |
| 
 | |
| 		if (is_bitmap) {
 | |
| 			max = (uint32_t)hashp->BSIZE >> 2;	/* divide by 4 */
 | |
| 			for (i = 0; i < max; i++)
 | |
| 				M_32_SWAP(((int *)(void *)p)[i]);
 | |
| 		} else {
 | |
| 			max = ((uint16_t *)(void *)p)[0] + 2;
 | |
| 			for (i = 0; i <= max; i++)
 | |
| 				M_16_SWAP(((uint16_t *)(void *)p)[i]);
 | |
| 		}
 | |
| 	}
 | |
| 	if (is_bucket)
 | |
| 		page = BUCKET_TO_PAGE(bucket);
 | |
| 	else
 | |
| 		page = OADDR_TO_PAGE(bucket);
 | |
| 	if ((wsize = pwrite(fd, p, (size_t)size, (off_t)page << hashp->BSHIFT)) == -1)
 | |
| 		/* Errno is set */
 | |
| 		return (-1);
 | |
| 	if (wsize != size) {
 | |
| 		errno = EFTYPE;
 | |
| 		return (-1);
 | |
| 	}
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| #define BYTE_MASK	((1 << INT_BYTE_SHIFT) -1)
 | |
| /*
 | |
|  * Initialize a new bitmap page.  Bitmap pages are left in memory
 | |
|  * once they are read in.
 | |
|  */
 | |
| int
 | |
| __ibitmap(HTAB *hashp, int pnum, int nbits, int ndx)
 | |
| {
 | |
| 	uint32_t *ip;
 | |
| 	int clearbytes, clearints;
 | |
| 
 | |
| 	if ((ip = malloc((size_t)hashp->BSIZE)) == NULL)
 | |
| 		return (1);
 | |
| 	hashp->nmaps++;
 | |
| 	clearints = ((uint32_t)(nbits - 1) >> INT_BYTE_SHIFT) + 1;
 | |
| 	clearbytes = clearints << INT_TO_BYTE;
 | |
| 	(void)memset(ip, 0, (size_t)clearbytes);
 | |
| 	(void)memset(((char *)(void *)ip) + clearbytes, 0xFF,
 | |
| 	    (size_t)(hashp->BSIZE - clearbytes));
 | |
| 	ip[clearints - 1] = ALL_SET << (nbits & BYTE_MASK);
 | |
| 	SETBIT(ip, 0);
 | |
| 	hashp->BITMAPS[ndx] = (uint16_t)pnum;
 | |
| 	hashp->mapp[ndx] = ip;
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| static uint32_t
 | |
| first_free(uint32_t map)
 | |
| {
 | |
| 	uint32_t i, mask;
 | |
| 
 | |
| 	mask = 0x1;
 | |
| 	for (i = 0; i < BITS_PER_MAP; i++) {
 | |
| 		if (!(mask & map))
 | |
| 			return (i);
 | |
| 		mask = mask << 1;
 | |
| 	}
 | |
| 	return (i);
 | |
| }
 | |
| 
 | |
| static uint16_t
 | |
| overflow_page(HTAB *hashp)
 | |
| {
 | |
| 	uint32_t *freep = NULL;
 | |
| 	int max_free, offset, splitnum;
 | |
| 	uint16_t addr;
 | |
| 	int bit, first_page, free_bit, free_page, i, in_use_bits, j;
 | |
| #ifdef DEBUG2
 | |
| 	int tmp1, tmp2;
 | |
| #endif
 | |
| 	splitnum = hashp->OVFL_POINT;
 | |
| 	max_free = hashp->SPARES[splitnum];
 | |
| 
 | |
| 	free_page = (uint32_t)(max_free - 1) >> (hashp->BSHIFT + BYTE_SHIFT);
 | |
| 	free_bit = (max_free - 1) & ((hashp->BSIZE << BYTE_SHIFT) - 1);
 | |
| 
 | |
| 	/* Look through all the free maps to find the first free block */
 | |
| 	first_page = (uint32_t)hashp->LAST_FREED >>(hashp->BSHIFT + BYTE_SHIFT);
 | |
| 	for ( i = first_page; i <= free_page; i++ ) {
 | |
| 		if (!(freep = (uint32_t *)hashp->mapp[i]) &&
 | |
| 		    !(freep = fetch_bitmap(hashp, i)))
 | |
| 			return (0);
 | |
| 		if (i == free_page)
 | |
| 			in_use_bits = free_bit;
 | |
| 		else
 | |
| 			in_use_bits = (hashp->BSIZE << BYTE_SHIFT) - 1;
 | |
| 		
 | |
| 		if (i == first_page) {
 | |
| 			bit = hashp->LAST_FREED &
 | |
| 			    ((hashp->BSIZE << BYTE_SHIFT) - 1);
 | |
| 			j = bit / BITS_PER_MAP;
 | |
| 			bit = bit & ~(BITS_PER_MAP - 1);
 | |
| 		} else {
 | |
| 			bit = 0;
 | |
| 			j = 0;
 | |
| 		}
 | |
| 		for (; bit <= in_use_bits; j++, bit += BITS_PER_MAP)
 | |
| 			if (freep[j] != ALL_SET)
 | |
| 				goto found;
 | |
| 	}
 | |
| 
 | |
| 	/* No Free Page Found */
 | |
| 	hashp->LAST_FREED = hashp->SPARES[splitnum];
 | |
| 	hashp->SPARES[splitnum]++;
 | |
| 	offset = hashp->SPARES[splitnum] -
 | |
| 	    (splitnum ? hashp->SPARES[splitnum - 1] : 0);
 | |
| 
 | |
| #define	OVMSG	"HASH: Out of overflow pages.  Increase page size\n"
 | |
| 	if (offset > SPLITMASK) {
 | |
| 		if (++splitnum >= NCACHED) {
 | |
| 			(void)write(STDERR_FILENO, OVMSG, sizeof(OVMSG) - 1);
 | |
| 			errno = EFBIG;
 | |
| 			return (0);
 | |
| 		}
 | |
| 		hashp->OVFL_POINT = splitnum;
 | |
| 		hashp->SPARES[splitnum] = hashp->SPARES[splitnum-1];
 | |
| 		hashp->SPARES[splitnum-1]--;
 | |
| 		offset = 1;
 | |
| 	}
 | |
| 
 | |
| 	/* Check if we need to allocate a new bitmap page */
 | |
| 	if (free_bit == (hashp->BSIZE << BYTE_SHIFT) - 1) {
 | |
| 		free_page++;
 | |
| 		if (free_page >= NCACHED) {
 | |
| 			(void)write(STDERR_FILENO, OVMSG, sizeof(OVMSG) - 1);
 | |
| 			errno = EFBIG;
 | |
| 			return (0);
 | |
| 		}
 | |
| 		/*
 | |
| 		 * This is tricky.  The 1 indicates that you want the new page
 | |
| 		 * allocated with 1 clear bit.  Actually, you are going to
 | |
| 		 * allocate 2 pages from this map.  The first is going to be
 | |
| 		 * the map page, the second is the overflow page we were
 | |
| 		 * looking for.  The init_bitmap routine automatically, sets
 | |
| 		 * the first bit of itself to indicate that the bitmap itself
 | |
| 		 * is in use.  We would explicitly set the second bit, but
 | |
| 		 * don't have to if we tell init_bitmap not to leave it clear
 | |
| 		 * in the first place.
 | |
| 		 */
 | |
| 		if (__ibitmap(hashp,
 | |
| 		    (int)OADDR_OF(splitnum, offset), 1, free_page))
 | |
| 			return (0);
 | |
| 		hashp->SPARES[splitnum]++;
 | |
| #ifdef DEBUG2
 | |
| 		free_bit = 2;
 | |
| #endif
 | |
| 		offset++;
 | |
| 		if (offset > SPLITMASK) {
 | |
| 			if (++splitnum >= NCACHED) {
 | |
| 				(void)write(STDERR_FILENO, OVMSG,
 | |
| 				    sizeof(OVMSG) - 1);
 | |
| 				errno = EFBIG;
 | |
| 				return (0);
 | |
| 			}
 | |
| 			hashp->OVFL_POINT = splitnum;
 | |
| 			hashp->SPARES[splitnum] = hashp->SPARES[splitnum-1];
 | |
| 			hashp->SPARES[splitnum-1]--;
 | |
| 			offset = 0;
 | |
| 		}
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * Free_bit addresses the last used bit.  Bump it to address
 | |
| 		 * the first available bit.
 | |
| 		 */
 | |
| 		free_bit++;
 | |
| 		SETBIT(freep, free_bit);
 | |
| 	}
 | |
| 
 | |
| 	/* Calculate address of the new overflow page */
 | |
| 	addr = OADDR_OF(splitnum, offset);
 | |
| #ifdef DEBUG2
 | |
| 	(void)fprintf(stderr, "OVERFLOW_PAGE: ADDR: %d BIT: %d PAGE %d\n",
 | |
| 	    addr, free_bit, free_page);
 | |
| #endif
 | |
| 	return (addr);
 | |
| 
 | |
| found:
 | |
| 	bit = bit + first_free(freep[j]);
 | |
| 	SETBIT(freep, bit);
 | |
| #ifdef DEBUG2
 | |
| 	tmp1 = bit;
 | |
| 	tmp2 = i;
 | |
| #endif
 | |
| 	/*
 | |
| 	 * Bits are addressed starting with 0, but overflow pages are addressed
 | |
| 	 * beginning at 1. Bit is a bit addressnumber, so we need to increment
 | |
| 	 * it to convert it to a page number.
 | |
| 	 */
 | |
| 	bit = 1 + bit + (i * (hashp->BSIZE << BYTE_SHIFT));
 | |
| 	if (bit >= hashp->LAST_FREED)
 | |
| 		hashp->LAST_FREED = bit - 1;
 | |
| 
 | |
| 	/* Calculate the split number for this page */
 | |
| 	for (i = 0; (i < splitnum) && (bit > hashp->SPARES[i]); i++);
 | |
| 	offset = (i ? bit - hashp->SPARES[i - 1] : bit);
 | |
| 	if (offset >= SPLITMASK) {
 | |
| 		(void)write(STDERR_FILENO, OVMSG, sizeof(OVMSG) - 1);
 | |
| 		errno = EFBIG;
 | |
| 		return (0);	/* Out of overflow pages */
 | |
| 	}
 | |
| 	addr = OADDR_OF(i, offset);
 | |
| #ifdef DEBUG2
 | |
| 	(void)fprintf(stderr, "OVERFLOW_PAGE: ADDR: %d BIT: %d PAGE %d\n",
 | |
| 	    addr, tmp1, tmp2);
 | |
| #endif
 | |
| 
 | |
| 	/* Allocate and return the overflow page */
 | |
| 	return (addr);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Mark this overflow page as free.
 | |
|  */
 | |
| void
 | |
| __free_ovflpage(HTAB *hashp, BUFHEAD *obufp)
 | |
| {
 | |
| 	uint16_t addr;
 | |
| 	uint32_t *freep;
 | |
| 	int bit_address, free_page, free_bit;
 | |
| 	uint16_t ndx;
 | |
| 
 | |
| 	addr = obufp->addr;
 | |
| #ifdef DEBUG1
 | |
| 	(void)fprintf(stderr, "Freeing %d\n", addr);
 | |
| #endif
 | |
| 	ndx = (((uint32_t)addr) >> SPLITSHIFT);
 | |
| 	bit_address =
 | |
| 	    (ndx ? hashp->SPARES[ndx - 1] : 0) + (addr & SPLITMASK) - 1;
 | |
| 	 if (bit_address < hashp->LAST_FREED)
 | |
| 		hashp->LAST_FREED = bit_address;
 | |
| 	free_page = ((uint32_t)bit_address >> (hashp->BSHIFT + BYTE_SHIFT));
 | |
| 	free_bit = bit_address & ((hashp->BSIZE << BYTE_SHIFT) - 1);
 | |
| 
 | |
| 	if (!(freep = hashp->mapp[free_page]))
 | |
| 		freep = fetch_bitmap(hashp, free_page);
 | |
| 	/*
 | |
| 	 * This had better never happen.  It means we tried to read a bitmap
 | |
| 	 * that has already had overflow pages allocated off it, and we
 | |
| 	 * failed to read it from the file.
 | |
| 	 */
 | |
| 	_DIAGASSERT(freep != NULL);
 | |
| 	CLRBIT(freep, free_bit);
 | |
| #ifdef DEBUG2
 | |
| 	(void)fprintf(stderr, "FREE_OVFLPAGE: ADDR: %d BIT: %d PAGE %d\n",
 | |
| 	    obufp->addr, free_bit, free_page);
 | |
| #endif
 | |
| 	__reclaim_buf(hashp, obufp);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns:
 | |
|  *	 0 success
 | |
|  *	-1 failure
 | |
|  */
 | |
| static int
 | |
| open_temp(HTAB *hashp)
 | |
| {
 | |
| 	sigset_t set, oset;
 | |
| 	char *envtmp;
 | |
| 	char namestr[PATH_MAX];
 | |
| 	int len;
 | |
| 
 | |
| 	if (issetugid())
 | |
| 		envtmp = NULL;
 | |
| 	else
 | |
| 		envtmp = getenv("TMPDIR");
 | |
| 
 | |
| 	len = snprintf(namestr, sizeof(namestr), "%s/_hashXXXXXX",
 | |
| 	    envtmp ? envtmp : _PATH_TMP);
 | |
| 	if (len < 0 || (size_t)len >= sizeof(namestr)) {
 | |
| 		errno = ENAMETOOLONG;
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	/* Block signals; make sure file goes away at process exit. */
 | |
| 	(void)sigfillset(&set);
 | |
| 	(void)sigprocmask(SIG_BLOCK, &set, &oset);
 | |
| 	if ((hashp->fp = mkstemp(namestr)) != -1) {
 | |
| 		(void)unlink(namestr);
 | |
| 		(void)fcntl(hashp->fp, F_SETFD, FD_CLOEXEC);
 | |
| 	}
 | |
| 	(void)sigprocmask(SIG_SETMASK, &oset, (sigset_t *)NULL);
 | |
| 	return (hashp->fp != -1 ? 0 : -1);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We have to know that the key will fit, but the last entry on the page is
 | |
|  * an overflow pair, so we need to shift things.
 | |
|  */
 | |
| static void
 | |
| squeeze_key(uint16_t *sp, const DBT *key, const DBT *val)
 | |
| {
 | |
| 	char *p;
 | |
| 	uint16_t free_space, n, off, pageno;
 | |
| 	size_t temp;
 | |
| 
 | |
| 	p = (char *)(void *)sp;
 | |
| 	n = sp[0];
 | |
| 	free_space = FREESPACE(sp);
 | |
| 	off = OFFSET(sp);
 | |
| 
 | |
| 	pageno = sp[n - 1];
 | |
| 	_DIAGASSERT(off >= key->size);
 | |
| 	off -= (uint16_t)key->size;
 | |
| 	sp[n - 1] = off;
 | |
| 	memmove(p + off, key->data, key->size);
 | |
| 	_DIAGASSERT(off >= val->size);
 | |
| 	off -= (uint16_t)val->size;
 | |
| 	sp[n] = off;
 | |
| 	memmove(p + off, val->data, val->size);
 | |
| 	sp[0] = n + 2;
 | |
| 	sp[n + 1] = pageno;
 | |
| 	sp[n + 2] = OVFLPAGE;
 | |
| 	temp = PAIRSIZE(key, val);
 | |
| 	_DIAGASSERT(free_space >= temp);
 | |
| 	FREESPACE(sp) = (uint16_t)(free_space - temp);
 | |
| 	OFFSET(sp) = off;
 | |
| }
 | |
| 
 | |
| static uint32_t *
 | |
| fetch_bitmap(HTAB *hashp, int ndx)
 | |
| {
 | |
| 	if (ndx >= hashp->nmaps)
 | |
| 		return (NULL);
 | |
| 	if ((hashp->mapp[ndx] = malloc((size_t)hashp->BSIZE)) == NULL)
 | |
| 		return (NULL);
 | |
| 	if (__get_page(hashp,
 | |
| 	    (char *)(void *)hashp->mapp[ndx], (uint32_t)hashp->BITMAPS[ndx], 0, 1, 1)) {
 | |
| 		free(hashp->mapp[ndx]);
 | |
| 		return (NULL);
 | |
| 	}
 | |
| 	return (hashp->mapp[ndx]);
 | |
| }
 | |
| 
 | |
| #ifdef DEBUG4
 | |
| void print_chain(HTAB *, uint32_t);
 | |
| void
 | |
| print_chain(HTAB *hashp, uint32_t addr)
 | |
| {
 | |
| 	BUFHEAD *bufp;
 | |
| 	uint16_t *bp, oaddr;
 | |
| 
 | |
| 	(void)fprintf(stderr, "%d ", addr);
 | |
| 	bufp = __get_buf(hashp, addr, NULL, 0);
 | |
| 	bp = (uint16_t *)bufp->page;
 | |
| 	while (bp[0] && ((bp[bp[0]] == OVFLPAGE) ||
 | |
| 		((bp[0] > 2) && bp[2] < REAL_KEY))) {
 | |
| 		oaddr = bp[bp[0] - 1];
 | |
| 		(void)fprintf(stderr, "%d ", (int)oaddr);
 | |
| 		bufp = __get_buf(hashp, (uint32_t)oaddr, bufp, 0);
 | |
| 		bp = (uint16_t *)bufp->page;
 | |
| 	}
 | |
| 	(void)fprintf(stderr, "\n");
 | |
| }
 | |
| #endif
 |