 f14fb60209
			
		
	
	
		f14fb60209
		
	
	
	
	
		
			
			* Updating common/lib * Updating lib/csu * Updating lib/libc * Updating libexec/ld.elf_so * Corrected test on __minix in featuretest to actually follow the meaning of the comment. * Cleaned up _REENTRANT-related defintions. * Disabled -D_REENTRANT for libfetch * Removing some unneeded __NBSD_LIBC defines and tests Change-Id: Ic1394baef74d11b9f86b312f5ff4bbc3cbf72ce2
		
			
				
	
	
		
			843 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			843 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* $NetBSD: dtoa.c,v 1.10 2012/05/16 17:48:59 alnsn Exp $ */
 | |
| 
 | |
| /****************************************************************
 | |
| 
 | |
| The author of this software is David M. Gay.
 | |
| 
 | |
| Copyright (C) 1998, 1999 by Lucent Technologies
 | |
| All Rights Reserved
 | |
| 
 | |
| Permission to use, copy, modify, and distribute this software and
 | |
| its documentation for any purpose and without fee is hereby
 | |
| granted, provided that the above copyright notice appear in all
 | |
| copies and that both that the copyright notice and this
 | |
| permission notice and warranty disclaimer appear in supporting
 | |
| documentation, and that the name of Lucent or any of its entities
 | |
| not be used in advertising or publicity pertaining to
 | |
| distribution of the software without specific, written prior
 | |
| permission.
 | |
| 
 | |
| LUCENT DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
 | |
| INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS.
 | |
| IN NO EVENT SHALL LUCENT OR ANY OF ITS ENTITIES BE LIABLE FOR ANY
 | |
| SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 | |
| WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER
 | |
| IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
 | |
| ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
 | |
| THIS SOFTWARE.
 | |
| 
 | |
| ****************************************************************/
 | |
| 
 | |
| /* Please send bug reports to David M. Gay (dmg at acm dot org,
 | |
|  * with " at " changed at "@" and " dot " changed to ".").	*/
 | |
| 
 | |
| #include "gdtoaimp.h"
 | |
| 
 | |
| /* dtoa for IEEE arithmetic (dmg): convert double to ASCII string.
 | |
|  *
 | |
|  * Inspired by "How to Print Floating-Point Numbers Accurately" by
 | |
|  * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 112-126].
 | |
|  *
 | |
|  * Modifications:
 | |
|  *	1. Rather than iterating, we use a simple numeric overestimate
 | |
|  *	   to determine k = floor(log10(d)).  We scale relevant
 | |
|  *	   quantities using O(log2(k)) rather than O(k) multiplications.
 | |
|  *	2. For some modes > 2 (corresponding to ecvt and fcvt), we don't
 | |
|  *	   try to generate digits strictly left to right.  Instead, we
 | |
|  *	   compute with fewer bits and propagate the carry if necessary
 | |
|  *	   when rounding the final digit up.  This is often faster.
 | |
|  *	3. Under the assumption that input will be rounded nearest,
 | |
|  *	   mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22.
 | |
|  *	   That is, we allow equality in stopping tests when the
 | |
|  *	   round-nearest rule will give the same floating-point value
 | |
|  *	   as would satisfaction of the stopping test with strict
 | |
|  *	   inequality.
 | |
|  *	4. We remove common factors of powers of 2 from relevant
 | |
|  *	   quantities.
 | |
|  *	5. When converting floating-point integers less than 1e16,
 | |
|  *	   we use floating-point arithmetic rather than resorting
 | |
|  *	   to multiple-precision integers.
 | |
|  *	6. When asked to produce fewer than 15 digits, we first try
 | |
|  *	   to get by with floating-point arithmetic; we resort to
 | |
|  *	   multiple-precision integer arithmetic only if we cannot
 | |
|  *	   guarantee that the floating-point calculation has given
 | |
|  *	   the correctly rounded result.  For k requested digits and
 | |
|  *	   "uniformly" distributed input, the probability is
 | |
|  *	   something like 10^(k-15) that we must resort to the Long
 | |
|  *	   calculation.
 | |
|  */
 | |
| 
 | |
| #ifdef Honor_FLT_ROUNDS
 | |
| #undef Check_FLT_ROUNDS
 | |
| #define Check_FLT_ROUNDS
 | |
| #else
 | |
| #define Rounding Flt_Rounds
 | |
| #endif
 | |
| 
 | |
|  char *
 | |
| dtoa
 | |
| #ifdef KR_headers
 | |
| 	(d0, mode, ndigits, decpt, sign, rve)
 | |
| 	double d0; int mode, ndigits, *decpt, *sign; char **rve;
 | |
| #else
 | |
| 	(double d0, int mode, int ndigits, int *decpt, int *sign, char **rve)
 | |
| #endif
 | |
| {
 | |
|  /*	Arguments ndigits, decpt, sign are similar to those
 | |
| 	of ecvt and fcvt; trailing zeros are suppressed from
 | |
| 	the returned string.  If not null, *rve is set to point
 | |
| 	to the end of the return value.  If d is +-Infinity or NaN,
 | |
| 	then *decpt is set to 9999.
 | |
| 
 | |
| 	mode:
 | |
| 		0 ==> shortest string that yields d when read in
 | |
| 			and rounded to nearest.
 | |
| 		1 ==> like 0, but with Steele & White stopping rule;
 | |
| 			e.g. with IEEE P754 arithmetic , mode 0 gives
 | |
| 			1e23 whereas mode 1 gives 9.999999999999999e22.
 | |
| 		2 ==> max(1,ndigits) significant digits.  This gives a
 | |
| 			return value similar to that of ecvt, except
 | |
| 			that trailing zeros are suppressed.
 | |
| 		3 ==> through ndigits past the decimal point.  This
 | |
| 			gives a return value similar to that from fcvt,
 | |
| 			except that trailing zeros are suppressed, and
 | |
| 			ndigits can be negative.
 | |
| 		4,5 ==> similar to 2 and 3, respectively, but (in
 | |
| 			round-nearest mode) with the tests of mode 0 to
 | |
| 			possibly return a shorter string that rounds to d.
 | |
| 			With IEEE arithmetic and compilation with
 | |
| 			-DHonor_FLT_ROUNDS, modes 4 and 5 behave the same
 | |
| 			as modes 2 and 3 when FLT_ROUNDS != 1.
 | |
| 		6-9 ==> Debugging modes similar to mode - 4:  don't try
 | |
| 			fast floating-point estimate (if applicable).
 | |
| 
 | |
| 		Values of mode other than 0-9 are treated as mode 0.
 | |
| 
 | |
| 		Sufficient space is allocated to the return value
 | |
| 		to hold the suppressed trailing zeros.
 | |
| 	*/
 | |
| 
 | |
| 	int bbits, b2, b5, be, dig, i, ieps, ilim0,
 | |
| 		j, jj1, k, k0, k_check, leftright, m2, m5, s2, s5,
 | |
| 		spec_case, try_quick;
 | |
| 	int ilim = 0, ilim1 = 0; /* pacify gcc */
 | |
| 	Long L;
 | |
| #ifndef Sudden_Underflow
 | |
| 	int denorm;
 | |
| 	ULong x;
 | |
| #endif
 | |
| 	Bigint *b, *b1, *delta, *mhi, *S;
 | |
| 	Bigint *mlo = NULL; /* pacify gcc */
 | |
| 	U d, d2, eps;
 | |
| 	double ds;
 | |
| 	char *s, *s0;
 | |
| #ifdef SET_INEXACT
 | |
| 	int inexact, oldinexact;
 | |
| #endif
 | |
| #ifdef Honor_FLT_ROUNDS /*{*/
 | |
| 	int Rounding;
 | |
| #ifdef Trust_FLT_ROUNDS /*{{ only define this if FLT_ROUNDS really works! */
 | |
| 	Rounding = Flt_Rounds;
 | |
| #else /*}{*/
 | |
| 	Rounding = 1;
 | |
| 	switch(fegetround()) {
 | |
| 	  case FE_TOWARDZERO:	Rounding = 0; break;
 | |
| 	  case FE_UPWARD:	Rounding = 2; break;
 | |
| 	  case FE_DOWNWARD:	Rounding = 3;
 | |
| 	  }
 | |
| #endif /*}}*/
 | |
| #endif /*}*/
 | |
| 
 | |
| #ifndef MULTIPLE_THREADS
 | |
| 	if (dtoa_result) {
 | |
| 		freedtoa(dtoa_result);
 | |
| 		dtoa_result = 0;
 | |
| 		}
 | |
| #endif
 | |
| 	d.d = d0;
 | |
| 	if (word0(&d) & Sign_bit) {
 | |
| 		/* set sign for everything, including 0's and NaNs */
 | |
| 		*sign = 1;
 | |
| 		word0(&d) &= ~Sign_bit;	/* clear sign bit */
 | |
| 		}
 | |
| 	else
 | |
| 		*sign = 0;
 | |
| 
 | |
| #if defined(IEEE_Arith) + defined(VAX)
 | |
| #ifdef IEEE_Arith
 | |
| 	if ((word0(&d) & Exp_mask) == Exp_mask)
 | |
| #else
 | |
| 	if (word0(&d)  == 0x8000)
 | |
| #endif
 | |
| 		{
 | |
| 		/* Infinity or NaN */
 | |
| 		*decpt = 9999;
 | |
| #ifdef IEEE_Arith
 | |
| 		if (!word1(&d) && !(word0(&d) & 0xfffff))
 | |
| 			return nrv_alloc("Infinity", rve, 8);
 | |
| #endif
 | |
| 		return nrv_alloc("NaN", rve, 3);
 | |
| 		}
 | |
| #endif
 | |
| #ifdef IBM
 | |
| 	dval(&d) += 0; /* normalize */
 | |
| #endif
 | |
| 	if (!dval(&d)) {
 | |
| 		*decpt = 1;
 | |
| 		return nrv_alloc("0", rve, 1);
 | |
| 		}
 | |
| 
 | |
| #ifdef SET_INEXACT
 | |
| 	try_quick = oldinexact = get_inexact();
 | |
| 	inexact = 1;
 | |
| #endif
 | |
| #ifdef Honor_FLT_ROUNDS
 | |
| 	if (Rounding >= 2) {
 | |
| 		if (*sign)
 | |
| 			Rounding = Rounding == 2 ? 0 : 2;
 | |
| 		else
 | |
| 			if (Rounding != 2)
 | |
| 				Rounding = 0;
 | |
| 		}
 | |
| #endif
 | |
| 
 | |
| 	b = d2b(dval(&d), &be, &bbits);
 | |
| 	if (b == NULL)
 | |
| 		return NULL;
 | |
| #ifdef Sudden_Underflow
 | |
| 	i = (int)(word0(&d) >> Exp_shift1 & (Exp_mask>>Exp_shift1));
 | |
| #else
 | |
| 	if (( i = (int)(word0(&d) >> Exp_shift1 & (Exp_mask>>Exp_shift1)) )!=0) {
 | |
| #endif
 | |
| 		dval(&d2) = dval(&d);
 | |
| 		word0(&d2) &= Frac_mask1;
 | |
| 		word0(&d2) |= Exp_11;
 | |
| #ifdef IBM
 | |
| 		if (( j = 11 - hi0bits(word0(&d2) & Frac_mask) )!=0)
 | |
| 			dval(&d2) /= 1 << j;
 | |
| #endif
 | |
| 
 | |
| 		/* log(x)	~=~ log(1.5) + (x-1.5)/1.5
 | |
| 		 * log10(x)	 =  log(x) / log(10)
 | |
| 		 *		~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10))
 | |
| 		 * log10(&d) = (i-Bias)*log(2)/log(10) + log10(&d2)
 | |
| 		 *
 | |
| 		 * This suggests computing an approximation k to log10(&d) by
 | |
| 		 *
 | |
| 		 * k = (i - Bias)*0.301029995663981
 | |
| 		 *	+ ( (d2-1.5)*0.289529654602168 + 0.176091259055681 );
 | |
| 		 *
 | |
| 		 * We want k to be too large rather than too small.
 | |
| 		 * The error in the first-order Taylor series approximation
 | |
| 		 * is in our favor, so we just round up the constant enough
 | |
| 		 * to compensate for any error in the multiplication of
 | |
| 		 * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077,
 | |
| 		 * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14,
 | |
| 		 * adding 1e-13 to the constant term more than suffices.
 | |
| 		 * Hence we adjust the constant term to 0.1760912590558.
 | |
| 		 * (We could get a more accurate k by invoking log10,
 | |
| 		 *  but this is probably not worthwhile.)
 | |
| 		 */
 | |
| 
 | |
| 		i -= Bias;
 | |
| #ifdef IBM
 | |
| 		i <<= 2;
 | |
| 		i += j;
 | |
| #endif
 | |
| #ifndef Sudden_Underflow
 | |
| 		denorm = 0;
 | |
| 		}
 | |
| 	else {
 | |
| 		/* d is denormalized */
 | |
| 
 | |
| 		i = bbits + be + (Bias + (P-1) - 1);
 | |
| 		x = i > 32  ? word0(&d) << (64 - i) | word1(&d) >> (i - 32)
 | |
| 			    : word1(&d) << (32 - i);
 | |
| 		dval(&d2) = x;
 | |
| 		word0(&d2) -= 31*Exp_msk1; /* adjust exponent */
 | |
| 		i -= (Bias + (P-1) - 1) + 1;
 | |
| 		denorm = 1;
 | |
| 		}
 | |
| #endif
 | |
| 	ds = (dval(&d2)-1.5)*0.289529654602168 + 0.1760912590558 + i*0.301029995663981;
 | |
| 	k = (int)ds;
 | |
| 	if (ds < 0. && ds != k)
 | |
| 		k--;	/* want k = floor(ds) */
 | |
| 	k_check = 1;
 | |
| 	if (k >= 0 && k <= Ten_pmax) {
 | |
| 		if (dval(&d) < tens[k])
 | |
| 			k--;
 | |
| 		k_check = 0;
 | |
| 		}
 | |
| 	j = bbits - i - 1;
 | |
| 	if (j >= 0) {
 | |
| 		b2 = 0;
 | |
| 		s2 = j;
 | |
| 		}
 | |
| 	else {
 | |
| 		b2 = -j;
 | |
| 		s2 = 0;
 | |
| 		}
 | |
| 	if (k >= 0) {
 | |
| 		b5 = 0;
 | |
| 		s5 = k;
 | |
| 		s2 += k;
 | |
| 		}
 | |
| 	else {
 | |
| 		b2 -= k;
 | |
| 		b5 = -k;
 | |
| 		s5 = 0;
 | |
| 		}
 | |
| 	if (mode < 0 || mode > 9)
 | |
| 		mode = 0;
 | |
| 
 | |
| #ifndef SET_INEXACT
 | |
| #ifdef Check_FLT_ROUNDS
 | |
| 	try_quick = Rounding == 1;
 | |
| #else
 | |
| 	try_quick = 1;
 | |
| #endif
 | |
| #endif /*SET_INEXACT*/
 | |
| 
 | |
| 	if (mode > 5) {
 | |
| 		mode -= 4;
 | |
| 		try_quick = 0;
 | |
| 		}
 | |
| 	leftright = 1;
 | |
| 	ilim = ilim1 = -1;	/* Values for cases 0 and 1; done here to */
 | |
| 				/* silence erroneous "gcc -Wall" warning. */
 | |
| 	switch(mode) {
 | |
| 		case 0:
 | |
| 		case 1:
 | |
| 			i = 18;
 | |
| 			ndigits = 0;
 | |
| 			break;
 | |
| 		case 2:
 | |
| 			leftright = 0;
 | |
| 			/* FALLTHROUGH */
 | |
| 		case 4:
 | |
| 			if (ndigits <= 0)
 | |
| 				ndigits = 1;
 | |
| 			ilim = ilim1 = i = ndigits;
 | |
| 			break;
 | |
| 		case 3:
 | |
| 			leftright = 0;
 | |
| 			/* FALLTHROUGH */
 | |
| 		case 5:
 | |
| 			i = ndigits + k + 1;
 | |
| 			ilim = i;
 | |
| 			ilim1 = i - 1;
 | |
| 			if (i <= 0)
 | |
| 				i = 1;
 | |
| 		}
 | |
| 	s = s0 = rv_alloc((size_t)i);
 | |
| 	if (s == NULL)
 | |
| 		return NULL;
 | |
| 
 | |
| #ifdef Honor_FLT_ROUNDS
 | |
| 	if (mode > 1 && Rounding != 1)
 | |
| 		leftright = 0;
 | |
| #endif
 | |
| 
 | |
| 	if (ilim >= 0 && ilim <= Quick_max && try_quick) {
 | |
| 
 | |
| 		/* Try to get by with floating-point arithmetic. */
 | |
| 
 | |
| 		i = 0;
 | |
| 		dval(&d2) = dval(&d);
 | |
| 		k0 = k;
 | |
| 		ilim0 = ilim;
 | |
| 		ieps = 2; /* conservative */
 | |
| 		if (k > 0) {
 | |
| 			ds = tens[k&0xf];
 | |
| 			j = (unsigned int)k >> 4;
 | |
| 			if (j & Bletch) {
 | |
| 				/* prevent overflows */
 | |
| 				j &= Bletch - 1;
 | |
| 				dval(&d) /= bigtens[n_bigtens-1];
 | |
| 				ieps++;
 | |
| 				}
 | |
| 			for(; j; j = (unsigned int)j >> 1, i++)
 | |
| 				if (j & 1) {
 | |
| 					ieps++;
 | |
| 					ds *= bigtens[i];
 | |
| 					}
 | |
| 			dval(&d) /= ds;
 | |
| 			}
 | |
| 		else if (( jj1 = -k )!=0) {
 | |
| 			dval(&d) *= tens[jj1 & 0xf];
 | |
| 			for(j = jj1 >> 4; j; j >>= 1, i++)
 | |
| 				if (j & 1) {
 | |
| 					ieps++;
 | |
| 					dval(&d) *= bigtens[i];
 | |
| 					}
 | |
| 			}
 | |
| 		if (k_check && dval(&d) < 1. && ilim > 0) {
 | |
| 			if (ilim1 <= 0)
 | |
| 				goto fast_failed;
 | |
| 			ilim = ilim1;
 | |
| 			k--;
 | |
| 			dval(&d) *= 10.;
 | |
| 			ieps++;
 | |
| 			}
 | |
| 		dval(&eps) = ieps*dval(&d) + 7.;
 | |
| 		word0(&eps) -= (P-1)*Exp_msk1;
 | |
| 		if (ilim == 0) {
 | |
| 			S = mhi = 0;
 | |
| 			dval(&d) -= 5.;
 | |
| 			if (dval(&d) > dval(&eps))
 | |
| 				goto one_digit;
 | |
| 			if (dval(&d) < -dval(&eps))
 | |
| 				goto no_digits;
 | |
| 			goto fast_failed;
 | |
| 			}
 | |
| #ifndef No_leftright
 | |
| 		if (leftright) {
 | |
| 			/* Use Steele & White method of only
 | |
| 			 * generating digits needed.
 | |
| 			 */
 | |
| 			dval(&eps) = 0.5/tens[ilim-1] - dval(&eps);
 | |
| 			for(i = 0;;) {
 | |
| 				L = dval(&d);
 | |
| 				dval(&d) -= L;
 | |
| 				*s++ = '0' + (int)L;
 | |
| 				if (dval(&d) < dval(&eps))
 | |
| 					goto ret1;
 | |
| 				if (1. - dval(&d) < dval(&eps))
 | |
| 					goto bump_up;
 | |
| 				if (++i >= ilim)
 | |
| 					break;
 | |
| 				dval(&eps) *= 10.;
 | |
| 				dval(&d) *= 10.;
 | |
| 				}
 | |
| 			}
 | |
| 		else {
 | |
| #endif
 | |
| 			/* Generate ilim digits, then fix them up. */
 | |
| 			dval(&eps) *= tens[ilim-1];
 | |
| 			for(i = 1;; i++, dval(&d) *= 10.) {
 | |
| 				L = (Long)(dval(&d));
 | |
| 				if (!(dval(&d) -= L))
 | |
| 					ilim = i;
 | |
| 				*s++ = '0' + (int)L;
 | |
| 				if (i == ilim) {
 | |
| 					if (dval(&d) > 0.5 + dval(&eps))
 | |
| 						goto bump_up;
 | |
| 					else if (dval(&d) < 0.5 - dval(&eps)) {
 | |
| 						while(*--s == '0');
 | |
| 						s++;
 | |
| 						goto ret1;
 | |
| 						}
 | |
| 					break;
 | |
| 					}
 | |
| 				}
 | |
| #ifndef No_leftright
 | |
| 			}
 | |
| #endif
 | |
|  fast_failed:
 | |
| 		s = s0;
 | |
| 		dval(&d) = dval(&d2);
 | |
| 		k = k0;
 | |
| 		ilim = ilim0;
 | |
| 		}
 | |
| 
 | |
| 	/* Do we have a "small" integer? */
 | |
| 
 | |
| 	if (be >= 0 && k <= Int_max) {
 | |
| 		/* Yes. */
 | |
| 		ds = tens[k];
 | |
| 		if (ndigits < 0 && ilim <= 0) {
 | |
| 			S = mhi = 0;
 | |
| 			if (ilim < 0 || dval(&d) <= 5*ds)
 | |
| 				goto no_digits;
 | |
| 			goto one_digit;
 | |
| 			}
 | |
| 		for(i = 1;; i++, dval(&d) *= 10.) {
 | |
| 			L = (Long)(dval(&d) / ds);
 | |
| 			dval(&d) -= L*ds;
 | |
| #ifdef Check_FLT_ROUNDS
 | |
| 			/* If FLT_ROUNDS == 2, L will usually be high by 1 */
 | |
| 			if (dval(&d) < 0) {
 | |
| 				L--;
 | |
| 				dval(&d) += ds;
 | |
| 				}
 | |
| #endif
 | |
| 			*s++ = '0' + (int)L;
 | |
| 			if (!dval(&d)) {
 | |
| #ifdef SET_INEXACT
 | |
| 				inexact = 0;
 | |
| #endif
 | |
| 				break;
 | |
| 				}
 | |
| 			if (i == ilim) {
 | |
| #ifdef Honor_FLT_ROUNDS
 | |
| 				if (mode > 1)
 | |
| 				switch(Rounding) {
 | |
| 				  case 0: goto ret1;
 | |
| 				  case 2: goto bump_up;
 | |
| 				  }
 | |
| #endif
 | |
| 				dval(&d) += dval(&d);
 | |
| #ifdef ROUND_BIASED
 | |
| 				if (dval(&d) >= ds)
 | |
| #else
 | |
| 				if (dval(&d) > ds || (dval(&d) == ds && L & 1))
 | |
| #endif
 | |
| 					{
 | |
|  bump_up:
 | |
| 					while(*--s == '9')
 | |
| 						if (s == s0) {
 | |
| 							k++;
 | |
| 							*s = '0';
 | |
| 							break;
 | |
| 							}
 | |
| 					++*s++;
 | |
| 					}
 | |
| 				break;
 | |
| 				}
 | |
| 			}
 | |
| 		goto ret1;
 | |
| 		}
 | |
| 
 | |
| 	m2 = b2;
 | |
| 	m5 = b5;
 | |
| 	mhi = mlo = 0;
 | |
| 	if (leftright) {
 | |
| 		i =
 | |
| #ifndef Sudden_Underflow
 | |
| 			denorm ? be + (Bias + (P-1) - 1 + 1) :
 | |
| #endif
 | |
| #ifdef IBM
 | |
| 			1 + 4*P - 3 - bbits + ((bbits + be - 1) & 3);
 | |
| #else
 | |
| 			1 + P - bbits;
 | |
| #endif
 | |
| 		b2 += i;
 | |
| 		s2 += i;
 | |
| 		mhi = i2b(1);
 | |
| 		if (mhi == NULL)
 | |
| 			return NULL;
 | |
| 		}
 | |
| 	if (m2 > 0 && s2 > 0) {
 | |
| 		i = m2 < s2 ? m2 : s2;
 | |
| 		b2 -= i;
 | |
| 		m2 -= i;
 | |
| 		s2 -= i;
 | |
| 		}
 | |
| 	if (b5 > 0) {
 | |
| 		if (leftright) {
 | |
| 			if (m5 > 0) {
 | |
| 				mhi = pow5mult(mhi, m5);
 | |
| 				if (mhi == NULL)
 | |
| 					return NULL;
 | |
| 				b1 = mult(mhi, b);
 | |
| 				if (b1 == NULL)
 | |
| 					return NULL;
 | |
| 				Bfree(b);
 | |
| 				b = b1;
 | |
| 				}
 | |
| 			if (( j = b5 - m5 )!=0) {
 | |
| 				b = pow5mult(b, j);
 | |
| 				if (b == NULL)
 | |
| 					return NULL;
 | |
| 				}
 | |
| 			}
 | |
| 		else {
 | |
| 			b = pow5mult(b, b5);
 | |
| 			if (b == NULL)
 | |
| 				return NULL;
 | |
| 			}
 | |
| 		}
 | |
| 	S = i2b(1);
 | |
| 	if (S == NULL)
 | |
| 		return NULL;
 | |
| 	if (s5 > 0) {
 | |
| 		S = pow5mult(S, s5);
 | |
| 		if (S == NULL)
 | |
| 			return NULL;
 | |
| 		}
 | |
| 
 | |
| 	/* Check for special case that d is a normalized power of 2. */
 | |
| 
 | |
| 	spec_case = 0;
 | |
| 	if ((mode < 2 || leftright)
 | |
| #ifdef Honor_FLT_ROUNDS
 | |
| 			&& Rounding == 1
 | |
| #endif
 | |
| 				) {
 | |
| 		if (!word1(&d) && !(word0(&d) & Bndry_mask)
 | |
| #ifndef Sudden_Underflow
 | |
| 		 && word0(&d) & (Exp_mask & ~Exp_msk1)
 | |
| #endif
 | |
| 				) {
 | |
| 			/* The special case */
 | |
| 			b2 += Log2P;
 | |
| 			s2 += Log2P;
 | |
| 			spec_case = 1;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 	/* Arrange for convenient computation of quotients:
 | |
| 	 * shift left if necessary so divisor has 4 leading 0 bits.
 | |
| 	 *
 | |
| 	 * Perhaps we should just compute leading 28 bits of S once
 | |
| 	 * and for all and pass them and a shift to quorem, so it
 | |
| 	 * can do shifts and ors to compute the numerator for q.
 | |
| 	 */
 | |
| #ifdef Pack_32
 | |
| 	if (( i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0x1f )!=0)
 | |
| 		i = 32 - i;
 | |
| #else
 | |
| 	if (( i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0xf )!=0)
 | |
| 		i = 16 - i;
 | |
| #endif
 | |
| 	if (i > 4) {
 | |
| 		i -= 4;
 | |
| 		b2 += i;
 | |
| 		m2 += i;
 | |
| 		s2 += i;
 | |
| 		}
 | |
| 	else if (i < 4) {
 | |
| 		i += 28;
 | |
| 		b2 += i;
 | |
| 		m2 += i;
 | |
| 		s2 += i;
 | |
| 		}
 | |
| 	if (b2 > 0) {
 | |
| 		b = lshift(b, b2);
 | |
| 		if (b == NULL)
 | |
| 			return NULL;
 | |
| 		}
 | |
| 	if (s2 > 0) {
 | |
| 		S = lshift(S, s2);
 | |
| 		if (S == NULL)
 | |
| 			return NULL;
 | |
| 		}
 | |
| 	if (k_check) {
 | |
| 		if (cmp(b,S) < 0) {
 | |
| 			k--;
 | |
| 			b = multadd(b, 10, 0);	/* we botched the k estimate */
 | |
| 			if (b == NULL)
 | |
| 				return NULL;
 | |
| 			if (leftright) {
 | |
| 				mhi = multadd(mhi, 10, 0);
 | |
| 				if (mhi == NULL)
 | |
| 					return NULL;
 | |
| 				}
 | |
| 			ilim = ilim1;
 | |
| 			}
 | |
| 		}
 | |
| 	if (ilim <= 0 && (mode == 3 || mode == 5)) {
 | |
| 		if (ilim < 0 || cmp(b,S = multadd(S,5,0)) <= 0) {
 | |
| 			/* no digits, fcvt style */
 | |
|  no_digits:
 | |
| 			k = -1 - ndigits;
 | |
| 			goto ret;
 | |
| 			}
 | |
|  one_digit:
 | |
| 		*s++ = '1';
 | |
| 		k++;
 | |
| 		goto ret;
 | |
| 		}
 | |
| 	if (leftright) {
 | |
| 		if (m2 > 0) {
 | |
| 			mhi = lshift(mhi, m2);
 | |
| 			if (mhi == NULL)
 | |
| 				return NULL;
 | |
| 			}
 | |
| 
 | |
| 		/* Compute mlo -- check for special case
 | |
| 		 * that d is a normalized power of 2.
 | |
| 		 */
 | |
| 
 | |
| 		mlo = mhi;
 | |
| 		if (spec_case) {
 | |
| 			mhi = Balloc(mhi->k);
 | |
| 			if (mhi == NULL)
 | |
| 				return NULL;
 | |
| 			Bcopy(mhi, mlo);
 | |
| 			mhi = lshift(mhi, Log2P);
 | |
| 			if (mhi == NULL)
 | |
| 				return NULL;
 | |
| 			}
 | |
| 
 | |
| 		for(i = 1;;i++) {
 | |
| 			dig = quorem(b,S) + '0';
 | |
| 			/* Do we yet have the shortest decimal string
 | |
| 			 * that will round to d?
 | |
| 			 */
 | |
| 			j = cmp(b, mlo);
 | |
| 			delta = diff(S, mhi);
 | |
| 			if (delta == NULL)
 | |
| 				return NULL;
 | |
| 			jj1 = delta->sign ? 1 : cmp(b, delta);
 | |
| 			Bfree(delta);
 | |
| #ifndef ROUND_BIASED
 | |
| 			if (jj1 == 0 && mode != 1 && !(word1(&d) & 1)
 | |
| #ifdef Honor_FLT_ROUNDS
 | |
| 				&& Rounding >= 1
 | |
| #endif
 | |
| 								   ) {
 | |
| 				if (dig == '9')
 | |
| 					goto round_9_up;
 | |
| 				if (j > 0)
 | |
| 					dig++;
 | |
| #ifdef SET_INEXACT
 | |
| 				else if (!b->x[0] && b->wds <= 1)
 | |
| 					inexact = 0;
 | |
| #endif
 | |
| 				*s++ = dig;
 | |
| 				goto ret;
 | |
| 				}
 | |
| #endif
 | |
| 			if (j < 0 || (j == 0 && mode != 1
 | |
| #ifndef ROUND_BIASED
 | |
| 							&& !(word1(&d) & 1)
 | |
| #endif
 | |
| 					)) {
 | |
| 				if (!b->x[0] && b->wds <= 1) {
 | |
| #ifdef SET_INEXACT
 | |
| 					inexact = 0;
 | |
| #endif
 | |
| 					goto accept_dig;
 | |
| 					}
 | |
| #ifdef Honor_FLT_ROUNDS
 | |
| 				if (mode > 1)
 | |
| 				 switch(Rounding) {
 | |
| 				  case 0: goto accept_dig;
 | |
| 				  case 2: goto keep_dig;
 | |
| 				  }
 | |
| #endif /*Honor_FLT_ROUNDS*/
 | |
| 				if (jj1 > 0) {
 | |
| 					b = lshift(b, 1);
 | |
| 					if (b == NULL)
 | |
| 						return NULL;
 | |
| 					jj1 = cmp(b, S);
 | |
| #ifdef ROUND_BIASED
 | |
| 					if (jj1 >= 0 /*)*/
 | |
| #else
 | |
| 					if ((jj1 > 0 || (jj1 == 0 && dig & 1))
 | |
| #endif
 | |
| 					&& dig++ == '9')
 | |
| 						goto round_9_up;
 | |
| 					}
 | |
|  accept_dig:
 | |
| 				*s++ = dig;
 | |
| 				goto ret;
 | |
| 				}
 | |
| 			if (jj1 > 0) {
 | |
| #ifdef Honor_FLT_ROUNDS
 | |
| 				if (!Rounding)
 | |
| 					goto accept_dig;
 | |
| #endif
 | |
| 				if (dig == '9') { /* possible if i == 1 */
 | |
|  round_9_up:
 | |
| 					*s++ = '9';
 | |
| 					goto roundoff;
 | |
| 					}
 | |
| 				*s++ = dig + 1;
 | |
| 				goto ret;
 | |
| 				}
 | |
| #ifdef Honor_FLT_ROUNDS
 | |
|  keep_dig:
 | |
| #endif
 | |
| 			*s++ = dig;
 | |
| 			if (i == ilim)
 | |
| 				break;
 | |
| 			b = multadd(b, 10, 0);
 | |
| 			if (b == NULL)
 | |
| 				return NULL;
 | |
| 			if (mlo == mhi) {
 | |
| 				mlo = mhi = multadd(mhi, 10, 0);
 | |
| 				if (mlo == NULL)
 | |
| 					return NULL;
 | |
| 				}
 | |
| 			else {
 | |
| 				mlo = multadd(mlo, 10, 0);
 | |
| 				if (mlo == NULL)
 | |
| 					return NULL;
 | |
| 				mhi = multadd(mhi, 10, 0);
 | |
| 				if (mhi == NULL)
 | |
| 					return NULL;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	else
 | |
| 		for(i = 1;; i++) {
 | |
| 			*s++ = dig = quorem(b,S) + '0';
 | |
| 			if (!b->x[0] && b->wds <= 1) {
 | |
| #ifdef SET_INEXACT
 | |
| 				inexact = 0;
 | |
| #endif
 | |
| 				goto ret;
 | |
| 				}
 | |
| 			if (i >= ilim)
 | |
| 				break;
 | |
| 			b = multadd(b, 10, 0);
 | |
| 			if (b == NULL)
 | |
| 				return NULL;
 | |
| 			}
 | |
| 
 | |
| 	/* Round off last digit */
 | |
| 
 | |
| #ifdef Honor_FLT_ROUNDS
 | |
| 	switch(Rounding) {
 | |
| 	  case 0: goto trimzeros;
 | |
| 	  case 2: goto roundoff;
 | |
| 	  }
 | |
| #endif
 | |
| 	b = lshift(b, 1);
 | |
| 	j = cmp(b, S);
 | |
| #ifdef ROUND_BIASED
 | |
| 	if (j >= 0)
 | |
| #else
 | |
| 	if (j > 0 || (j == 0 && dig & 1))
 | |
| #endif
 | |
| 		{
 | |
|  roundoff:
 | |
| 		while(*--s == '9')
 | |
| 			if (s == s0) {
 | |
| 				k++;
 | |
| 				*s++ = '1';
 | |
| 				goto ret;
 | |
| 				}
 | |
| 		++*s++;
 | |
| 		}
 | |
| 	else {
 | |
| #ifdef Honor_FLT_ROUNDS
 | |
|  trimzeros:
 | |
| #endif
 | |
| 		while(*--s == '0');
 | |
| 		s++;
 | |
| 		}
 | |
|  ret:
 | |
| 	Bfree(S);
 | |
| 	if (mhi) {
 | |
| 		if (mlo && mlo != mhi)
 | |
| 			Bfree(mlo);
 | |
| 		Bfree(mhi);
 | |
| 		}
 | |
|  ret1:
 | |
| #ifdef SET_INEXACT
 | |
| 	if (inexact) {
 | |
| 		if (!oldinexact) {
 | |
| 			word0(&d) = Exp_1 + (70 << Exp_shift);
 | |
| 			word1(&d) = 0;
 | |
| 			dval(&d) += 1.;
 | |
| 			}
 | |
| 		}
 | |
| 	else if (!oldinexact)
 | |
| 		clear_inexact();
 | |
| #endif
 | |
| 	Bfree(b);
 | |
| 	if (s == s0) {			/* don't return empty string */
 | |
| 		*s++ = '0';
 | |
| 		k = 0;
 | |
| 	}
 | |
| 	*s = 0;
 | |
| 	*decpt = k + 1;
 | |
| 	if (rve)
 | |
| 		*rve = s;
 | |
| 	return s0;
 | |
| 	}
 |