 f14fb60209
			
		
	
	
		f14fb60209
		
	
	
	
	
		
			
			* Updating common/lib * Updating lib/csu * Updating lib/libc * Updating libexec/ld.elf_so * Corrected test on __minix in featuretest to actually follow the meaning of the comment. * Cleaned up _REENTRANT-related defintions. * Disabled -D_REENTRANT for libfetch * Removing some unneeded __NBSD_LIBC defines and tests Change-Id: Ic1394baef74d11b9f86b312f5ff4bbc3cbf72ce2
		
			
				
	
	
		
			2350 lines
		
	
	
		
			80 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2350 lines
		
	
	
		
			80 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* $NetBSD: softfloat.c,v 1.2 2012/03/21 14:17:54 christos Exp $ */
 | |
| 
 | |
| /*
 | |
|  * This version hacked for use with gcc -msoft-float by bjh21.
 | |
|  * (Mostly a case of #ifdefing out things GCC doesn't need or provides
 | |
|  *  itself).
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Things you may want to define:
 | |
|  *
 | |
|  * SOFTFLOAT_FOR_GCC - build only those functions necessary for GCC (with
 | |
|  *   -msoft-float) to work.  Include "softfloat-for-gcc.h" to get them
 | |
|  *   properly renamed.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * This differs from the standard bits32/softfloat.c in that float64
 | |
|  * is defined to be a 64-bit integer rather than a structure.  The
 | |
|  * structure is float64s, with translation between the two going via
 | |
|  * float64u.
 | |
|  */
 | |
| 
 | |
| /*
 | |
| ===============================================================================
 | |
| 
 | |
| This C source file is part of the SoftFloat IEC/IEEE Floating-Point
 | |
| Arithmetic Package, Release 2a.
 | |
| 
 | |
| Written by John R. Hauser.  This work was made possible in part by the
 | |
| International Computer Science Institute, located at Suite 600, 1947 Center
 | |
| Street, Berkeley, California 94704.  Funding was partially provided by the
 | |
| National Science Foundation under grant MIP-9311980.  The original version
 | |
| of this code was written as part of a project to build a fixed-point vector
 | |
| processor in collaboration with the University of California at Berkeley,
 | |
| overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
 | |
| is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
 | |
| arithmetic/SoftFloat.html'.
 | |
| 
 | |
| THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort
 | |
| has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
 | |
| TIMES RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO
 | |
| PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
 | |
| AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
 | |
| 
 | |
| Derivative works are acceptable, even for commercial purposes, so long as
 | |
| (1) they include prominent notice that the work is derivative, and (2) they
 | |
| include prominent notice akin to these four paragraphs for those parts of
 | |
| this code that are retained.
 | |
| 
 | |
| ===============================================================================
 | |
| */
 | |
| 
 | |
| #include <sys/cdefs.h>
 | |
| #if defined(LIBC_SCCS) && !defined(lint)
 | |
| __RCSID("$NetBSD: softfloat.c,v 1.2 2012/03/21 14:17:54 christos Exp $");
 | |
| #endif /* LIBC_SCCS and not lint */
 | |
| 
 | |
| #ifdef SOFTFLOAT_FOR_GCC
 | |
| #include "softfloat-for-gcc.h"
 | |
| #endif
 | |
| 
 | |
| #include "milieu.h"
 | |
| #include "softfloat.h"
 | |
| 
 | |
| /*
 | |
|  * Conversions between floats as stored in memory and floats as
 | |
|  * SoftFloat uses them
 | |
|  */
 | |
| #ifndef FLOAT64_DEMANGLE
 | |
| #define FLOAT64_DEMANGLE(a)	(a)
 | |
| #endif
 | |
| #ifndef FLOAT64_MANGLE
 | |
| #define FLOAT64_MANGLE(a)	(a)
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| -------------------------------------------------------------------------------
 | |
| Floating-point rounding mode and exception flags.
 | |
| -------------------------------------------------------------------------------
 | |
| */
 | |
| fp_rnd float_rounding_mode = float_round_nearest_even;
 | |
| fp_except float_exception_flags = 0;
 | |
| 
 | |
| /*
 | |
| -------------------------------------------------------------------------------
 | |
| Primitive arithmetic functions, including multi-word arithmetic, and
 | |
| division and square root approximations.  (Can be specialized to target if
 | |
| desired.)
 | |
| -------------------------------------------------------------------------------
 | |
| */
 | |
| #include "softfloat-macros"
 | |
| 
 | |
| /*
 | |
| -------------------------------------------------------------------------------
 | |
| Functions and definitions to determine:  (1) whether tininess for underflow
 | |
| is detected before or after rounding by default, (2) what (if anything)
 | |
| happens when exceptions are raised, (3) how signaling NaNs are distinguished
 | |
| from quiet NaNs, (4) the default generated quiet NaNs, and (4) how NaNs
 | |
| are propagated from function inputs to output.  These details are target-
 | |
| specific.
 | |
| -------------------------------------------------------------------------------
 | |
| */
 | |
| #include "softfloat-specialize"
 | |
| 
 | |
| /*
 | |
| -------------------------------------------------------------------------------
 | |
| Returns the fraction bits of the single-precision floating-point value `a'.
 | |
| -------------------------------------------------------------------------------
 | |
| */
 | |
| INLINE bits32 extractFloat32Frac( float32 a )
 | |
| {
 | |
| 
 | |
|     return a & 0x007FFFFF;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*
 | |
| -------------------------------------------------------------------------------
 | |
| Returns the exponent bits of the single-precision floating-point value `a'.
 | |
| -------------------------------------------------------------------------------
 | |
| */
 | |
| INLINE int16 extractFloat32Exp( float32 a )
 | |
| {
 | |
| 
 | |
|     return ( a>>23 ) & 0xFF;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*
 | |
| -------------------------------------------------------------------------------
 | |
| Returns the sign bit of the single-precision floating-point value `a'.
 | |
| -------------------------------------------------------------------------------
 | |
| */
 | |
| INLINE flag extractFloat32Sign( float32 a )
 | |
| {
 | |
| 
 | |
|     return a>>31;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*
 | |
| -------------------------------------------------------------------------------
 | |
| Normalizes the subnormal single-precision floating-point value represented
 | |
| by the denormalized significand `aSig'.  The normalized exponent and
 | |
| significand are stored at the locations pointed to by `zExpPtr' and
 | |
| `zSigPtr', respectively.
 | |
| -------------------------------------------------------------------------------
 | |
| */
 | |
| static void
 | |
|  normalizeFloat32Subnormal( bits32 aSig, int16 *zExpPtr, bits32 *zSigPtr )
 | |
| {
 | |
|     int8 shiftCount;
 | |
| 
 | |
|     shiftCount = countLeadingZeros32( aSig ) - 8;
 | |
|     *zSigPtr = aSig<<shiftCount;
 | |
|     *zExpPtr = 1 - shiftCount;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*
 | |
| -------------------------------------------------------------------------------
 | |
| Packs the sign `zSign', exponent `zExp', and significand `zSig' into a
 | |
| single-precision floating-point value, returning the result.  After being
 | |
| shifted into the proper positions, the three fields are simply added
 | |
| together to form the result.  This means that any integer portion of `zSig'
 | |
| will be added into the exponent.  Since a properly normalized significand
 | |
| will have an integer portion equal to 1, the `zExp' input should be 1 less
 | |
| than the desired result exponent whenever `zSig' is a complete, normalized
 | |
| significand.
 | |
| -------------------------------------------------------------------------------
 | |
| */
 | |
| INLINE float32 packFloat32( flag zSign, int16 zExp, bits32 zSig )
 | |
| {
 | |
| 
 | |
|     return ( ( (bits32) zSign )<<31 ) + ( ( (bits32) zExp )<<23 ) + zSig;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*
 | |
| -------------------------------------------------------------------------------
 | |
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
 | |
| and significand `zSig', and returns the proper single-precision floating-
 | |
| point value corresponding to the abstract input.  Ordinarily, the abstract
 | |
| value is simply rounded and packed into the single-precision format, with
 | |
| the inexact exception raised if the abstract input cannot be represented
 | |
| exactly.  However, if the abstract value is too large, the overflow and
 | |
| inexact exceptions are raised and an infinity or maximal finite value is
 | |
| returned.  If the abstract value is too small, the input value is rounded to
 | |
| a subnormal number, and the underflow and inexact exceptions are raised if
 | |
| the abstract input cannot be represented exactly as a subnormal single-
 | |
| precision floating-point number.
 | |
|     The input significand `zSig' has its binary point between bits 30
 | |
| and 29, which is 7 bits to the left of the usual location.  This shifted
 | |
| significand must be normalized or smaller.  If `zSig' is not normalized,
 | |
| `zExp' must be 0; in that case, the result returned is a subnormal number,
 | |
| and it must not require rounding.  In the usual case that `zSig' is
 | |
| normalized, `zExp' must be 1 less than the ``true'' floating-point exponent.
 | |
| The handling of underflow and overflow follows the IEC/IEEE Standard for
 | |
| Binary Floating-Point Arithmetic.
 | |
| -------------------------------------------------------------------------------
 | |
| */
 | |
| static float32 roundAndPackFloat32( flag zSign, int16 zExp, bits32 zSig )
 | |
| {
 | |
|     int8 roundingMode;
 | |
|     flag roundNearestEven;
 | |
|     int8 roundIncrement, roundBits;
 | |
|     flag isTiny;
 | |
| 
 | |
|     roundingMode = float_rounding_mode;
 | |
|     roundNearestEven = roundingMode == float_round_nearest_even;
 | |
|     roundIncrement = 0x40;
 | |
|     if ( ! roundNearestEven ) {
 | |
|         if ( roundingMode == float_round_to_zero ) {
 | |
|             roundIncrement = 0;
 | |
|         }
 | |
|         else {
 | |
|             roundIncrement = 0x7F;
 | |
|             if ( zSign ) {
 | |
|                 if ( roundingMode == float_round_up ) roundIncrement = 0;
 | |
|             }
 | |
|             else {
 | |
|                 if ( roundingMode == float_round_down ) roundIncrement = 0;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     roundBits = zSig & 0x7F;
 | |
|     if ( 0xFD <= (bits16) zExp ) {
 | |
|         if (    ( 0xFD < zExp )
 | |
|              || (    ( zExp == 0xFD )
 | |
|                   && ( (sbits32) ( zSig + roundIncrement ) < 0 ) )
 | |
|            ) {
 | |
|             float_raise( float_flag_overflow | float_flag_inexact );
 | |
|             return packFloat32( zSign, 0xFF, 0 ) - ( roundIncrement == 0 );
 | |
|         }
 | |
|         if ( zExp < 0 ) {
 | |
|             isTiny =
 | |
|                    ( float_detect_tininess == float_tininess_before_rounding )
 | |
|                 || ( zExp < -1 )
 | |
|                 || ( zSig + roundIncrement < (uint32)0x80000000 );
 | |
|             shift32RightJamming( zSig, - zExp, &zSig );
 | |
|             zExp = 0;
 | |
|             roundBits = zSig & 0x7F;
 | |
|             if ( isTiny && roundBits ) float_raise( float_flag_underflow );
 | |
|         }
 | |
|     }
 | |
|     if ( roundBits ) float_exception_flags |= float_flag_inexact;
 | |
|     zSig = ( zSig + roundIncrement )>>7;
 | |
|     zSig &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven );
 | |
|     if ( zSig == 0 ) zExp = 0;
 | |
|     return packFloat32( zSign, zExp, zSig );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*
 | |
| -------------------------------------------------------------------------------
 | |
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
 | |
| and significand `zSig', and returns the proper single-precision floating-
 | |
| point value corresponding to the abstract input.  This routine is just like
 | |
| `roundAndPackFloat32' except that `zSig' does not have to be normalized.
 | |
| Bit 31 of `zSig' must be zero, and `zExp' must be 1 less than the ``true''
 | |
| floating-point exponent.
 | |
| -------------------------------------------------------------------------------
 | |
| */
 | |
| static float32
 | |
|  normalizeRoundAndPackFloat32( flag zSign, int16 zExp, bits32 zSig )
 | |
| {
 | |
|     int8 shiftCount;
 | |
| 
 | |
|     shiftCount = countLeadingZeros32( zSig ) - 1;
 | |
|     return roundAndPackFloat32( zSign, zExp - shiftCount, zSig<<shiftCount );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*
 | |
| -------------------------------------------------------------------------------
 | |
| Returns the least-significant 32 fraction bits of the double-precision
 | |
| floating-point value `a'.
 | |
| -------------------------------------------------------------------------------
 | |
| */
 | |
| INLINE bits32 extractFloat64Frac1( float64 a )
 | |
| {
 | |
| 
 | |
|     return (bits32)(FLOAT64_DEMANGLE(a) & LIT64(0x00000000FFFFFFFF));
 | |
| 
 | |
| }
 | |
| 
 | |
| /*
 | |
| -------------------------------------------------------------------------------
 | |
| Returns the most-significant 20 fraction bits of the double-precision
 | |
| floating-point value `a'.
 | |
| -------------------------------------------------------------------------------
 | |
| */
 | |
| INLINE bits32 extractFloat64Frac0( float64 a )
 | |
| {
 | |
| 
 | |
|     return (bits32)((FLOAT64_DEMANGLE(a) >> 32) & 0x000FFFFF);
 | |
| 
 | |
| }
 | |
| 
 | |
| /*
 | |
| -------------------------------------------------------------------------------
 | |
| Returns the exponent bits of the double-precision floating-point value `a'.
 | |
| -------------------------------------------------------------------------------
 | |
| */
 | |
| INLINE int16 extractFloat64Exp( float64 a )
 | |
| {
 | |
| 
 | |
|     return (int16)((FLOAT64_DEMANGLE(a) >> 52) & 0x7FF);
 | |
| 
 | |
| }
 | |
| 
 | |
| /*
 | |
| -------------------------------------------------------------------------------
 | |
| Returns the sign bit of the double-precision floating-point value `a'.
 | |
| -------------------------------------------------------------------------------
 | |
| */
 | |
| INLINE flag extractFloat64Sign( float64 a )
 | |
| {
 | |
| 
 | |
|     return (flag)(FLOAT64_DEMANGLE(a) >> 63);
 | |
| 
 | |
| }
 | |
| 
 | |
| /*
 | |
| -------------------------------------------------------------------------------
 | |
| Normalizes the subnormal double-precision floating-point value represented
 | |
| by the denormalized significand formed by the concatenation of `aSig0' and
 | |
| `aSig1'.  The normalized exponent is stored at the location pointed to by
 | |
| `zExpPtr'.  The most significant 21 bits of the normalized significand are
 | |
| stored at the location pointed to by `zSig0Ptr', and the least significant
 | |
| 32 bits of the normalized significand are stored at the location pointed to
 | |
| by `zSig1Ptr'.
 | |
| -------------------------------------------------------------------------------
 | |
| */
 | |
| static void
 | |
|  normalizeFloat64Subnormal(
 | |
|      bits32 aSig0,
 | |
|      bits32 aSig1,
 | |
|      int16 *zExpPtr,
 | |
|      bits32 *zSig0Ptr,
 | |
|      bits32 *zSig1Ptr
 | |
|  )
 | |
| {
 | |
|     int8 shiftCount;
 | |
| 
 | |
|     if ( aSig0 == 0 ) {
 | |
|         shiftCount = countLeadingZeros32( aSig1 ) - 11;
 | |
|         if ( shiftCount < 0 ) {
 | |
|             *zSig0Ptr = aSig1>>( - shiftCount );
 | |
|             *zSig1Ptr = aSig1<<( shiftCount & 31 );
 | |
|         }
 | |
|         else {
 | |
|             *zSig0Ptr = aSig1<<shiftCount;
 | |
|             *zSig1Ptr = 0;
 | |
|         }
 | |
|         *zExpPtr = - shiftCount - 31;
 | |
|     }
 | |
|     else {
 | |
|         shiftCount = countLeadingZeros32( aSig0 ) - 11;
 | |
|         shortShift64Left( aSig0, aSig1, shiftCount, zSig0Ptr, zSig1Ptr );
 | |
|         *zExpPtr = 1 - shiftCount;
 | |
|     }
 | |
| 
 | |
| }
 | |
| 
 | |
| /*
 | |
| -------------------------------------------------------------------------------
 | |
| Packs the sign `zSign', the exponent `zExp', and the significand formed by
 | |
| the concatenation of `zSig0' and `zSig1' into a double-precision floating-
 | |
| point value, returning the result.  After being shifted into the proper
 | |
| positions, the three fields `zSign', `zExp', and `zSig0' are simply added
 | |
| together to form the most significant 32 bits of the result.  This means
 | |
| that any integer portion of `zSig0' will be added into the exponent.  Since
 | |
| a properly normalized significand will have an integer portion equal to 1,
 | |
| the `zExp' input should be 1 less than the desired result exponent whenever
 | |
| `zSig0' and `zSig1' concatenated form a complete, normalized significand.
 | |
| -------------------------------------------------------------------------------
 | |
| */
 | |
| INLINE float64
 | |
|  packFloat64( flag zSign, int16 zExp, bits32 zSig0, bits32 zSig1 )
 | |
| {
 | |
| 
 | |
|     return FLOAT64_MANGLE( ( ( (bits64) zSign )<<63 ) +
 | |
| 			   ( ( (bits64) zExp )<<52 ) + 
 | |
| 			   ( ( (bits64) zSig0 )<<32 ) + zSig1 );
 | |
| 
 | |
| 
 | |
| }
 | |
| 
 | |
| /*
 | |
| -------------------------------------------------------------------------------
 | |
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
 | |
| and extended significand formed by the concatenation of `zSig0', `zSig1',
 | |
| and `zSig2', and returns the proper double-precision floating-point value
 | |
| corresponding to the abstract input.  Ordinarily, the abstract value is
 | |
| simply rounded and packed into the double-precision format, with the inexact
 | |
| exception raised if the abstract input cannot be represented exactly.
 | |
| However, if the abstract value is too large, the overflow and inexact
 | |
| exceptions are raised and an infinity or maximal finite value is returned.
 | |
| If the abstract value is too small, the input value is rounded to a
 | |
| subnormal number, and the underflow and inexact exceptions are raised if the
 | |
| abstract input cannot be represented exactly as a subnormal double-precision
 | |
| floating-point number.
 | |
|     The input significand must be normalized or smaller.  If the input
 | |
| significand is not normalized, `zExp' must be 0; in that case, the result
 | |
| returned is a subnormal number, and it must not require rounding.  In the
 | |
| usual case that the input significand is normalized, `zExp' must be 1 less
 | |
| than the ``true'' floating-point exponent.  The handling of underflow and
 | |
| overflow follows the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| -------------------------------------------------------------------------------
 | |
| */
 | |
| static float64
 | |
|  roundAndPackFloat64(
 | |
|      flag zSign, int16 zExp, bits32 zSig0, bits32 zSig1, bits32 zSig2 )
 | |
| {
 | |
|     int8 roundingMode;
 | |
|     flag roundNearestEven, increment, isTiny;
 | |
| 
 | |
|     roundingMode = float_rounding_mode;
 | |
|     roundNearestEven = ( roundingMode == float_round_nearest_even );
 | |
|     increment = ( (sbits32) zSig2 < 0 );
 | |
|     if ( ! roundNearestEven ) {
 | |
|         if ( roundingMode == float_round_to_zero ) {
 | |
|             increment = 0;
 | |
|         }
 | |
|         else {
 | |
|             if ( zSign ) {
 | |
|                 increment = ( roundingMode == float_round_down ) && zSig2;
 | |
|             }
 | |
|             else {
 | |
|                 increment = ( roundingMode == float_round_up ) && zSig2;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     if ( 0x7FD <= (bits16) zExp ) {
 | |
|         if (    ( 0x7FD < zExp )
 | |
|              || (    ( zExp == 0x7FD )
 | |
|                   && eq64( 0x001FFFFF, 0xFFFFFFFF, zSig0, zSig1 )
 | |
|                   && increment
 | |
|                 )
 | |
|            ) {
 | |
|             float_raise( float_flag_overflow | float_flag_inexact );
 | |
|             if (    ( roundingMode == float_round_to_zero )
 | |
|                  || ( zSign && ( roundingMode == float_round_up ) )
 | |
|                  || ( ! zSign && ( roundingMode == float_round_down ) )
 | |
|                ) {
 | |
|                 return packFloat64( zSign, 0x7FE, 0x000FFFFF, 0xFFFFFFFF );
 | |
|             }
 | |
|             return packFloat64( zSign, 0x7FF, 0, 0 );
 | |
|         }
 | |
|         if ( zExp < 0 ) {
 | |
|             isTiny =
 | |
|                    ( float_detect_tininess == float_tininess_before_rounding )
 | |
|                 || ( zExp < -1 )
 | |
|                 || ! increment
 | |
|                 || lt64( zSig0, zSig1, 0x001FFFFF, 0xFFFFFFFF );
 | |
|             shift64ExtraRightJamming(
 | |
|                 zSig0, zSig1, zSig2, - zExp, &zSig0, &zSig1, &zSig2 );
 | |
|             zExp = 0;
 | |
|             if ( isTiny && zSig2 ) float_raise( float_flag_underflow );
 | |
|             if ( roundNearestEven ) {
 | |
|                 increment = ( (sbits32) zSig2 < 0 );
 | |
|             }
 | |
|             else {
 | |
|                 if ( zSign ) {
 | |
|                     increment = ( roundingMode == float_round_down ) && zSig2;
 | |
|                 }
 | |
|                 else {
 | |
|                     increment = ( roundingMode == float_round_up ) && zSig2;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     if ( zSig2 ) float_exception_flags |= float_flag_inexact;
 | |
|     if ( increment ) {
 | |
|         add64( zSig0, zSig1, 0, 1, &zSig0, &zSig1 );
 | |
|         zSig1 &= ~ ( ( zSig2 + zSig2 == 0 ) & roundNearestEven );
 | |
|     }
 | |
|     else {
 | |
|         if ( ( zSig0 | zSig1 ) == 0 ) zExp = 0;
 | |
|     }
 | |
|     return packFloat64( zSign, zExp, zSig0, zSig1 );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*
 | |
| -------------------------------------------------------------------------------
 | |
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
 | |
| and significand formed by the concatenation of `zSig0' and `zSig1', and
 | |
| returns the proper double-precision floating-point value corresponding
 | |
| to the abstract input.  This routine is just like `roundAndPackFloat64'
 | |
| except that the input significand has fewer bits and does not have to be
 | |
| normalized.  In all cases, `zExp' must be 1 less than the ``true'' floating-
 | |
| point exponent.
 | |
| -------------------------------------------------------------------------------
 | |
| */
 | |
| static float64
 | |
|  normalizeRoundAndPackFloat64(
 | |
|      flag zSign, int16 zExp, bits32 zSig0, bits32 zSig1 )
 | |
| {
 | |
|     int8 shiftCount;
 | |
|     bits32 zSig2;
 | |
| 
 | |
|     if ( zSig0 == 0 ) {
 | |
|         zSig0 = zSig1;
 | |
|         zSig1 = 0;
 | |
|         zExp -= 32;
 | |
|     }
 | |
|     shiftCount = countLeadingZeros32( zSig0 ) - 11;
 | |
|     if ( 0 <= shiftCount ) {
 | |
|         zSig2 = 0;
 | |
|         shortShift64Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );
 | |
|     }
 | |
|     else {
 | |
|         shift64ExtraRightJamming(
 | |
|             zSig0, zSig1, 0, - shiftCount, &zSig0, &zSig1, &zSig2 );
 | |
|     }
 | |
|     zExp -= shiftCount;
 | |
|     return roundAndPackFloat64( zSign, zExp, zSig0, zSig1, zSig2 );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*
 | |
| -------------------------------------------------------------------------------
 | |
| Returns the result of converting the 32-bit two's complement integer `a' to
 | |
| the single-precision floating-point format.  The conversion is performed
 | |
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| -------------------------------------------------------------------------------
 | |
| */
 | |
| float32 int32_to_float32( int32 a )
 | |
| {
 | |
|     flag zSign;
 | |
| 
 | |
|     if ( a == 0 ) return 0;
 | |
|     if ( a == (sbits32) 0x80000000 ) return packFloat32( 1, 0x9E, 0 );
 | |
|     zSign = ( a < 0 );
 | |
|     return normalizeRoundAndPackFloat32(zSign, 0x9C, (uint32)(zSign ? - a : a));
 | |
| 
 | |
| }
 | |
| 
 | |
| /*
 | |
| -------------------------------------------------------------------------------
 | |
| Returns the result of converting the 32-bit two's complement integer `a' to
 | |
| the double-precision floating-point format.  The conversion is performed
 | |
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| -------------------------------------------------------------------------------
 | |
| */
 | |
| float64 int32_to_float64( int32 a )
 | |
| {
 | |
|     flag zSign;
 | |
|     bits32 absA;
 | |
|     int8 shiftCount;
 | |
|     bits32 zSig0, zSig1;
 | |
| 
 | |
|     if ( a == 0 ) return packFloat64( 0, 0, 0, 0 );
 | |
|     zSign = ( a < 0 );
 | |
|     absA = zSign ? - a : a;
 | |
|     shiftCount = countLeadingZeros32( absA ) - 11;
 | |
|     if ( 0 <= shiftCount ) {
 | |
|         zSig0 = absA<<shiftCount;
 | |
|         zSig1 = 0;
 | |
|     }
 | |
|     else {
 | |
|         shift64Right( absA, 0, - shiftCount, &zSig0, &zSig1 );
 | |
|     }
 | |
|     return packFloat64( zSign, 0x412 - shiftCount, zSig0, zSig1 );
 | |
| 
 | |
| }
 | |
| 
 | |
| #ifndef SOFTFLOAT_FOR_GCC
 | |
| /*
 | |
| -------------------------------------------------------------------------------
 | |
| Returns the result of converting the single-precision floating-point value
 | |
| `a' to the 32-bit two's complement integer format.  The conversion is
 | |
| performed according to the IEC/IEEE Standard for Binary Floating-Point
 | |
| Arithmetic---which means in particular that the conversion is rounded
 | |
| according to the current rounding mode.  If `a' is a NaN, the largest
 | |
| positive integer is returned.  Otherwise, if the conversion overflows, the
 | |
| largest integer with the same sign as `a' is returned.
 | |
| -------------------------------------------------------------------------------
 | |
| */
 | |
| int32 float32_to_int32( float32 a )
 | |
| {
 | |
|     flag aSign;
 | |
|     int16 aExp, shiftCount;
 | |
|     bits32 aSig, aSigExtra;
 | |
|     int32 z;
 | |
|     int8 roundingMode;
 | |
| 
 | |
|     aSig = extractFloat32Frac( a );
 | |
|     aExp = extractFloat32Exp( a );
 | |
|     aSign = extractFloat32Sign( a );
 | |
|     shiftCount = aExp - 0x96;
 | |
|     if ( 0 <= shiftCount ) {
 | |
|         if ( 0x9E <= aExp ) {
 | |
|             if ( a != 0xCF000000 ) {
 | |
|                 float_raise( float_flag_invalid );
 | |
|                 if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) {
 | |
|                     return 0x7FFFFFFF;
 | |
|                 }
 | |
|             }
 | |
|             return (sbits32) 0x80000000;
 | |
|         }
 | |
|         z = ( aSig | 0x00800000 )<<shiftCount;
 | |
|         if ( aSign ) z = - z;
 | |
|     }
 | |
|     else {
 | |
|         if ( aExp < 0x7E ) {
 | |
|             aSigExtra = aExp | aSig;
 | |
|             z = 0;
 | |
|         }
 | |
|         else {
 | |
|             aSig |= 0x00800000;
 | |
|             aSigExtra = aSig<<( shiftCount & 31 );
 | |
|             z = aSig>>( - shiftCount );
 | |
|         }
 | |
|         if ( aSigExtra ) float_exception_flags |= float_flag_inexact;
 | |
|         roundingMode = float_rounding_mode;
 | |
|         if ( roundingMode == float_round_nearest_even ) {
 | |
|             if ( (sbits32) aSigExtra < 0 ) {
 | |
|                 ++z;
 | |
|                 if ( (bits32) ( aSigExtra<<1 ) == 0 ) z &= ~1;
 | |
|             }
 | |
|             if ( aSign ) z = - z;
 | |
|         }
 | |
|         else {
 | |
|             aSigExtra = ( aSigExtra != 0 );
 | |
|             if ( aSign ) {
 | |
|                 z += ( roundingMode == float_round_down ) & aSigExtra;
 | |
|                 z = - z;
 | |
|             }
 | |
|             else {
 | |
|                 z += ( roundingMode == float_round_up ) & aSigExtra;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     return z;
 | |
| 
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| -------------------------------------------------------------------------------
 | |
| Returns the result of converting the single-precision floating-point value
 | |
| `a' to the 32-bit two's complement integer format.  The conversion is
 | |
| performed according to the IEC/IEEE Standard for Binary Floating-Point
 | |
| Arithmetic, except that the conversion is always rounded toward zero.
 | |
| If `a' is a NaN, the largest positive integer is returned.  Otherwise, if
 | |
| the conversion overflows, the largest integer with the same sign as `a' is
 | |
| returned.
 | |
| -------------------------------------------------------------------------------
 | |
| */
 | |
| int32 float32_to_int32_round_to_zero( float32 a )
 | |
| {
 | |
|     flag aSign;
 | |
|     int16 aExp, shiftCount;
 | |
|     bits32 aSig;
 | |
|     int32 z;
 | |
| 
 | |
|     aSig = extractFloat32Frac( a );
 | |
|     aExp = extractFloat32Exp( a );
 | |
|     aSign = extractFloat32Sign( a );
 | |
|     shiftCount = aExp - 0x9E;
 | |
|     if ( 0 <= shiftCount ) {
 | |
|         if ( a != 0xCF000000 ) {
 | |
|             float_raise( float_flag_invalid );
 | |
|             if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) return 0x7FFFFFFF;
 | |
|         }
 | |
|         return (sbits32) 0x80000000;
 | |
|     }
 | |
|     else if ( aExp <= 0x7E ) {
 | |
|         if ( aExp | aSig ) float_exception_flags |= float_flag_inexact;
 | |
|         return 0;
 | |
|     }
 | |
|     aSig = ( aSig | 0x00800000 )<<8;
 | |
|     z = aSig>>( - shiftCount );
 | |
|     if ( (bits32) ( aSig<<( shiftCount & 31 ) ) ) {
 | |
|         float_exception_flags |= float_flag_inexact;
 | |
|     }
 | |
|     if ( aSign ) z = - z;
 | |
|     return z;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*
 | |
| -------------------------------------------------------------------------------
 | |
| Returns the result of converting the single-precision floating-point value
 | |
| `a' to the double-precision floating-point format.  The conversion is
 | |
| performed according to the IEC/IEEE Standard for Binary Floating-Point
 | |
| Arithmetic.
 | |
| -------------------------------------------------------------------------------
 | |
| */
 | |
| float64 float32_to_float64( float32 a )
 | |
| {
 | |
|     flag aSign;
 | |
|     int16 aExp;
 | |
|     bits32 aSig, zSig0, zSig1;
 | |
| 
 | |
|     aSig = extractFloat32Frac( a );
 | |
|     aExp = extractFloat32Exp( a );
 | |
|     aSign = extractFloat32Sign( a );
 | |
|     if ( aExp == 0xFF ) {
 | |
|         if ( aSig ) return commonNaNToFloat64( float32ToCommonNaN( a ) );
 | |
|         return packFloat64( aSign, 0x7FF, 0, 0 );
 | |
|     }
 | |
|     if ( aExp == 0 ) {
 | |
|         if ( aSig == 0 ) return packFloat64( aSign, 0, 0, 0 );
 | |
|         normalizeFloat32Subnormal( aSig, &aExp, &aSig );
 | |
|         --aExp;
 | |
|     }
 | |
|     shift64Right( aSig, 0, 3, &zSig0, &zSig1 );
 | |
|     return packFloat64( aSign, aExp + 0x380, zSig0, zSig1 );
 | |
| 
 | |
| }
 | |
| 
 | |
| #ifndef SOFTFLOAT_FOR_GCC
 | |
| /*
 | |
| -------------------------------------------------------------------------------
 | |
| Rounds the single-precision floating-point value `a' to an integer,
 | |
| and returns the result as a single-precision floating-point value.  The
 | |
| operation is performed according to the IEC/IEEE Standard for Binary
 | |
| Floating-Point Arithmetic.
 | |
| -------------------------------------------------------------------------------
 | |
| */
 | |
| float32 float32_round_to_int( float32 a )
 | |
| {
 | |
|     flag aSign;
 | |
|     int16 aExp;
 | |
|     bits32 lastBitMask, roundBitsMask;
 | |
|     int8 roundingMode;
 | |
|     float32 z;
 | |
| 
 | |
|     aExp = extractFloat32Exp( a );
 | |
|     if ( 0x96 <= aExp ) {
 | |
|         if ( ( aExp == 0xFF ) && extractFloat32Frac( a ) ) {
 | |
|             return propagateFloat32NaN( a, a );
 | |
|         }
 | |
|         return a;
 | |
|     }
 | |
|     if ( aExp <= 0x7E ) {
 | |
|         if ( (bits32) ( a<<1 ) == 0 ) return a;
 | |
|         float_exception_flags |= float_flag_inexact;
 | |
|         aSign = extractFloat32Sign( a );
 | |
|         switch ( float_rounding_mode ) {
 | |
|          case float_round_nearest_even:
 | |
|             if ( ( aExp == 0x7E ) && extractFloat32Frac( a ) ) {
 | |
|                 return packFloat32( aSign, 0x7F, 0 );
 | |
|             }
 | |
|             break;
 | |
| 	 case float_round_to_zero:
 | |
| 	    break;
 | |
|          case float_round_down:
 | |
|             return aSign ? 0xBF800000 : 0;
 | |
|          case float_round_up:
 | |
|             return aSign ? 0x80000000 : 0x3F800000;
 | |
|         }
 | |
|         return packFloat32( aSign, 0, 0 );
 | |
|     }
 | |
|     lastBitMask = 1;
 | |
|     lastBitMask <<= 0x96 - aExp;
 | |
|     roundBitsMask = lastBitMask - 1;
 | |
|     z = a;
 | |
|     roundingMode = float_rounding_mode;
 | |
|     if ( roundingMode == float_round_nearest_even ) {
 | |
|         z += lastBitMask>>1;
 | |
|         if ( ( z & roundBitsMask ) == 0 ) z &= ~ lastBitMask;
 | |
|     }
 | |
|     else if ( roundingMode != float_round_to_zero ) {
 | |
|         if ( extractFloat32Sign( z ) ^ ( roundingMode == float_round_up ) ) {
 | |
|             z += roundBitsMask;
 | |
|         }
 | |
|     }
 | |
|     z &= ~ roundBitsMask;
 | |
|     if ( z != a ) float_exception_flags |= float_flag_inexact;
 | |
|     return z;
 | |
| 
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| -------------------------------------------------------------------------------
 | |
| Returns the result of adding the absolute values of the single-precision
 | |
| floating-point values `a' and `b'.  If `zSign' is 1, the sum is negated
 | |
| before being returned.  `zSign' is ignored if the result is a NaN.
 | |
| The addition is performed according to the IEC/IEEE Standard for Binary
 | |
| Floating-Point Arithmetic.
 | |
| -------------------------------------------------------------------------------
 | |
| */
 | |
| static float32 addFloat32Sigs( float32 a, float32 b, flag zSign )
 | |
| {
 | |
|     int16 aExp, bExp, zExp;
 | |
|     bits32 aSig, bSig, zSig;
 | |
|     int16 expDiff;
 | |
| 
 | |
|     aSig = extractFloat32Frac( a );
 | |
|     aExp = extractFloat32Exp( a );
 | |
|     bSig = extractFloat32Frac( b );
 | |
|     bExp = extractFloat32Exp( b );
 | |
|     expDiff = aExp - bExp;
 | |
|     aSig <<= 6;
 | |
|     bSig <<= 6;
 | |
|     if ( 0 < expDiff ) {
 | |
|         if ( aExp == 0xFF ) {
 | |
|             if ( aSig ) return propagateFloat32NaN( a, b );
 | |
|             return a;
 | |
|         }
 | |
|         if ( bExp == 0 ) {
 | |
|             --expDiff;
 | |
|         }
 | |
|         else {
 | |
|             bSig |= 0x20000000;
 | |
|         }
 | |
|         shift32RightJamming( bSig, expDiff, &bSig );
 | |
|         zExp = aExp;
 | |
|     }
 | |
|     else if ( expDiff < 0 ) {
 | |
|         if ( bExp == 0xFF ) {
 | |
|             if ( bSig ) return propagateFloat32NaN( a, b );
 | |
|             return packFloat32( zSign, 0xFF, 0 );
 | |
|         }
 | |
|         if ( aExp == 0 ) {
 | |
|             ++expDiff;
 | |
|         }
 | |
|         else {
 | |
|             aSig |= 0x20000000;
 | |
|         }
 | |
|         shift32RightJamming( aSig, - expDiff, &aSig );
 | |
|         zExp = bExp;
 | |
|     }
 | |
|     else {
 | |
|         if ( aExp == 0xFF ) {
 | |
|             if ( aSig | bSig ) return propagateFloat32NaN( a, b );
 | |
|             return a;
 | |
|         }
 | |
|         if ( aExp == 0 ) return packFloat32( zSign, 0, ( aSig + bSig )>>6 );
 | |
|         zSig = 0x40000000 + aSig + bSig;
 | |
|         zExp = aExp;
 | |
|         goto roundAndPack;
 | |
|     }
 | |
|     aSig |= 0x20000000;
 | |
|     zSig = ( aSig + bSig )<<1;
 | |
|     --zExp;
 | |
|     if ( (sbits32) zSig < 0 ) {
 | |
|         zSig = aSig + bSig;
 | |
|         ++zExp;
 | |
|     }
 | |
|  roundAndPack:
 | |
|     return roundAndPackFloat32( zSign, zExp, zSig );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*
 | |
| -------------------------------------------------------------------------------
 | |
| Returns the result of subtracting the absolute values of the single-
 | |
| precision floating-point values `a' and `b'.  If `zSign' is 1, the
 | |
| difference is negated before being returned.  `zSign' is ignored if the
 | |
| result is a NaN.  The subtraction is performed according to the IEC/IEEE
 | |
| Standard for Binary Floating-Point Arithmetic.
 | |
| -------------------------------------------------------------------------------
 | |
| */
 | |
| static float32 subFloat32Sigs( float32 a, float32 b, flag zSign )
 | |
| {
 | |
|     int16 aExp, bExp, zExp;
 | |
|     bits32 aSig, bSig, zSig;
 | |
|     int16 expDiff;
 | |
| 
 | |
|     aSig = extractFloat32Frac( a );
 | |
|     aExp = extractFloat32Exp( a );
 | |
|     bSig = extractFloat32Frac( b );
 | |
|     bExp = extractFloat32Exp( b );
 | |
|     expDiff = aExp - bExp;
 | |
|     aSig <<= 7;
 | |
|     bSig <<= 7;
 | |
|     if ( 0 < expDiff ) goto aExpBigger;
 | |
|     if ( expDiff < 0 ) goto bExpBigger;
 | |
|     if ( aExp == 0xFF ) {
 | |
|         if ( aSig | bSig ) return propagateFloat32NaN( a, b );
 | |
|         float_raise( float_flag_invalid );
 | |
|         return float32_default_nan;
 | |
|     }
 | |
|     if ( aExp == 0 ) {
 | |
|         aExp = 1;
 | |
|         bExp = 1;
 | |
|     }
 | |
|     if ( bSig < aSig ) goto aBigger;
 | |
|     if ( aSig < bSig ) goto bBigger;
 | |
|     return packFloat32( float_rounding_mode == float_round_down, 0, 0 );
 | |
|  bExpBigger:
 | |
|     if ( bExp == 0xFF ) {
 | |
|         if ( bSig ) return propagateFloat32NaN( a, b );
 | |
|         return packFloat32( zSign ^ 1, 0xFF, 0 );
 | |
|     }
 | |
|     if ( aExp == 0 ) {
 | |
|         ++expDiff;
 | |
|     }
 | |
|     else {
 | |
|         aSig |= 0x40000000;
 | |
|     }
 | |
|     shift32RightJamming( aSig, - expDiff, &aSig );
 | |
|     bSig |= 0x40000000;
 | |
|  bBigger:
 | |
|     zSig = bSig - aSig;
 | |
|     zExp = bExp;
 | |
|     zSign ^= 1;
 | |
|     goto normalizeRoundAndPack;
 | |
|  aExpBigger:
 | |
|     if ( aExp == 0xFF ) {
 | |
|         if ( aSig ) return propagateFloat32NaN( a, b );
 | |
|         return a;
 | |
|     }
 | |
|     if ( bExp == 0 ) {
 | |
|         --expDiff;
 | |
|     }
 | |
|     else {
 | |
|         bSig |= 0x40000000;
 | |
|     }
 | |
|     shift32RightJamming( bSig, expDiff, &bSig );
 | |
|     aSig |= 0x40000000;
 | |
|  aBigger:
 | |
|     zSig = aSig - bSig;
 | |
|     zExp = aExp;
 | |
|  normalizeRoundAndPack:
 | |
|     --zExp;
 | |
|     return normalizeRoundAndPackFloat32( zSign, zExp, zSig );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*
 | |
| -------------------------------------------------------------------------------
 | |
| Returns the result of adding the single-precision floating-point values `a'
 | |
| and `b'.  The operation is performed according to the IEC/IEEE Standard for
 | |
| Binary Floating-Point Arithmetic.
 | |
| -------------------------------------------------------------------------------
 | |
| */
 | |
| float32 float32_add( float32 a, float32 b )
 | |
| {
 | |
|     flag aSign, bSign;
 | |
| 
 | |
|     aSign = extractFloat32Sign( a );
 | |
|     bSign = extractFloat32Sign( b );
 | |
|     if ( aSign == bSign ) {
 | |
|         return addFloat32Sigs( a, b, aSign );
 | |
|     }
 | |
|     else {
 | |
|         return subFloat32Sigs( a, b, aSign );
 | |
|     }
 | |
| 
 | |
| }
 | |
| 
 | |
| /*
 | |
| -------------------------------------------------------------------------------
 | |
| Returns the result of subtracting the single-precision floating-point values
 | |
| `a' and `b'.  The operation is performed according to the IEC/IEEE Standard
 | |
| for Binary Floating-Point Arithmetic.
 | |
| -------------------------------------------------------------------------------
 | |
| */
 | |
| float32 float32_sub( float32 a, float32 b )
 | |
| {
 | |
|     flag aSign, bSign;
 | |
| 
 | |
|     aSign = extractFloat32Sign( a );
 | |
|     bSign = extractFloat32Sign( b );
 | |
|     if ( aSign == bSign ) {
 | |
|         return subFloat32Sigs( a, b, aSign );
 | |
|     }
 | |
|     else {
 | |
|         return addFloat32Sigs( a, b, aSign );
 | |
|     }
 | |
| 
 | |
| }
 | |
| 
 | |
| /*
 | |
| -------------------------------------------------------------------------------
 | |
| Returns the result of multiplying the single-precision floating-point values
 | |
| `a' and `b'.  The operation is performed according to the IEC/IEEE Standard
 | |
| for Binary Floating-Point Arithmetic.
 | |
| -------------------------------------------------------------------------------
 | |
| */
 | |
| float32 float32_mul( float32 a, float32 b )
 | |
| {
 | |
|     flag aSign, bSign, zSign;
 | |
|     int16 aExp, bExp, zExp;
 | |
|     bits32 aSig, bSig, zSig0, zSig1;
 | |
| 
 | |
|     aSig = extractFloat32Frac( a );
 | |
|     aExp = extractFloat32Exp( a );
 | |
|     aSign = extractFloat32Sign( a );
 | |
|     bSig = extractFloat32Frac( b );
 | |
|     bExp = extractFloat32Exp( b );
 | |
|     bSign = extractFloat32Sign( b );
 | |
|     zSign = aSign ^ bSign;
 | |
|     if ( aExp == 0xFF ) {
 | |
|         if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) {
 | |
|             return propagateFloat32NaN( a, b );
 | |
|         }
 | |
|         if ( ( bExp | bSig ) == 0 ) {
 | |
|             float_raise( float_flag_invalid );
 | |
|             return float32_default_nan;
 | |
|         }
 | |
|         return packFloat32( zSign, 0xFF, 0 );
 | |
|     }
 | |
|     if ( bExp == 0xFF ) {
 | |
|         if ( bSig ) return propagateFloat32NaN( a, b );
 | |
|         if ( ( aExp | aSig ) == 0 ) {
 | |
|             float_raise( float_flag_invalid );
 | |
|             return float32_default_nan;
 | |
|         }
 | |
|         return packFloat32( zSign, 0xFF, 0 );
 | |
|     }
 | |
|     if ( aExp == 0 ) {
 | |
|         if ( aSig == 0 ) return packFloat32( zSign, 0, 0 );
 | |
|         normalizeFloat32Subnormal( aSig, &aExp, &aSig );
 | |
|     }
 | |
|     if ( bExp == 0 ) {
 | |
|         if ( bSig == 0 ) return packFloat32( zSign, 0, 0 );
 | |
|         normalizeFloat32Subnormal( bSig, &bExp, &bSig );
 | |
|     }
 | |
|     zExp = aExp + bExp - 0x7F;
 | |
|     aSig = ( aSig | 0x00800000 )<<7;
 | |
|     bSig = ( bSig | 0x00800000 )<<8;
 | |
|     mul32To64( aSig, bSig, &zSig0, &zSig1 );
 | |
|     zSig0 |= ( zSig1 != 0 );
 | |
|     if ( 0 <= (sbits32) ( zSig0<<1 ) ) {
 | |
|         zSig0 <<= 1;
 | |
|         --zExp;
 | |
|     }
 | |
|     return roundAndPackFloat32( zSign, zExp, zSig0 );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*
 | |
| -------------------------------------------------------------------------------
 | |
| Returns the result of dividing the single-precision floating-point value `a'
 | |
| by the corresponding value `b'.  The operation is performed according to the
 | |
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| -------------------------------------------------------------------------------
 | |
| */
 | |
| float32 float32_div( float32 a, float32 b )
 | |
| {
 | |
|     flag aSign, bSign, zSign;
 | |
|     int16 aExp, bExp, zExp;
 | |
|     bits32 aSig, bSig, zSig, rem0, rem1, term0, term1;
 | |
| 
 | |
|     aSig = extractFloat32Frac( a );
 | |
|     aExp = extractFloat32Exp( a );
 | |
|     aSign = extractFloat32Sign( a );
 | |
|     bSig = extractFloat32Frac( b );
 | |
|     bExp = extractFloat32Exp( b );
 | |
|     bSign = extractFloat32Sign( b );
 | |
|     zSign = aSign ^ bSign;
 | |
|     if ( aExp == 0xFF ) {
 | |
|         if ( aSig ) return propagateFloat32NaN( a, b );
 | |
|         if ( bExp == 0xFF ) {
 | |
|             if ( bSig ) return propagateFloat32NaN( a, b );
 | |
|             float_raise( float_flag_invalid );
 | |
|             return float32_default_nan;
 | |
|         }
 | |
|         return packFloat32( zSign, 0xFF, 0 );
 | |
|     }
 | |
|     if ( bExp == 0xFF ) {
 | |
|         if ( bSig ) return propagateFloat32NaN( a, b );
 | |
|         return packFloat32( zSign, 0, 0 );
 | |
|     }
 | |
|     if ( bExp == 0 ) {
 | |
|         if ( bSig == 0 ) {
 | |
|             if ( ( aExp | aSig ) == 0 ) {
 | |
|                 float_raise( float_flag_invalid );
 | |
|                 return float32_default_nan;
 | |
|             }
 | |
|             float_raise( float_flag_divbyzero );
 | |
|             return packFloat32( zSign, 0xFF, 0 );
 | |
|         }
 | |
|         normalizeFloat32Subnormal( bSig, &bExp, &bSig );
 | |
|     }
 | |
|     if ( aExp == 0 ) {
 | |
|         if ( aSig == 0 ) return packFloat32( zSign, 0, 0 );
 | |
|         normalizeFloat32Subnormal( aSig, &aExp, &aSig );
 | |
|     }
 | |
|     zExp = aExp - bExp + 0x7D;
 | |
|     aSig = ( aSig | 0x00800000 )<<7;
 | |
|     bSig = ( bSig | 0x00800000 )<<8;
 | |
|     if ( bSig <= ( aSig + aSig ) ) {
 | |
|         aSig >>= 1;
 | |
|         ++zExp;
 | |
|     }
 | |
|     zSig = estimateDiv64To32( aSig, 0, bSig );
 | |
|     if ( ( zSig & 0x3F ) <= 2 ) {
 | |
|         mul32To64( bSig, zSig, &term0, &term1 );
 | |
|         sub64( aSig, 0, term0, term1, &rem0, &rem1 );
 | |
|         while ( (sbits32) rem0 < 0 ) {
 | |
|             --zSig;
 | |
|             add64( rem0, rem1, 0, bSig, &rem0, &rem1 );
 | |
|         }
 | |
|         zSig |= ( rem1 != 0 );
 | |
|     }
 | |
|     return roundAndPackFloat32( zSign, zExp, zSig );
 | |
| 
 | |
| }
 | |
| 
 | |
| #ifndef SOFTFLOAT_FOR_GCC
 | |
| /*
 | |
| -------------------------------------------------------------------------------
 | |
| Returns the remainder of the single-precision floating-point value `a'
 | |
| with respect to the corresponding value `b'.  The operation is performed
 | |
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| -------------------------------------------------------------------------------
 | |
| */
 | |
| float32 float32_rem( float32 a, float32 b )
 | |
| {
 | |
|     flag aSign, bSign, zSign;
 | |
|     int16 aExp, bExp, expDiff;
 | |
|     bits32 aSig, bSig, q, allZero, alternateASig;
 | |
|     sbits32 sigMean;
 | |
| 
 | |
|     aSig = extractFloat32Frac( a );
 | |
|     aExp = extractFloat32Exp( a );
 | |
|     aSign = extractFloat32Sign( a );
 | |
|     bSig = extractFloat32Frac( b );
 | |
|     bExp = extractFloat32Exp( b );
 | |
|     bSign = extractFloat32Sign( b );
 | |
|     if ( aExp == 0xFF ) {
 | |
|         if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) {
 | |
|             return propagateFloat32NaN( a, b );
 | |
|         }
 | |
|         float_raise( float_flag_invalid );
 | |
|         return float32_default_nan;
 | |
|     }
 | |
|     if ( bExp == 0xFF ) {
 | |
|         if ( bSig ) return propagateFloat32NaN( a, b );
 | |
|         return a;
 | |
|     }
 | |
|     if ( bExp == 0 ) {
 | |
|         if ( bSig == 0 ) {
 | |
|             float_raise( float_flag_invalid );
 | |
|             return float32_default_nan;
 | |
|         }
 | |
|         normalizeFloat32Subnormal( bSig, &bExp, &bSig );
 | |
|     }
 | |
|     if ( aExp == 0 ) {
 | |
|         if ( aSig == 0 ) return a;
 | |
|         normalizeFloat32Subnormal( aSig, &aExp, &aSig );
 | |
|     }
 | |
|     expDiff = aExp - bExp;
 | |
|     aSig = ( aSig | 0x00800000 )<<8;
 | |
|     bSig = ( bSig | 0x00800000 )<<8;
 | |
|     if ( expDiff < 0 ) {
 | |
|         if ( expDiff < -1 ) return a;
 | |
|         aSig >>= 1;
 | |
|     }
 | |
|     q = ( bSig <= aSig );
 | |
|     if ( q ) aSig -= bSig;
 | |
|     expDiff -= 32;
 | |
|     while ( 0 < expDiff ) {
 | |
|         q = estimateDiv64To32( aSig, 0, bSig );
 | |
|         q = ( 2 < q ) ? q - 2 : 0;
 | |
|         aSig = - ( ( bSig>>2 ) * q );
 | |
|         expDiff -= 30;
 | |
|     }
 | |
|     expDiff += 32;
 | |
|     if ( 0 < expDiff ) {
 | |
|         q = estimateDiv64To32( aSig, 0, bSig );
 | |
|         q = ( 2 < q ) ? q - 2 : 0;
 | |
|         q >>= 32 - expDiff;
 | |
|         bSig >>= 2;
 | |
|         aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q;
 | |
|     }
 | |
|     else {
 | |
|         aSig >>= 2;
 | |
|         bSig >>= 2;
 | |
|     }
 | |
|     do {
 | |
|         alternateASig = aSig;
 | |
|         ++q;
 | |
|         aSig -= bSig;
 | |
|     } while ( 0 <= (sbits32) aSig );
 | |
|     sigMean = aSig + alternateASig;
 | |
|     if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) {
 | |
|         aSig = alternateASig;
 | |
|     }
 | |
|     zSign = ( (sbits32) aSig < 0 );
 | |
|     if ( zSign ) aSig = - aSig;
 | |
|     return normalizeRoundAndPackFloat32( aSign ^ zSign, bExp, aSig );
 | |
| 
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifndef SOFTFLOAT_FOR_GCC
 | |
| /*
 | |
| -------------------------------------------------------------------------------
 | |
| Returns the square root of the single-precision floating-point value `a'.
 | |
| The operation is performed according to the IEC/IEEE Standard for Binary
 | |
| Floating-Point Arithmetic.
 | |
| -------------------------------------------------------------------------------
 | |
| */
 | |
| float32 float32_sqrt( float32 a )
 | |
| {
 | |
|     flag aSign;
 | |
|     int16 aExp, zExp;
 | |
|     bits32 aSig, zSig, rem0, rem1, term0, term1;
 | |
| 
 | |
|     aSig = extractFloat32Frac( a );
 | |
|     aExp = extractFloat32Exp( a );
 | |
|     aSign = extractFloat32Sign( a );
 | |
|     if ( aExp == 0xFF ) {
 | |
|         if ( aSig ) return propagateFloat32NaN( a, 0 );
 | |
|         if ( ! aSign ) return a;
 | |
|         float_raise( float_flag_invalid );
 | |
|         return float32_default_nan;
 | |
|     }
 | |
|     if ( aSign ) {
 | |
|         if ( ( aExp | aSig ) == 0 ) return a;
 | |
|         float_raise( float_flag_invalid );
 | |
|         return float32_default_nan;
 | |
|     }
 | |
|     if ( aExp == 0 ) {
 | |
|         if ( aSig == 0 ) return 0;
 | |
|         normalizeFloat32Subnormal( aSig, &aExp, &aSig );
 | |
|     }
 | |
|     zExp = ( ( aExp - 0x7F )>>1 ) + 0x7E;
 | |
|     aSig = ( aSig | 0x00800000 )<<8;
 | |
|     zSig = estimateSqrt32( aExp, aSig ) + 2;
 | |
|     if ( ( zSig & 0x7F ) <= 5 ) {
 | |
|         if ( zSig < 2 ) {
 | |
|             zSig = 0x7FFFFFFF;
 | |
|             goto roundAndPack;
 | |
|         }
 | |
|         else {
 | |
|             aSig >>= aExp & 1;
 | |
|             mul32To64( zSig, zSig, &term0, &term1 );
 | |
|             sub64( aSig, 0, term0, term1, &rem0, &rem1 );
 | |
|             while ( (sbits32) rem0 < 0 ) {
 | |
|                 --zSig;
 | |
|                 shortShift64Left( 0, zSig, 1, &term0, &term1 );
 | |
|                 term1 |= 1;
 | |
|                 add64( rem0, rem1, term0, term1, &rem0, &rem1 );
 | |
|             }
 | |
|             zSig |= ( ( rem0 | rem1 ) != 0 );
 | |
|         }
 | |
|     }
 | |
|     shift32RightJamming( zSig, 1, &zSig );
 | |
|  roundAndPack:
 | |
|     return roundAndPackFloat32( 0, zExp, zSig );
 | |
| 
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| -------------------------------------------------------------------------------
 | |
| Returns 1 if the single-precision floating-point value `a' is equal to
 | |
| the corresponding value `b', and 0 otherwise.  The comparison is performed
 | |
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| -------------------------------------------------------------------------------
 | |
| */
 | |
| flag float32_eq( float32 a, float32 b )
 | |
| {
 | |
| 
 | |
|     if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
 | |
|          || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
 | |
|        ) {
 | |
|         if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) {
 | |
|             float_raise( float_flag_invalid );
 | |
|         }
 | |
|         return 0;
 | |
|     }
 | |
|     return ( a == b ) || ( (bits32) ( ( a | b )<<1 ) == 0 );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*
 | |
| -------------------------------------------------------------------------------
 | |
| Returns 1 if the single-precision floating-point value `a' is less than
 | |
| or equal to the corresponding value `b', and 0 otherwise.  The comparison
 | |
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
 | |
| Arithmetic.
 | |
| -------------------------------------------------------------------------------
 | |
| */
 | |
| flag float32_le( float32 a, float32 b )
 | |
| {
 | |
|     flag aSign, bSign;
 | |
| 
 | |
|     if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
 | |
|          || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
 | |
|        ) {
 | |
|         float_raise( float_flag_invalid );
 | |
|         return 0;
 | |
|     }
 | |
|     aSign = extractFloat32Sign( a );
 | |
|     bSign = extractFloat32Sign( b );
 | |
|     if ( aSign != bSign ) return aSign || ( (bits32) ( ( a | b )<<1 ) == 0 );
 | |
|     return ( a == b ) || ( aSign ^ ( a < b ) );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*
 | |
| -------------------------------------------------------------------------------
 | |
| Returns 1 if the single-precision floating-point value `a' is less than
 | |
| the corresponding value `b', and 0 otherwise.  The comparison is performed
 | |
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| -------------------------------------------------------------------------------
 | |
| */
 | |
| flag float32_lt( float32 a, float32 b )
 | |
| {
 | |
|     flag aSign, bSign;
 | |
| 
 | |
|     if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
 | |
|          || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
 | |
|        ) {
 | |
|         float_raise( float_flag_invalid );
 | |
|         return 0;
 | |
|     }
 | |
|     aSign = extractFloat32Sign( a );
 | |
|     bSign = extractFloat32Sign( b );
 | |
|     if ( aSign != bSign ) return aSign && ( (bits32) ( ( a | b )<<1 ) != 0 );
 | |
|     return ( a != b ) && ( aSign ^ ( a < b ) );
 | |
| 
 | |
| }
 | |
| 
 | |
| #ifndef SOFTFLOAT_FOR_GCC /* Not needed */
 | |
| /*
 | |
| -------------------------------------------------------------------------------
 | |
| Returns 1 if the single-precision floating-point value `a' is equal to
 | |
| the corresponding value `b', and 0 otherwise.  The invalid exception is
 | |
| raised if either operand is a NaN.  Otherwise, the comparison is performed
 | |
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| -------------------------------------------------------------------------------
 | |
| */
 | |
| flag float32_eq_signaling( float32 a, float32 b )
 | |
| {
 | |
| 
 | |
|     if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
 | |
|          || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
 | |
|        ) {
 | |
|         float_raise( float_flag_invalid );
 | |
|         return 0;
 | |
|     }
 | |
|     return ( a == b ) || ( (bits32) ( ( a | b )<<1 ) == 0 );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*
 | |
| -------------------------------------------------------------------------------
 | |
| Returns 1 if the single-precision floating-point value `a' is less than or
 | |
| equal to the corresponding value `b', and 0 otherwise.  Quiet NaNs do not
 | |
| cause an exception.  Otherwise, the comparison is performed according to the
 | |
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| -------------------------------------------------------------------------------
 | |
| */
 | |
| flag float32_le_quiet( float32 a, float32 b )
 | |
| {
 | |
|     flag aSign, bSign;
 | |
|     int16 aExp, bExp;
 | |
| 
 | |
|     if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
 | |
|          || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
 | |
|        ) {
 | |
|         if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) {
 | |
|             float_raise( float_flag_invalid );
 | |
|         }
 | |
|         return 0;
 | |
|     }
 | |
|     aSign = extractFloat32Sign( a );
 | |
|     bSign = extractFloat32Sign( b );
 | |
|     if ( aSign != bSign ) return aSign || ( (bits32) ( ( a | b )<<1 ) == 0 );
 | |
|     return ( a == b ) || ( aSign ^ ( a < b ) );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*
 | |
| -------------------------------------------------------------------------------
 | |
| Returns 1 if the single-precision floating-point value `a' is less than
 | |
| the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an
 | |
| exception.  Otherwise, the comparison is performed according to the IEC/IEEE
 | |
| Standard for Binary Floating-Point Arithmetic.
 | |
| -------------------------------------------------------------------------------
 | |
| */
 | |
| flag float32_lt_quiet( float32 a, float32 b )
 | |
| {
 | |
|     flag aSign, bSign;
 | |
| 
 | |
|     if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
 | |
|          || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
 | |
|        ) {
 | |
|         if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) {
 | |
|             float_raise( float_flag_invalid );
 | |
|         }
 | |
|         return 0;
 | |
|     }
 | |
|     aSign = extractFloat32Sign( a );
 | |
|     bSign = extractFloat32Sign( b );
 | |
|     if ( aSign != bSign ) return aSign && ( (bits32) ( ( a | b )<<1 ) != 0 );
 | |
|     return ( a != b ) && ( aSign ^ ( a < b ) );
 | |
| 
 | |
| }
 | |
| #endif /* !SOFTFLOAT_FOR_GCC */
 | |
| 
 | |
| #ifndef SOFTFLOAT_FOR_GCC /* Not needed */
 | |
| /*
 | |
| -------------------------------------------------------------------------------
 | |
| Returns the result of converting the double-precision floating-point value
 | |
| `a' to the 32-bit two's complement integer format.  The conversion is
 | |
| performed according to the IEC/IEEE Standard for Binary Floating-Point
 | |
| Arithmetic---which means in particular that the conversion is rounded
 | |
| according to the current rounding mode.  If `a' is a NaN, the largest
 | |
| positive integer is returned.  Otherwise, if the conversion overflows, the
 | |
| largest integer with the same sign as `a' is returned.
 | |
| -------------------------------------------------------------------------------
 | |
| */
 | |
| int32 float64_to_int32( float64 a )
 | |
| {
 | |
|     flag aSign;
 | |
|     int16 aExp, shiftCount;
 | |
|     bits32 aSig0, aSig1, absZ, aSigExtra;
 | |
|     int32 z;
 | |
|     int8 roundingMode;
 | |
| 
 | |
|     aSig1 = extractFloat64Frac1( a );
 | |
|     aSig0 = extractFloat64Frac0( a );
 | |
|     aExp = extractFloat64Exp( a );
 | |
|     aSign = extractFloat64Sign( a );
 | |
|     shiftCount = aExp - 0x413;
 | |
|     if ( 0 <= shiftCount ) {
 | |
|         if ( 0x41E < aExp ) {
 | |
|             if ( ( aExp == 0x7FF ) && ( aSig0 | aSig1 ) ) aSign = 0;
 | |
|             goto invalid;
 | |
|         }
 | |
|         shortShift64Left(
 | |
|             aSig0 | 0x00100000, aSig1, shiftCount, &absZ, &aSigExtra );
 | |
|         if ( 0x80000000 < absZ ) goto invalid;
 | |
|     }
 | |
|     else {
 | |
|         aSig1 = ( aSig1 != 0 );
 | |
|         if ( aExp < 0x3FE ) {
 | |
|             aSigExtra = aExp | aSig0 | aSig1;
 | |
|             absZ = 0;
 | |
|         }
 | |
|         else {
 | |
|             aSig0 |= 0x00100000;
 | |
|             aSigExtra = ( aSig0<<( shiftCount & 31 ) ) | aSig1;
 | |
|             absZ = aSig0>>( - shiftCount );
 | |
|         }
 | |
|     }
 | |
|     roundingMode = float_rounding_mode;
 | |
|     if ( roundingMode == float_round_nearest_even ) {
 | |
|         if ( (sbits32) aSigExtra < 0 ) {
 | |
|             ++absZ;
 | |
|             if ( (bits32) ( aSigExtra<<1 ) == 0 ) absZ &= ~1;
 | |
|         }
 | |
|         z = aSign ? - absZ : absZ;
 | |
|     }
 | |
|     else {
 | |
|         aSigExtra = ( aSigExtra != 0 );
 | |
|         if ( aSign ) {
 | |
|             z = - (   absZ
 | |
|                     + ( ( roundingMode == float_round_down ) & aSigExtra ) );
 | |
|         }
 | |
|         else {
 | |
|             z = absZ + ( ( roundingMode == float_round_up ) & aSigExtra );
 | |
|         }
 | |
|     }
 | |
|     if ( ( aSign ^ ( z < 0 ) ) && z ) {
 | |
|  invalid:
 | |
|         float_raise( float_flag_invalid );
 | |
|         return aSign ? (sbits32) 0x80000000 : 0x7FFFFFFF;
 | |
|     }
 | |
|     if ( aSigExtra ) float_exception_flags |= float_flag_inexact;
 | |
|     return z;
 | |
| 
 | |
| }
 | |
| #endif /* !SOFTFLOAT_FOR_GCC */
 | |
| 
 | |
| /*
 | |
| -------------------------------------------------------------------------------
 | |
| Returns the result of converting the double-precision floating-point value
 | |
| `a' to the 32-bit two's complement integer format.  The conversion is
 | |
| performed according to the IEC/IEEE Standard for Binary Floating-Point
 | |
| Arithmetic, except that the conversion is always rounded toward zero.
 | |
| If `a' is a NaN, the largest positive integer is returned.  Otherwise, if
 | |
| the conversion overflows, the largest integer with the same sign as `a' is
 | |
| returned.
 | |
| -------------------------------------------------------------------------------
 | |
| */
 | |
| int32 float64_to_int32_round_to_zero( float64 a )
 | |
| {
 | |
|     flag aSign;
 | |
|     int16 aExp, shiftCount;
 | |
|     bits32 aSig0, aSig1, absZ, aSigExtra;
 | |
|     int32 z;
 | |
| 
 | |
|     aSig1 = extractFloat64Frac1( a );
 | |
|     aSig0 = extractFloat64Frac0( a );
 | |
|     aExp = extractFloat64Exp( a );
 | |
|     aSign = extractFloat64Sign( a );
 | |
|     shiftCount = aExp - 0x413;
 | |
|     if ( 0 <= shiftCount ) {
 | |
|         if ( 0x41E < aExp ) {
 | |
|             if ( ( aExp == 0x7FF ) && ( aSig0 | aSig1 ) ) aSign = 0;
 | |
|             goto invalid;
 | |
|         }
 | |
|         shortShift64Left(
 | |
|             aSig0 | 0x00100000, aSig1, shiftCount, &absZ, &aSigExtra );
 | |
|     }
 | |
|     else {
 | |
|         if ( aExp < 0x3FF ) {
 | |
|             if ( aExp | aSig0 | aSig1 ) {
 | |
|                 float_exception_flags |= float_flag_inexact;
 | |
|             }
 | |
|             return 0;
 | |
|         }
 | |
|         aSig0 |= 0x00100000;
 | |
|         aSigExtra = ( aSig0<<( shiftCount & 31 ) ) | aSig1;
 | |
|         absZ = aSig0>>( - shiftCount );
 | |
|     }
 | |
|     z = aSign ? - absZ : absZ;
 | |
|     if ( ( aSign ^ ( z < 0 ) ) && z ) {
 | |
|  invalid:
 | |
|         float_raise( float_flag_invalid );
 | |
|         return aSign ? (sbits32) 0x80000000 : 0x7FFFFFFF;
 | |
|     }
 | |
|     if ( aSigExtra ) float_exception_flags |= float_flag_inexact;
 | |
|     return z;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*
 | |
| -------------------------------------------------------------------------------
 | |
| Returns the result of converting the double-precision floating-point value
 | |
| `a' to the single-precision floating-point format.  The conversion is
 | |
| performed according to the IEC/IEEE Standard for Binary Floating-Point
 | |
| Arithmetic.
 | |
| -------------------------------------------------------------------------------
 | |
| */
 | |
| float32 float64_to_float32( float64 a )
 | |
| {
 | |
|     flag aSign;
 | |
|     int16 aExp;
 | |
|     bits32 aSig0, aSig1, zSig;
 | |
|     bits32 allZero;
 | |
| 
 | |
|     aSig1 = extractFloat64Frac1( a );
 | |
|     aSig0 = extractFloat64Frac0( a );
 | |
|     aExp = extractFloat64Exp( a );
 | |
|     aSign = extractFloat64Sign( a );
 | |
|     if ( aExp == 0x7FF ) {
 | |
|         if ( aSig0 | aSig1 ) {
 | |
|             return commonNaNToFloat32( float64ToCommonNaN( a ) );
 | |
|         }
 | |
|         return packFloat32( aSign, 0xFF, 0 );
 | |
|     }
 | |
|     shift64RightJamming( aSig0, aSig1, 22, &allZero, &zSig );
 | |
|     if ( aExp ) zSig |= 0x40000000;
 | |
|     return roundAndPackFloat32( aSign, aExp - 0x381, zSig );
 | |
| 
 | |
| }
 | |
| 
 | |
| #ifndef SOFTFLOAT_FOR_GCC
 | |
| /*
 | |
| -------------------------------------------------------------------------------
 | |
| Rounds the double-precision floating-point value `a' to an integer,
 | |
| and returns the result as a double-precision floating-point value.  The
 | |
| operation is performed according to the IEC/IEEE Standard for Binary
 | |
| Floating-Point Arithmetic.
 | |
| -------------------------------------------------------------------------------
 | |
| */
 | |
| float64 float64_round_to_int( float64 a )
 | |
| {
 | |
|     flag aSign;
 | |
|     int16 aExp;
 | |
|     bits32 lastBitMask, roundBitsMask;
 | |
|     int8 roundingMode;
 | |
|     float64 z;
 | |
| 
 | |
|     aExp = extractFloat64Exp( a );
 | |
|     if ( 0x413 <= aExp ) {
 | |
|         if ( 0x433 <= aExp ) {
 | |
|             if (    ( aExp == 0x7FF )
 | |
|                  && ( extractFloat64Frac0( a ) | extractFloat64Frac1( a ) ) ) {
 | |
|                 return propagateFloat64NaN( a, a );
 | |
|             }
 | |
|             return a;
 | |
|         }
 | |
|         lastBitMask = 1;
 | |
|         lastBitMask = ( lastBitMask<<( 0x432 - aExp ) )<<1;
 | |
|         roundBitsMask = lastBitMask - 1;
 | |
|         z = a;
 | |
|         roundingMode = float_rounding_mode;
 | |
|         if ( roundingMode == float_round_nearest_even ) {
 | |
|             if ( lastBitMask ) {
 | |
|                 add64( z.high, z.low, 0, lastBitMask>>1, &z.high, &z.low );
 | |
|                 if ( ( z.low & roundBitsMask ) == 0 ) z.low &= ~ lastBitMask;
 | |
|             }
 | |
|             else {
 | |
|                 if ( (sbits32) z.low < 0 ) {
 | |
|                     ++z.high;
 | |
|                     if ( (bits32) ( z.low<<1 ) == 0 ) z.high &= ~1;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         else if ( roundingMode != float_round_to_zero ) {
 | |
|             if (   extractFloat64Sign( z )
 | |
|                  ^ ( roundingMode == float_round_up ) ) {
 | |
|                 add64( z.high, z.low, 0, roundBitsMask, &z.high, &z.low );
 | |
|             }
 | |
|         }
 | |
|         z.low &= ~ roundBitsMask;
 | |
|     }
 | |
|     else {
 | |
|         if ( aExp <= 0x3FE ) {
 | |
|             if ( ( ( (bits32) ( a.high<<1 ) ) | a.low ) == 0 ) return a;
 | |
|             float_exception_flags |= float_flag_inexact;
 | |
|             aSign = extractFloat64Sign( a );
 | |
|             switch ( float_rounding_mode ) {
 | |
|              case float_round_nearest_even:
 | |
|                 if (    ( aExp == 0x3FE )
 | |
|                      && ( extractFloat64Frac0( a ) | extractFloat64Frac1( a ) )
 | |
|                    ) {
 | |
|                     return packFloat64( aSign, 0x3FF, 0, 0 );
 | |
|                 }
 | |
|                 break;
 | |
|              case float_round_down:
 | |
|                 return
 | |
|                       aSign ? packFloat64( 1, 0x3FF, 0, 0 )
 | |
|                     : packFloat64( 0, 0, 0, 0 );
 | |
|              case float_round_up:
 | |
|                 return
 | |
|                       aSign ? packFloat64( 1, 0, 0, 0 )
 | |
|                     : packFloat64( 0, 0x3FF, 0, 0 );
 | |
|             }
 | |
|             return packFloat64( aSign, 0, 0, 0 );
 | |
|         }
 | |
|         lastBitMask = 1;
 | |
|         lastBitMask <<= 0x413 - aExp;
 | |
|         roundBitsMask = lastBitMask - 1;
 | |
|         z.low = 0;
 | |
|         z.high = a.high;
 | |
|         roundingMode = float_rounding_mode;
 | |
|         if ( roundingMode == float_round_nearest_even ) {
 | |
|             z.high += lastBitMask>>1;
 | |
|             if ( ( ( z.high & roundBitsMask ) | a.low ) == 0 ) {
 | |
|                 z.high &= ~ lastBitMask;
 | |
|             }
 | |
|         }
 | |
|         else if ( roundingMode != float_round_to_zero ) {
 | |
|             if (   extractFloat64Sign( z )
 | |
|                  ^ ( roundingMode == float_round_up ) ) {
 | |
|                 z.high |= ( a.low != 0 );
 | |
|                 z.high += roundBitsMask;
 | |
|             }
 | |
|         }
 | |
|         z.high &= ~ roundBitsMask;
 | |
|     }
 | |
|     if ( ( z.low != a.low ) || ( z.high != a.high ) ) {
 | |
|         float_exception_flags |= float_flag_inexact;
 | |
|     }
 | |
|     return z;
 | |
| 
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| -------------------------------------------------------------------------------
 | |
| Returns the result of adding the absolute values of the double-precision
 | |
| floating-point values `a' and `b'.  If `zSign' is 1, the sum is negated
 | |
| before being returned.  `zSign' is ignored if the result is a NaN.
 | |
| The addition is performed according to the IEC/IEEE Standard for Binary
 | |
| Floating-Point Arithmetic.
 | |
| -------------------------------------------------------------------------------
 | |
| */
 | |
| static float64 addFloat64Sigs( float64 a, float64 b, flag zSign )
 | |
| {
 | |
|     int16 aExp, bExp, zExp;
 | |
|     bits32 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2;
 | |
|     int16 expDiff;
 | |
| 
 | |
|     aSig1 = extractFloat64Frac1( a );
 | |
|     aSig0 = extractFloat64Frac0( a );
 | |
|     aExp = extractFloat64Exp( a );
 | |
|     bSig1 = extractFloat64Frac1( b );
 | |
|     bSig0 = extractFloat64Frac0( b );
 | |
|     bExp = extractFloat64Exp( b );
 | |
|     expDiff = aExp - bExp;
 | |
|     if ( 0 < expDiff ) {
 | |
|         if ( aExp == 0x7FF ) {
 | |
|             if ( aSig0 | aSig1 ) return propagateFloat64NaN( a, b );
 | |
|             return a;
 | |
|         }
 | |
|         if ( bExp == 0 ) {
 | |
|             --expDiff;
 | |
|         }
 | |
|         else {
 | |
|             bSig0 |= 0x00100000;
 | |
|         }
 | |
|         shift64ExtraRightJamming(
 | |
|             bSig0, bSig1, 0, expDiff, &bSig0, &bSig1, &zSig2 );
 | |
|         zExp = aExp;
 | |
|     }
 | |
|     else if ( expDiff < 0 ) {
 | |
|         if ( bExp == 0x7FF ) {
 | |
|             if ( bSig0 | bSig1 ) return propagateFloat64NaN( a, b );
 | |
|             return packFloat64( zSign, 0x7FF, 0, 0 );
 | |
|         }
 | |
|         if ( aExp == 0 ) {
 | |
|             ++expDiff;
 | |
|         }
 | |
|         else {
 | |
|             aSig0 |= 0x00100000;
 | |
|         }
 | |
|         shift64ExtraRightJamming(
 | |
|             aSig0, aSig1, 0, - expDiff, &aSig0, &aSig1, &zSig2 );
 | |
|         zExp = bExp;
 | |
|     }
 | |
|     else {
 | |
|         if ( aExp == 0x7FF ) {
 | |
|             if ( aSig0 | aSig1 | bSig0 | bSig1 ) {
 | |
|                 return propagateFloat64NaN( a, b );
 | |
|             }
 | |
|             return a;
 | |
|         }
 | |
|         add64( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
 | |
|         if ( aExp == 0 ) return packFloat64( zSign, 0, zSig0, zSig1 );
 | |
|         zSig2 = 0;
 | |
|         zSig0 |= 0x00200000;
 | |
|         zExp = aExp;
 | |
|         goto shiftRight1;
 | |
|     }
 | |
|     aSig0 |= 0x00100000;
 | |
|     add64( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
 | |
|     --zExp;
 | |
|     if ( zSig0 < 0x00200000 ) goto roundAndPack;
 | |
|     ++zExp;
 | |
|  shiftRight1:
 | |
|     shift64ExtraRightJamming( zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 );
 | |
|  roundAndPack:
 | |
|     return roundAndPackFloat64( zSign, zExp, zSig0, zSig1, zSig2 );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*
 | |
| -------------------------------------------------------------------------------
 | |
| Returns the result of subtracting the absolute values of the double-
 | |
| precision floating-point values `a' and `b'.  If `zSign' is 1, the
 | |
| difference is negated before being returned.  `zSign' is ignored if the
 | |
| result is a NaN.  The subtraction is performed according to the IEC/IEEE
 | |
| Standard for Binary Floating-Point Arithmetic.
 | |
| -------------------------------------------------------------------------------
 | |
| */
 | |
| static float64 subFloat64Sigs( float64 a, float64 b, flag zSign )
 | |
| {
 | |
|     int16 aExp, bExp, zExp;
 | |
|     bits32 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1;
 | |
|     int16 expDiff;
 | |
| 
 | |
|     aSig1 = extractFloat64Frac1( a );
 | |
|     aSig0 = extractFloat64Frac0( a );
 | |
|     aExp = extractFloat64Exp( a );
 | |
|     bSig1 = extractFloat64Frac1( b );
 | |
|     bSig0 = extractFloat64Frac0( b );
 | |
|     bExp = extractFloat64Exp( b );
 | |
|     expDiff = aExp - bExp;
 | |
|     shortShift64Left( aSig0, aSig1, 10, &aSig0, &aSig1 );
 | |
|     shortShift64Left( bSig0, bSig1, 10, &bSig0, &bSig1 );
 | |
|     if ( 0 < expDiff ) goto aExpBigger;
 | |
|     if ( expDiff < 0 ) goto bExpBigger;
 | |
|     if ( aExp == 0x7FF ) {
 | |
|         if ( aSig0 | aSig1 | bSig0 | bSig1 ) {
 | |
|             return propagateFloat64NaN( a, b );
 | |
|         }
 | |
|         float_raise( float_flag_invalid );
 | |
|         return float64_default_nan;
 | |
|     }
 | |
|     if ( aExp == 0 ) {
 | |
|         aExp = 1;
 | |
|         bExp = 1;
 | |
|     }
 | |
|     if ( bSig0 < aSig0 ) goto aBigger;
 | |
|     if ( aSig0 < bSig0 ) goto bBigger;
 | |
|     if ( bSig1 < aSig1 ) goto aBigger;
 | |
|     if ( aSig1 < bSig1 ) goto bBigger;
 | |
|     return packFloat64( float_rounding_mode == float_round_down, 0, 0, 0 );
 | |
|  bExpBigger:
 | |
|     if ( bExp == 0x7FF ) {
 | |
|         if ( bSig0 | bSig1 ) return propagateFloat64NaN( a, b );
 | |
|         return packFloat64( zSign ^ 1, 0x7FF, 0, 0 );
 | |
|     }
 | |
|     if ( aExp == 0 ) {
 | |
|         ++expDiff;
 | |
|     }
 | |
|     else {
 | |
|         aSig0 |= 0x40000000;
 | |
|     }
 | |
|     shift64RightJamming( aSig0, aSig1, - expDiff, &aSig0, &aSig1 );
 | |
|     bSig0 |= 0x40000000;
 | |
|  bBigger:
 | |
|     sub64( bSig0, bSig1, aSig0, aSig1, &zSig0, &zSig1 );
 | |
|     zExp = bExp;
 | |
|     zSign ^= 1;
 | |
|     goto normalizeRoundAndPack;
 | |
|  aExpBigger:
 | |
|     if ( aExp == 0x7FF ) {
 | |
|         if ( aSig0 | aSig1 ) return propagateFloat64NaN( a, b );
 | |
|         return a;
 | |
|     }
 | |
|     if ( bExp == 0 ) {
 | |
|         --expDiff;
 | |
|     }
 | |
|     else {
 | |
|         bSig0 |= 0x40000000;
 | |
|     }
 | |
|     shift64RightJamming( bSig0, bSig1, expDiff, &bSig0, &bSig1 );
 | |
|     aSig0 |= 0x40000000;
 | |
|  aBigger:
 | |
|     sub64( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
 | |
|     zExp = aExp;
 | |
|  normalizeRoundAndPack:
 | |
|     --zExp;
 | |
|     return normalizeRoundAndPackFloat64( zSign, zExp - 10, zSig0, zSig1 );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*
 | |
| -------------------------------------------------------------------------------
 | |
| Returns the result of adding the double-precision floating-point values `a'
 | |
| and `b'.  The operation is performed according to the IEC/IEEE Standard for
 | |
| Binary Floating-Point Arithmetic.
 | |
| -------------------------------------------------------------------------------
 | |
| */
 | |
| float64 float64_add( float64 a, float64 b )
 | |
| {
 | |
|     flag aSign, bSign;
 | |
| 
 | |
|     aSign = extractFloat64Sign( a );
 | |
|     bSign = extractFloat64Sign( b );
 | |
|     if ( aSign == bSign ) {
 | |
|         return addFloat64Sigs( a, b, aSign );
 | |
|     }
 | |
|     else {
 | |
|         return subFloat64Sigs( a, b, aSign );
 | |
|     }
 | |
| 
 | |
| }
 | |
| 
 | |
| /*
 | |
| -------------------------------------------------------------------------------
 | |
| Returns the result of subtracting the double-precision floating-point values
 | |
| `a' and `b'.  The operation is performed according to the IEC/IEEE Standard
 | |
| for Binary Floating-Point Arithmetic.
 | |
| -------------------------------------------------------------------------------
 | |
| */
 | |
| float64 float64_sub( float64 a, float64 b )
 | |
| {
 | |
|     flag aSign, bSign;
 | |
| 
 | |
|     aSign = extractFloat64Sign( a );
 | |
|     bSign = extractFloat64Sign( b );
 | |
|     if ( aSign == bSign ) {
 | |
|         return subFloat64Sigs( a, b, aSign );
 | |
|     }
 | |
|     else {
 | |
|         return addFloat64Sigs( a, b, aSign );
 | |
|     }
 | |
| 
 | |
| }
 | |
| 
 | |
| /*
 | |
| -------------------------------------------------------------------------------
 | |
| Returns the result of multiplying the double-precision floating-point values
 | |
| `a' and `b'.  The operation is performed according to the IEC/IEEE Standard
 | |
| for Binary Floating-Point Arithmetic.
 | |
| -------------------------------------------------------------------------------
 | |
| */
 | |
| float64 float64_mul( float64 a, float64 b )
 | |
| {
 | |
|     flag aSign, bSign, zSign;
 | |
|     int16 aExp, bExp, zExp;
 | |
|     bits32 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2, zSig3;
 | |
| 
 | |
|     aSig1 = extractFloat64Frac1( a );
 | |
|     aSig0 = extractFloat64Frac0( a );
 | |
|     aExp = extractFloat64Exp( a );
 | |
|     aSign = extractFloat64Sign( a );
 | |
|     bSig1 = extractFloat64Frac1( b );
 | |
|     bSig0 = extractFloat64Frac0( b );
 | |
|     bExp = extractFloat64Exp( b );
 | |
|     bSign = extractFloat64Sign( b );
 | |
|     zSign = aSign ^ bSign;
 | |
|     if ( aExp == 0x7FF ) {
 | |
|         if (    ( aSig0 | aSig1 )
 | |
|              || ( ( bExp == 0x7FF ) && ( bSig0 | bSig1 ) ) ) {
 | |
|             return propagateFloat64NaN( a, b );
 | |
|         }
 | |
|         if ( ( bExp | bSig0 | bSig1 ) == 0 ) goto invalid;
 | |
|         return packFloat64( zSign, 0x7FF, 0, 0 );
 | |
|     }
 | |
|     if ( bExp == 0x7FF ) {
 | |
|         if ( bSig0 | bSig1 ) return propagateFloat64NaN( a, b );
 | |
|         if ( ( aExp | aSig0 | aSig1 ) == 0 ) {
 | |
|  invalid:
 | |
|             float_raise( float_flag_invalid );
 | |
|             return float64_default_nan;
 | |
|         }
 | |
|         return packFloat64( zSign, 0x7FF, 0, 0 );
 | |
|     }
 | |
|     if ( aExp == 0 ) {
 | |
|         if ( ( aSig0 | aSig1 ) == 0 ) return packFloat64( zSign, 0, 0, 0 );
 | |
|         normalizeFloat64Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
 | |
|     }
 | |
|     if ( bExp == 0 ) {
 | |
|         if ( ( bSig0 | bSig1 ) == 0 ) return packFloat64( zSign, 0, 0, 0 );
 | |
|         normalizeFloat64Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
 | |
|     }
 | |
|     zExp = aExp + bExp - 0x400;
 | |
|     aSig0 |= 0x00100000;
 | |
|     shortShift64Left( bSig0, bSig1, 12, &bSig0, &bSig1 );
 | |
|     mul64To128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1, &zSig2, &zSig3 );
 | |
|     add64( zSig0, zSig1, aSig0, aSig1, &zSig0, &zSig1 );
 | |
|     zSig2 |= ( zSig3 != 0 );
 | |
|     if ( 0x00200000 <= zSig0 ) {
 | |
|         shift64ExtraRightJamming(
 | |
|             zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 );
 | |
|         ++zExp;
 | |
|     }
 | |
|     return roundAndPackFloat64( zSign, zExp, zSig0, zSig1, zSig2 );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*
 | |
| -------------------------------------------------------------------------------
 | |
| Returns the result of dividing the double-precision floating-point value `a'
 | |
| by the corresponding value `b'.  The operation is performed according to the
 | |
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| -------------------------------------------------------------------------------
 | |
| */
 | |
| float64 float64_div( float64 a, float64 b )
 | |
| {
 | |
|     flag aSign, bSign, zSign;
 | |
|     int16 aExp, bExp, zExp;
 | |
|     bits32 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2;
 | |
|     bits32 rem0, rem1, rem2, rem3, term0, term1, term2, term3;
 | |
| 
 | |
|     aSig1 = extractFloat64Frac1( a );
 | |
|     aSig0 = extractFloat64Frac0( a );
 | |
|     aExp = extractFloat64Exp( a );
 | |
|     aSign = extractFloat64Sign( a );
 | |
|     bSig1 = extractFloat64Frac1( b );
 | |
|     bSig0 = extractFloat64Frac0( b );
 | |
|     bExp = extractFloat64Exp( b );
 | |
|     bSign = extractFloat64Sign( b );
 | |
|     zSign = aSign ^ bSign;
 | |
|     if ( aExp == 0x7FF ) {
 | |
|         if ( aSig0 | aSig1 ) return propagateFloat64NaN( a, b );
 | |
|         if ( bExp == 0x7FF ) {
 | |
|             if ( bSig0 | bSig1 ) return propagateFloat64NaN( a, b );
 | |
|             goto invalid;
 | |
|         }
 | |
|         return packFloat64( zSign, 0x7FF, 0, 0 );
 | |
|     }
 | |
|     if ( bExp == 0x7FF ) {
 | |
|         if ( bSig0 | bSig1 ) return propagateFloat64NaN( a, b );
 | |
|         return packFloat64( zSign, 0, 0, 0 );
 | |
|     }
 | |
|     if ( bExp == 0 ) {
 | |
|         if ( ( bSig0 | bSig1 ) == 0 ) {
 | |
|             if ( ( aExp | aSig0 | aSig1 ) == 0 ) {
 | |
|  invalid:
 | |
|                 float_raise( float_flag_invalid );
 | |
|                 return float64_default_nan;
 | |
|             }
 | |
|             float_raise( float_flag_divbyzero );
 | |
|             return packFloat64( zSign, 0x7FF, 0, 0 );
 | |
|         }
 | |
|         normalizeFloat64Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
 | |
|     }
 | |
|     if ( aExp == 0 ) {
 | |
|         if ( ( aSig0 | aSig1 ) == 0 ) return packFloat64( zSign, 0, 0, 0 );
 | |
|         normalizeFloat64Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
 | |
|     }
 | |
|     zExp = aExp - bExp + 0x3FD;
 | |
|     shortShift64Left( aSig0 | 0x00100000, aSig1, 11, &aSig0, &aSig1 );
 | |
|     shortShift64Left( bSig0 | 0x00100000, bSig1, 11, &bSig0, &bSig1 );
 | |
|     if ( le64( bSig0, bSig1, aSig0, aSig1 ) ) {
 | |
|         shift64Right( aSig0, aSig1, 1, &aSig0, &aSig1 );
 | |
|         ++zExp;
 | |
|     }
 | |
|     zSig0 = estimateDiv64To32( aSig0, aSig1, bSig0 );
 | |
|     mul64By32To96( bSig0, bSig1, zSig0, &term0, &term1, &term2 );
 | |
|     sub96( aSig0, aSig1, 0, term0, term1, term2, &rem0, &rem1, &rem2 );
 | |
|     while ( (sbits32) rem0 < 0 ) {
 | |
|         --zSig0;
 | |
|         add96( rem0, rem1, rem2, 0, bSig0, bSig1, &rem0, &rem1, &rem2 );
 | |
|     }
 | |
|     zSig1 = estimateDiv64To32( rem1, rem2, bSig0 );
 | |
|     if ( ( zSig1 & 0x3FF ) <= 4 ) {
 | |
|         mul64By32To96( bSig0, bSig1, zSig1, &term1, &term2, &term3 );
 | |
|         sub96( rem1, rem2, 0, term1, term2, term3, &rem1, &rem2, &rem3 );
 | |
|         while ( (sbits32) rem1 < 0 ) {
 | |
|             --zSig1;
 | |
|             add96( rem1, rem2, rem3, 0, bSig0, bSig1, &rem1, &rem2, &rem3 );
 | |
|         }
 | |
|         zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );
 | |
|     }
 | |
|     shift64ExtraRightJamming( zSig0, zSig1, 0, 11, &zSig0, &zSig1, &zSig2 );
 | |
|     return roundAndPackFloat64( zSign, zExp, zSig0, zSig1, zSig2 );
 | |
| 
 | |
| }
 | |
| 
 | |
| #ifndef SOFTFLOAT_FOR_GCC
 | |
| /*
 | |
| -------------------------------------------------------------------------------
 | |
| Returns the remainder of the double-precision floating-point value `a'
 | |
| with respect to the corresponding value `b'.  The operation is performed
 | |
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| -------------------------------------------------------------------------------
 | |
| */
 | |
| float64 float64_rem( float64 a, float64 b )
 | |
| {
 | |
|     flag aSign, bSign, zSign;
 | |
|     int16 aExp, bExp, expDiff;
 | |
|     bits32 aSig0, aSig1, bSig0, bSig1, q, term0, term1, term2;
 | |
|     bits32 allZero, alternateASig0, alternateASig1, sigMean1;
 | |
|     sbits32 sigMean0;
 | |
|     float64 z;
 | |
| 
 | |
|     aSig1 = extractFloat64Frac1( a );
 | |
|     aSig0 = extractFloat64Frac0( a );
 | |
|     aExp = extractFloat64Exp( a );
 | |
|     aSign = extractFloat64Sign( a );
 | |
|     bSig1 = extractFloat64Frac1( b );
 | |
|     bSig0 = extractFloat64Frac0( b );
 | |
|     bExp = extractFloat64Exp( b );
 | |
|     bSign = extractFloat64Sign( b );
 | |
|     if ( aExp == 0x7FF ) {
 | |
|         if (    ( aSig0 | aSig1 )
 | |
|              || ( ( bExp == 0x7FF ) && ( bSig0 | bSig1 ) ) ) {
 | |
|             return propagateFloat64NaN( a, b );
 | |
|         }
 | |
|         goto invalid;
 | |
|     }
 | |
|     if ( bExp == 0x7FF ) {
 | |
|         if ( bSig0 | bSig1 ) return propagateFloat64NaN( a, b );
 | |
|         return a;
 | |
|     }
 | |
|     if ( bExp == 0 ) {
 | |
|         if ( ( bSig0 | bSig1 ) == 0 ) {
 | |
|  invalid:
 | |
|             float_raise( float_flag_invalid );
 | |
|             return float64_default_nan;
 | |
|         }
 | |
|         normalizeFloat64Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
 | |
|     }
 | |
|     if ( aExp == 0 ) {
 | |
|         if ( ( aSig0 | aSig1 ) == 0 ) return a;
 | |
|         normalizeFloat64Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
 | |
|     }
 | |
|     expDiff = aExp - bExp;
 | |
|     if ( expDiff < -1 ) return a;
 | |
|     shortShift64Left(
 | |
|         aSig0 | 0x00100000, aSig1, 11 - ( expDiff < 0 ), &aSig0, &aSig1 );
 | |
|     shortShift64Left( bSig0 | 0x00100000, bSig1, 11, &bSig0, &bSig1 );
 | |
|     q = le64( bSig0, bSig1, aSig0, aSig1 );
 | |
|     if ( q ) sub64( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 );
 | |
|     expDiff -= 32;
 | |
|     while ( 0 < expDiff ) {
 | |
|         q = estimateDiv64To32( aSig0, aSig1, bSig0 );
 | |
|         q = ( 4 < q ) ? q - 4 : 0;
 | |
|         mul64By32To96( bSig0, bSig1, q, &term0, &term1, &term2 );
 | |
|         shortShift96Left( term0, term1, term2, 29, &term1, &term2, &allZero );
 | |
|         shortShift64Left( aSig0, aSig1, 29, &aSig0, &allZero );
 | |
|         sub64( aSig0, 0, term1, term2, &aSig0, &aSig1 );
 | |
|         expDiff -= 29;
 | |
|     }
 | |
|     if ( -32 < expDiff ) {
 | |
|         q = estimateDiv64To32( aSig0, aSig1, bSig0 );
 | |
|         q = ( 4 < q ) ? q - 4 : 0;
 | |
|         q >>= - expDiff;
 | |
|         shift64Right( bSig0, bSig1, 8, &bSig0, &bSig1 );
 | |
|         expDiff += 24;
 | |
|         if ( expDiff < 0 ) {
 | |
|             shift64Right( aSig0, aSig1, - expDiff, &aSig0, &aSig1 );
 | |
|         }
 | |
|         else {
 | |
|             shortShift64Left( aSig0, aSig1, expDiff, &aSig0, &aSig1 );
 | |
|         }
 | |
|         mul64By32To96( bSig0, bSig1, q, &term0, &term1, &term2 );
 | |
|         sub64( aSig0, aSig1, term1, term2, &aSig0, &aSig1 );
 | |
|     }
 | |
|     else {
 | |
|         shift64Right( aSig0, aSig1, 8, &aSig0, &aSig1 );
 | |
|         shift64Right( bSig0, bSig1, 8, &bSig0, &bSig1 );
 | |
|     }
 | |
|     do {
 | |
|         alternateASig0 = aSig0;
 | |
|         alternateASig1 = aSig1;
 | |
|         ++q;
 | |
|         sub64( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 );
 | |
|     } while ( 0 <= (sbits32) aSig0 );
 | |
|     add64(
 | |
|         aSig0, aSig1, alternateASig0, alternateASig1, &sigMean0, &sigMean1 );
 | |
|     if (    ( sigMean0 < 0 )
 | |
|          || ( ( ( sigMean0 | sigMean1 ) == 0 ) && ( q & 1 ) ) ) {
 | |
|         aSig0 = alternateASig0;
 | |
|         aSig1 = alternateASig1;
 | |
|     }
 | |
|     zSign = ( (sbits32) aSig0 < 0 );
 | |
|     if ( zSign ) sub64( 0, 0, aSig0, aSig1, &aSig0, &aSig1 );
 | |
|     return
 | |
|         normalizeRoundAndPackFloat64( aSign ^ zSign, bExp - 4, aSig0, aSig1 );
 | |
| 
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifndef SOFTFLOAT_FOR_GCC
 | |
| /*
 | |
| -------------------------------------------------------------------------------
 | |
| Returns the square root of the double-precision floating-point value `a'.
 | |
| The operation is performed according to the IEC/IEEE Standard for Binary
 | |
| Floating-Point Arithmetic.
 | |
| -------------------------------------------------------------------------------
 | |
| */
 | |
| float64 float64_sqrt( float64 a )
 | |
| {
 | |
|     flag aSign;
 | |
|     int16 aExp, zExp;
 | |
|     bits32 aSig0, aSig1, zSig0, zSig1, zSig2, doubleZSig0;
 | |
|     bits32 rem0, rem1, rem2, rem3, term0, term1, term2, term3;
 | |
|     float64 z;
 | |
| 
 | |
|     aSig1 = extractFloat64Frac1( a );
 | |
|     aSig0 = extractFloat64Frac0( a );
 | |
|     aExp = extractFloat64Exp( a );
 | |
|     aSign = extractFloat64Sign( a );
 | |
|     if ( aExp == 0x7FF ) {
 | |
|         if ( aSig0 | aSig1 ) return propagateFloat64NaN( a, a );
 | |
|         if ( ! aSign ) return a;
 | |
|         goto invalid;
 | |
|     }
 | |
|     if ( aSign ) {
 | |
|         if ( ( aExp | aSig0 | aSig1 ) == 0 ) return a;
 | |
|  invalid:
 | |
|         float_raise( float_flag_invalid );
 | |
|         return float64_default_nan;
 | |
|     }
 | |
|     if ( aExp == 0 ) {
 | |
|         if ( ( aSig0 | aSig1 ) == 0 ) return packFloat64( 0, 0, 0, 0 );
 | |
|         normalizeFloat64Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
 | |
|     }
 | |
|     zExp = ( ( aExp - 0x3FF )>>1 ) + 0x3FE;
 | |
|     aSig0 |= 0x00100000;
 | |
|     shortShift64Left( aSig0, aSig1, 11, &term0, &term1 );
 | |
|     zSig0 = ( estimateSqrt32( aExp, term0 )>>1 ) + 1;
 | |
|     if ( zSig0 == 0 ) zSig0 = 0x7FFFFFFF;
 | |
|     doubleZSig0 = zSig0 + zSig0;
 | |
|     shortShift64Left( aSig0, aSig1, 9 - ( aExp & 1 ), &aSig0, &aSig1 );
 | |
|     mul32To64( zSig0, zSig0, &term0, &term1 );
 | |
|     sub64( aSig0, aSig1, term0, term1, &rem0, &rem1 );
 | |
|     while ( (sbits32) rem0 < 0 ) {
 | |
|         --zSig0;
 | |
|         doubleZSig0 -= 2;
 | |
|         add64( rem0, rem1, 0, doubleZSig0 | 1, &rem0, &rem1 );
 | |
|     }
 | |
|     zSig1 = estimateDiv64To32( rem1, 0, doubleZSig0 );
 | |
|     if ( ( zSig1 & 0x1FF ) <= 5 ) {
 | |
|         if ( zSig1 == 0 ) zSig1 = 1;
 | |
|         mul32To64( doubleZSig0, zSig1, &term1, &term2 );
 | |
|         sub64( rem1, 0, term1, term2, &rem1, &rem2 );
 | |
|         mul32To64( zSig1, zSig1, &term2, &term3 );
 | |
|         sub96( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 );
 | |
|         while ( (sbits32) rem1 < 0 ) {
 | |
|             --zSig1;
 | |
|             shortShift64Left( 0, zSig1, 1, &term2, &term3 );
 | |
|             term3 |= 1;
 | |
|             term2 |= doubleZSig0;
 | |
|             add96( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 );
 | |
|         }
 | |
|         zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );
 | |
|     }
 | |
|     shift64ExtraRightJamming( zSig0, zSig1, 0, 10, &zSig0, &zSig1, &zSig2 );
 | |
|     return roundAndPackFloat64( 0, zExp, zSig0, zSig1, zSig2 );
 | |
| 
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| -------------------------------------------------------------------------------
 | |
| Returns 1 if the double-precision floating-point value `a' is equal to
 | |
| the corresponding value `b', and 0 otherwise.  The comparison is performed
 | |
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| -------------------------------------------------------------------------------
 | |
| */
 | |
| flag float64_eq( float64 a, float64 b )
 | |
| {
 | |
| 
 | |
|     if (    (    ( extractFloat64Exp( a ) == 0x7FF )
 | |
|               && ( extractFloat64Frac0( a ) | extractFloat64Frac1( a ) ) )
 | |
|          || (    ( extractFloat64Exp( b ) == 0x7FF )
 | |
|               && ( extractFloat64Frac0( b ) | extractFloat64Frac1( b ) ) )
 | |
|        ) {
 | |
|         if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) {
 | |
|             float_raise( float_flag_invalid );
 | |
|         }
 | |
|         return 0;
 | |
|     }
 | |
|     return ( a == b ) ||
 | |
| 	( (bits64) ( ( FLOAT64_DEMANGLE(a) | FLOAT64_DEMANGLE(b) )<<1 ) == 0 );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*
 | |
| -------------------------------------------------------------------------------
 | |
| Returns 1 if the double-precision floating-point value `a' is less than
 | |
| or equal to the corresponding value `b', and 0 otherwise.  The comparison
 | |
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
 | |
| Arithmetic.
 | |
| -------------------------------------------------------------------------------
 | |
| */
 | |
| flag float64_le( float64 a, float64 b )
 | |
| {
 | |
|     flag aSign, bSign;
 | |
| 
 | |
|     if (    (    ( extractFloat64Exp( a ) == 0x7FF )
 | |
|               && ( extractFloat64Frac0( a ) | extractFloat64Frac1( a ) ) )
 | |
|          || (    ( extractFloat64Exp( b ) == 0x7FF )
 | |
|               && ( extractFloat64Frac0( b ) | extractFloat64Frac1( b ) ) )
 | |
|        ) {
 | |
|         float_raise( float_flag_invalid );
 | |
|         return 0;
 | |
|     }
 | |
|     aSign = extractFloat64Sign( a );
 | |
|     bSign = extractFloat64Sign( b );
 | |
|     if ( aSign != bSign )
 | |
| 	return aSign ||
 | |
| 	    ( (bits64) ( ( FLOAT64_DEMANGLE(a) | FLOAT64_DEMANGLE(b) )<<1 ) ==
 | |
| 	      0 );
 | |
|     return ( a == b ) ||
 | |
| 	( aSign ^ ( FLOAT64_DEMANGLE(a) < FLOAT64_DEMANGLE(b) ) );
 | |
| }
 | |
| 
 | |
| /*
 | |
| -------------------------------------------------------------------------------
 | |
| Returns 1 if the double-precision floating-point value `a' is less than
 | |
| the corresponding value `b', and 0 otherwise.  The comparison is performed
 | |
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| -------------------------------------------------------------------------------
 | |
| */
 | |
| flag float64_lt( float64 a, float64 b )
 | |
| {
 | |
|     flag aSign, bSign;
 | |
| 
 | |
|     if (    (    ( extractFloat64Exp( a ) == 0x7FF )
 | |
|               && ( extractFloat64Frac0( a ) | extractFloat64Frac1( a ) ) )
 | |
|          || (    ( extractFloat64Exp( b ) == 0x7FF )
 | |
|               && ( extractFloat64Frac0( b ) | extractFloat64Frac1( b ) ) )
 | |
|        ) {
 | |
|         float_raise( float_flag_invalid );
 | |
|         return 0;
 | |
|     }
 | |
|     aSign = extractFloat64Sign( a );
 | |
|     bSign = extractFloat64Sign( b );
 | |
|     if ( aSign != bSign )
 | |
| 	return aSign &&
 | |
| 	    ( (bits64) ( ( FLOAT64_DEMANGLE(a) | FLOAT64_DEMANGLE(b) )<<1 ) !=
 | |
| 	      0 );
 | |
|     return ( a != b ) &&
 | |
| 	( aSign ^ ( FLOAT64_DEMANGLE(a) < FLOAT64_DEMANGLE(b) ) );
 | |
| 
 | |
| }
 | |
| 
 | |
| #ifndef SOFTFLOAT_FOR_GCC
 | |
| /*
 | |
| -------------------------------------------------------------------------------
 | |
| Returns 1 if the double-precision floating-point value `a' is equal to
 | |
| the corresponding value `b', and 0 otherwise.  The invalid exception is
 | |
| raised if either operand is a NaN.  Otherwise, the comparison is performed
 | |
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| -------------------------------------------------------------------------------
 | |
| */
 | |
| flag float64_eq_signaling( float64 a, float64 b )
 | |
| {
 | |
| 
 | |
|     if (    (    ( extractFloat64Exp( a ) == 0x7FF )
 | |
|               && ( extractFloat64Frac0( a ) | extractFloat64Frac1( a ) ) )
 | |
|          || (    ( extractFloat64Exp( b ) == 0x7FF )
 | |
|               && ( extractFloat64Frac0( b ) | extractFloat64Frac1( b ) ) )
 | |
|        ) {
 | |
|         float_raise( float_flag_invalid );
 | |
|         return 0;
 | |
|     }
 | |
|     return ( a == b ) || ( (bits64) ( ( a | b )<<1 ) == 0 );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*
 | |
| -------------------------------------------------------------------------------
 | |
| Returns 1 if the double-precision floating-point value `a' is less than or
 | |
| equal to the corresponding value `b', and 0 otherwise.  Quiet NaNs do not
 | |
| cause an exception.  Otherwise, the comparison is performed according to the
 | |
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| -------------------------------------------------------------------------------
 | |
| */
 | |
| flag float64_le_quiet( float64 a, float64 b )
 | |
| {
 | |
|     flag aSign, bSign;
 | |
| 
 | |
|     if (    (    ( extractFloat64Exp( a ) == 0x7FF )
 | |
|               && ( extractFloat64Frac0( a ) | extractFloat64Frac1( a ) ) )
 | |
|          || (    ( extractFloat64Exp( b ) == 0x7FF )
 | |
|               && ( extractFloat64Frac0( b ) | extractFloat64Frac1( b ) ) )
 | |
|        ) {
 | |
|         if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) {
 | |
|             float_raise( float_flag_invalid );
 | |
|         }
 | |
|         return 0;
 | |
|     }
 | |
|     aSign = extractFloat64Sign( a );
 | |
|     bSign = extractFloat64Sign( b );
 | |
|     if ( aSign != bSign ) return aSign || ( (bits64) ( ( a | b )<<1 ) == 0 );
 | |
|     return ( a == b ) || ( aSign ^ ( a < b ) );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*
 | |
| -------------------------------------------------------------------------------
 | |
| Returns 1 if the double-precision floating-point value `a' is less than
 | |
| the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an
 | |
| exception.  Otherwise, the comparison is performed according to the IEC/IEEE
 | |
| Standard for Binary Floating-Point Arithmetic.
 | |
| -------------------------------------------------------------------------------
 | |
| */
 | |
| flag float64_lt_quiet( float64 a, float64 b )
 | |
| {
 | |
|     flag aSign, bSign;
 | |
| 
 | |
|     if (    (    ( extractFloat64Exp( a ) == 0x7FF )
 | |
|               && ( extractFloat64Frac0( a ) | extractFloat64Frac1( a ) ) )
 | |
|          || (    ( extractFloat64Exp( b ) == 0x7FF )
 | |
|               && ( extractFloat64Frac0( b ) | extractFloat64Frac1( b ) ) )
 | |
|        ) {
 | |
|         if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) {
 | |
|             float_raise( float_flag_invalid );
 | |
|         }
 | |
|         return 0;
 | |
|     }
 | |
|     aSign = extractFloat64Sign( a );
 | |
|     bSign = extractFloat64Sign( b );
 | |
|     if ( aSign != bSign ) return aSign && ( (bits64) ( ( a | b )<<1 ) != 0 );
 | |
|     return ( a != b ) && ( aSign ^ ( a < b ) );
 | |
| 
 | |
| }
 | |
| 
 | |
| #endif
 |