593 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			593 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* This file handles the EXEC system call.  It performs the work as follows:
 | |
|  *    - see if the permissions allow the file to be executed
 | |
|  *    - read the header and extract the sizes
 | |
|  *    - fetch the initial args and environment from the user space
 | |
|  *    - allocate the memory for the new process
 | |
|  *    - copy the initial stack from PM to the process
 | |
|  *    - read in the text and data segments and copy to the process
 | |
|  *    - take care of setuid and setgid bits
 | |
|  *    - fix up 'mproc' table
 | |
|  *    - tell kernel about EXEC
 | |
|  *    - save offset to initial argc (for ps)
 | |
|  *
 | |
|  * The entry points into this file are:
 | |
|  *   do_exec:	 perform the EXEC system call
 | |
|  *   rw_seg:	 read or write a segment from or to a file
 | |
|  *   find_share: find a process whose text segment can be shared
 | |
|  */
 | |
| 
 | |
| #include "pm.h"
 | |
| #include <sys/stat.h>
 | |
| #include <minix/callnr.h>
 | |
| #include <minix/com.h>
 | |
| #include <a.out.h>
 | |
| #include <signal.h>
 | |
| #include <string.h>
 | |
| #include "mproc.h"
 | |
| #include "param.h"
 | |
| 
 | |
| FORWARD _PROTOTYPE( int new_mem, (struct mproc *sh_mp, vir_bytes text_bytes,
 | |
| 		vir_bytes data_bytes, vir_bytes bss_bytes,
 | |
| 		vir_bytes stk_bytes, phys_bytes tot_bytes)		);
 | |
| FORWARD _PROTOTYPE( void patch_ptr, (char stack[ARG_MAX], vir_bytes base) );
 | |
| FORWARD _PROTOTYPE( int insert_arg, (char stack[ARG_MAX],
 | |
| 		vir_bytes *stk_bytes, char *arg, int replace)		);
 | |
| FORWARD _PROTOTYPE( char *patch_stack, (int fd, char stack[ARG_MAX],
 | |
| 		vir_bytes *stk_bytes, char *script)			);
 | |
| FORWARD _PROTOTYPE( int read_header, (int fd, int *ft, vir_bytes *text_bytes,
 | |
| 		vir_bytes *data_bytes, vir_bytes *bss_bytes,
 | |
| 		phys_bytes *tot_bytes, long *sym_bytes, vir_clicks sc,
 | |
| 		vir_bytes *pc)						);
 | |
| 
 | |
| #define ESCRIPT	(-2000)		/* Returned by read_header for a #! script. */
 | |
| #define PTRSIZE	sizeof(char *)	/* Size of pointers in argv[] and envp[]. */
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				do_exec					     *
 | |
|  *===========================================================================*/
 | |
| PUBLIC int do_exec()
 | |
| {
 | |
| /* Perform the execve(name, argv, envp) call.  The user library builds a
 | |
|  * complete stack image, including pointers, args, environ, etc.  The stack
 | |
|  * is copied to a buffer inside PM, and then to the new core image.
 | |
|  */
 | |
|   register struct mproc *rmp;
 | |
|   struct mproc *sh_mp;
 | |
|   int m, r, fd, ft, sn;
 | |
|   static char mbuf[ARG_MAX];	/* buffer for stack and zeroes */
 | |
|   static char name_buf[PATH_MAX]; /* the name of the file to exec */
 | |
|   char *new_sp, *name, *basename;
 | |
|   vir_bytes src, dst, text_bytes, data_bytes, bss_bytes, stk_bytes, vsp;
 | |
|   phys_bytes tot_bytes;		/* total space for program, including gap */
 | |
|   long sym_bytes;
 | |
|   vir_clicks sc;
 | |
|   struct stat s_buf[2], *s_p;
 | |
|   vir_bytes pc;
 | |
| 
 | |
|   /* Do some validity checks. */
 | |
|   rmp = mp;
 | |
|   stk_bytes = (vir_bytes) m_in.stack_bytes;
 | |
|   if (stk_bytes > ARG_MAX) return(ENOMEM);	/* stack too big */
 | |
|   if (m_in.exec_len <= 0 || m_in.exec_len > PATH_MAX) return(EINVAL);
 | |
| 
 | |
|   /* Get the exec file name and see if the file is executable. */
 | |
|   src = (vir_bytes) m_in.exec_name;
 | |
|   dst = (vir_bytes) name_buf;
 | |
|   r = sys_datacopy(who, (vir_bytes) src,
 | |
| 		PM_PROC_NR, (vir_bytes) dst, (phys_bytes) m_in.exec_len);
 | |
|   if (r != OK) return(r);	/* file name not in user data segment */
 | |
| 
 | |
|   /* Fetch the stack from the user before destroying the old core image. */
 | |
|   src = (vir_bytes) m_in.stack_ptr;
 | |
|   dst = (vir_bytes) mbuf;
 | |
|   r = sys_datacopy(who, (vir_bytes) src,
 | |
|   			PM_PROC_NR, (vir_bytes) dst, (phys_bytes)stk_bytes);
 | |
| 
 | |
|   if (r != OK) return(EACCES);	/* can't fetch stack (e.g. bad virtual addr) */
 | |
| 
 | |
|   r = 0;	/* r = 0 (first attempt), or 1 (interpreted script) */
 | |
|   name = name_buf;	/* name of file to exec. */
 | |
|   do {
 | |
| 	s_p = &s_buf[r];
 | |
| 	tell_fs(CHDIR, who, FALSE, 0);  /* switch to the user's FS environ */
 | |
| 	fd = allowed(name, s_p, X_BIT);	/* is file executable? */
 | |
| 	if (fd < 0)  return(fd);		/* file was not executable */
 | |
| 
 | |
| 	/* Read the file header and extract the segment sizes. */
 | |
| 	sc = (stk_bytes + CLICK_SIZE - 1) >> CLICK_SHIFT;
 | |
| 
 | |
| 	m = read_header(fd, &ft, &text_bytes, &data_bytes, &bss_bytes, 
 | |
| 					&tot_bytes, &sym_bytes, sc, &pc);
 | |
| 	if (m != ESCRIPT || ++r > 1) break;
 | |
|   } while ((name = patch_stack(fd, mbuf, &stk_bytes, name_buf)) != NULL);
 | |
| 
 | |
|   if (m < 0) {
 | |
| 	close(fd);		/* something wrong with header */
 | |
| 	return(stk_bytes > ARG_MAX ? ENOMEM : ENOEXEC);
 | |
|   }
 | |
| 
 | |
|   /* Can the process' text be shared with that of one already running? */
 | |
|   sh_mp = find_share(rmp, s_p->st_ino, s_p->st_dev, s_p->st_ctime);
 | |
| 
 | |
|   /* Allocate new memory and release old memory.  Fix map and tell kernel. */
 | |
|   r = new_mem(sh_mp, text_bytes, data_bytes, bss_bytes, stk_bytes, tot_bytes);
 | |
|   if (r != OK) {
 | |
| 	close(fd);		/* insufficient core or program too big */
 | |
| 	return(r);
 | |
|   }
 | |
| 
 | |
|   /* Save file identification to allow it to be shared. */
 | |
|   rmp->mp_ino = s_p->st_ino;
 | |
|   rmp->mp_dev = s_p->st_dev;
 | |
|   rmp->mp_ctime = s_p->st_ctime;
 | |
| 
 | |
|   /* Patch up stack and copy it from PM to new core image. */
 | |
|   vsp = (vir_bytes) rmp->mp_seg[S].mem_vir << CLICK_SHIFT;
 | |
|   vsp += (vir_bytes) rmp->mp_seg[S].mem_len << CLICK_SHIFT;
 | |
|   vsp -= stk_bytes;
 | |
|   patch_ptr(mbuf, vsp);
 | |
|   src = (vir_bytes) mbuf;
 | |
|   r = sys_datacopy(PM_PROC_NR, (vir_bytes) src,
 | |
|   			who, (vir_bytes) vsp, (phys_bytes)stk_bytes);
 | |
|   if (r != OK) panic(__FILE__,"do_exec stack copy err on", who);
 | |
| 
 | |
|   /* Read in text and data segments. */
 | |
|   if (sh_mp != NULL) {
 | |
| 	lseek(fd, (off_t) text_bytes, SEEK_CUR);  /* shared: skip text */
 | |
|   } else {
 | |
| 	rw_seg(0, fd, who, T, text_bytes);
 | |
|   }
 | |
|   rw_seg(0, fd, who, D, data_bytes);
 | |
| 
 | |
|   close(fd);			/* don't need exec file any more */
 | |
| 
 | |
|   /* Take care of setuid/setgid bits. */
 | |
|   if ((rmp->mp_flags & TRACED) == 0) { /* suppress if tracing */
 | |
| 	if (s_buf[0].st_mode & I_SET_UID_BIT) {
 | |
| 		rmp->mp_effuid = s_buf[0].st_uid;
 | |
| 		tell_fs(SETUID,who, (int)rmp->mp_realuid, (int)rmp->mp_effuid);
 | |
| 	}
 | |
| 	if (s_buf[0].st_mode & I_SET_GID_BIT) {
 | |
| 		rmp->mp_effgid = s_buf[0].st_gid;
 | |
| 		tell_fs(SETGID,who, (int)rmp->mp_realgid, (int)rmp->mp_effgid);
 | |
| 	}
 | |
|   }
 | |
| 
 | |
|   /* Save offset to initial argc (for ps) */
 | |
|   rmp->mp_procargs = vsp;
 | |
| 
 | |
|   /* Fix 'mproc' fields, tell kernel that exec is done,  reset caught sigs. */
 | |
|   for (sn = 1; sn <= _NSIG; sn++) {
 | |
| 	if (sigismember(&rmp->mp_catch, sn)) {
 | |
| 		sigdelset(&rmp->mp_catch, sn);
 | |
| 		rmp->mp_sigact[sn].sa_handler = SIG_DFL;
 | |
| 		sigemptyset(&rmp->mp_sigact[sn].sa_mask);
 | |
| 	}
 | |
|   }
 | |
| 
 | |
|   rmp->mp_flags &= ~SEPARATE;	/* turn off SEPARATE bit */
 | |
|   rmp->mp_flags |= ft;		/* turn it on for separate I & D files */
 | |
|   new_sp = (char *) vsp;
 | |
| 
 | |
|   tell_fs(EXEC, who, 0, 0);	/* allow FS to handle FD_CLOEXEC files */
 | |
| 
 | |
|   /* System will save command line for debugging, ps(1) output, etc. */
 | |
|   basename = strrchr(name, '/');
 | |
|   if (basename == NULL) basename = name; else basename++;
 | |
|   strncpy(rmp->mp_name, basename, PROC_NAME_LEN-1);
 | |
|   rmp->mp_name[PROC_NAME_LEN] = '\0';
 | |
|   sys_exec(who, new_sp, basename, pc);
 | |
| 
 | |
|   /* Cause a signal if this process is traced. */
 | |
|   if (rmp->mp_flags & TRACED) check_sig(rmp->mp_pid, SIGTRAP);
 | |
| 
 | |
|   return(SUSPEND);		/* no reply, new program just runs */
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				read_header				     *
 | |
|  *===========================================================================*/
 | |
| PRIVATE int read_header(fd, ft, text_bytes, data_bytes, bss_bytes, 
 | |
| 						tot_bytes, sym_bytes, sc, pc)
 | |
| int fd;				/* file descriptor for reading exec file */
 | |
| int *ft;			/* place to return ft number */
 | |
| vir_bytes *text_bytes;		/* place to return text size */
 | |
| vir_bytes *data_bytes;		/* place to return initialized data size */
 | |
| vir_bytes *bss_bytes;		/* place to return bss size */
 | |
| phys_bytes *tot_bytes;		/* place to return total size */
 | |
| long *sym_bytes;		/* place to return symbol table size */
 | |
| vir_clicks sc;			/* stack size in clicks */
 | |
| vir_bytes *pc;			/* program entry point (initial PC) */
 | |
| {
 | |
| /* Read the header and extract the text, data, bss and total sizes from it. */
 | |
| 
 | |
|   int m, ct;
 | |
|   vir_clicks tc, dc, s_vir, dvir;
 | |
|   phys_clicks totc;
 | |
|   struct exec hdr;		/* a.out header is read in here */
 | |
| 
 | |
|   /* Read the header and check the magic number.  The standard MINIX header 
 | |
|    * is defined in <a.out.h>.  It consists of 8 chars followed by 6 longs.
 | |
|    * Then come 4 more longs that are not used here.
 | |
|    *	Byte 0: magic number 0x01
 | |
|    *	Byte 1: magic number 0x03
 | |
|    *	Byte 2: normal = 0x10 (not checked, 0 is OK), separate I/D = 0x20
 | |
|    *	Byte 3: CPU type, Intel 16 bit = 0x04, Intel 32 bit = 0x10, 
 | |
|    *            Motorola = 0x0B, Sun SPARC = 0x17
 | |
|    *	Byte 4: Header length = 0x20
 | |
|    *	Bytes 5-7 are not used.
 | |
|    *
 | |
|    *	Now come the 6 longs
 | |
|    *	Bytes  8-11: size of text segments in bytes
 | |
|    *	Bytes 12-15: size of initialized data segment in bytes
 | |
|    *	Bytes 16-19: size of bss in bytes
 | |
|    *	Bytes 20-23: program entry point
 | |
|    *	Bytes 24-27: total memory allocated to program (text, data + stack)
 | |
|    *	Bytes 28-31: size of symbol table in bytes
 | |
|    * The longs are represented in a machine dependent order,
 | |
|    * little-endian on the 8088, big-endian on the 68000.
 | |
|    * The header is followed directly by the text and data segments, and the 
 | |
|    * symbol table (if any). The sizes are given in the header. Only the 
 | |
|    * text and data segments are copied into memory by exec. The header is 
 | |
|    * used here only. The symbol table is for the benefit of a debugger and 
 | |
|    * is ignored here.
 | |
|    */
 | |
| 
 | |
|   if ((m= read(fd, &hdr, A_MINHDR)) < 2) return(ENOEXEC);
 | |
| 
 | |
|   /* Interpreted script? */
 | |
|   if (((char *) &hdr)[0] == '#' && ((char *) &hdr)[1] == '!') return(ESCRIPT);
 | |
| 
 | |
|   if (m != A_MINHDR) return(ENOEXEC);
 | |
| 
 | |
|   /* Check magic number, cpu type, and flags. */
 | |
|   if (BADMAG(hdr)) return(ENOEXEC);
 | |
| #if (CHIP == INTEL && _WORD_SIZE == 2)
 | |
|   if (hdr.a_cpu != A_I8086) return(ENOEXEC);
 | |
| #endif
 | |
| #if (CHIP == INTEL && _WORD_SIZE == 4)
 | |
|   if (hdr.a_cpu != A_I80386) return(ENOEXEC);
 | |
| #endif
 | |
|   if ((hdr.a_flags & ~(A_NSYM | A_EXEC | A_SEP)) != 0) return(ENOEXEC);
 | |
| 
 | |
|   *ft = ( (hdr.a_flags & A_SEP) ? SEPARATE : 0);    /* separate I & D or not */
 | |
| 
 | |
|   /* Get text and data sizes. */
 | |
|   *text_bytes = (vir_bytes) hdr.a_text;	/* text size in bytes */
 | |
|   *data_bytes = (vir_bytes) hdr.a_data;	/* data size in bytes */
 | |
|   *bss_bytes  = (vir_bytes) hdr.a_bss;	/* bss size in bytes */
 | |
|   *tot_bytes  = hdr.a_total;		/* total bytes to allocate for prog */
 | |
|   *sym_bytes  = hdr.a_syms;		/* symbol table size in bytes */
 | |
|   if (*tot_bytes == 0) return(ENOEXEC);
 | |
| 
 | |
|   if (*ft != SEPARATE) {
 | |
| 	/* If I & D space is not separated, it is all considered data. Text=0*/
 | |
| 	*data_bytes += *text_bytes;
 | |
| 	*text_bytes = 0;
 | |
|   }
 | |
|   *pc = hdr.a_entry;	/* initial address to start execution */
 | |
| 
 | |
|   /* Check to see if segment sizes are feasible. */
 | |
|   tc = ((unsigned long) *text_bytes + CLICK_SIZE - 1) >> CLICK_SHIFT;
 | |
|   dc = (*data_bytes + *bss_bytes + CLICK_SIZE - 1) >> CLICK_SHIFT;
 | |
|   totc = (*tot_bytes + CLICK_SIZE - 1) >> CLICK_SHIFT;
 | |
|   if (dc >= totc) return(ENOEXEC);	/* stack must be at least 1 click */
 | |
|   dvir = (*ft == SEPARATE ? 0 : tc);
 | |
|   s_vir = dvir + (totc - sc);
 | |
| #if (CHIP == INTEL && _WORD_SIZE == 2)
 | |
|   m = size_ok(*ft, tc, dc, sc, dvir, s_vir);
 | |
| #else
 | |
|   m = (dvir + dc > s_vir) ? ENOMEM : OK;
 | |
| #endif
 | |
|   ct = hdr.a_hdrlen & BYTE;		/* header length */
 | |
|   if (ct > A_MINHDR) lseek(fd, (off_t) ct, SEEK_SET); /* skip unused hdr */
 | |
|   return(m);
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				new_mem					     *
 | |
|  *===========================================================================*/
 | |
| PRIVATE int new_mem(sh_mp, text_bytes, data_bytes,bss_bytes,stk_bytes,tot_bytes)
 | |
| struct mproc *sh_mp;		/* text can be shared with this process */
 | |
| vir_bytes text_bytes;		/* text segment size in bytes */
 | |
| vir_bytes data_bytes;		/* size of initialized data in bytes */
 | |
| vir_bytes bss_bytes;		/* size of bss in bytes */
 | |
| vir_bytes stk_bytes;		/* size of initial stack segment in bytes */
 | |
| phys_bytes tot_bytes;		/* total memory to allocate, including gap */
 | |
| {
 | |
| /* Allocate new memory and release the old memory.  Change the map and report
 | |
|  * the new map to the kernel.  Zero the new core image's bss, gap and stack.
 | |
|  */
 | |
| 
 | |
|   register struct mproc *rmp;
 | |
|   vir_clicks text_clicks, data_clicks, gap_clicks, stack_clicks, tot_clicks;
 | |
|   phys_clicks new_base;
 | |
|   phys_bytes bytes, base, count, bss_offset;
 | |
|   int s;
 | |
| 
 | |
|   /* No need to allocate text if it can be shared. */
 | |
|   if (sh_mp != NULL) text_bytes = 0;
 | |
| 
 | |
|   /* Allow the old data to be swapped out to make room.  (Which is really a
 | |
|    * waste of time, because we are going to throw it away anyway.)
 | |
|    */
 | |
|   rmp->mp_flags |= WAITING;
 | |
| 
 | |
|   /* Acquire the new memory.  Each of the 4 parts: text, (data+bss), gap,
 | |
|    * and stack occupies an integral number of clicks, starting at click
 | |
|    * boundary.  The data and bss parts are run together with no space.
 | |
|    */
 | |
|   text_clicks = ((unsigned long) text_bytes + CLICK_SIZE - 1) >> CLICK_SHIFT;
 | |
|   data_clicks = (data_bytes + bss_bytes + CLICK_SIZE - 1) >> CLICK_SHIFT;
 | |
|   stack_clicks = (stk_bytes + CLICK_SIZE - 1) >> CLICK_SHIFT;
 | |
|   tot_clicks = (tot_bytes + CLICK_SIZE - 1) >> CLICK_SHIFT;
 | |
|   gap_clicks = tot_clicks - data_clicks - stack_clicks;
 | |
|   if ( (int) gap_clicks < 0) return(ENOMEM);
 | |
| 
 | |
|   /* Try to allocate memory for the new process. */
 | |
|   new_base = alloc_mem(text_clicks + tot_clicks);
 | |
|   if (new_base == NO_MEM) return(ENOMEM);
 | |
| 
 | |
|   /* We've got memory for the new core image.  Release the old one. */
 | |
|   rmp = mp;
 | |
| 
 | |
|   if (find_share(rmp, rmp->mp_ino, rmp->mp_dev, rmp->mp_ctime) == NULL) {
 | |
| 	/* No other process shares the text segment, so free it. */
 | |
| 	free_mem(rmp->mp_seg[T].mem_phys, rmp->mp_seg[T].mem_len);
 | |
|   }
 | |
|   /* Free the data and stack segments. */
 | |
|   free_mem(rmp->mp_seg[D].mem_phys,
 | |
|       rmp->mp_seg[S].mem_vir + rmp->mp_seg[S].mem_len - rmp->mp_seg[D].mem_vir);
 | |
| 
 | |
|   /* We have now passed the point of no return.  The old core image has been
 | |
|    * forever lost, memory for a new core image has been allocated.  Set up
 | |
|    * and report new map.
 | |
|    */
 | |
|   if (sh_mp != NULL) {
 | |
| 	/* Share the text segment. */
 | |
| 	rmp->mp_seg[T] = sh_mp->mp_seg[T];
 | |
|   } else {
 | |
| 	rmp->mp_seg[T].mem_phys = new_base;
 | |
| 	rmp->mp_seg[T].mem_vir = 0;
 | |
| 	rmp->mp_seg[T].mem_len = text_clicks;
 | |
|   }
 | |
|   rmp->mp_seg[D].mem_phys = new_base + text_clicks;
 | |
|   rmp->mp_seg[D].mem_vir = 0;
 | |
|   rmp->mp_seg[D].mem_len = data_clicks;
 | |
|   rmp->mp_seg[S].mem_phys = rmp->mp_seg[D].mem_phys + data_clicks + gap_clicks;
 | |
|   rmp->mp_seg[S].mem_vir = rmp->mp_seg[D].mem_vir + data_clicks + gap_clicks;
 | |
|   rmp->mp_seg[S].mem_len = stack_clicks;
 | |
| 
 | |
| #if (CHIP == M68000)
 | |
|   rmp->mp_seg[T].mem_vir = 0;
 | |
|   rmp->mp_seg[D].mem_vir = rmp->mp_seg[T].mem_len;
 | |
|   rmp->mp_seg[S].mem_vir = rmp->mp_seg[D].mem_vir + rmp->mp_seg[D].mem_len + gap_clicks;
 | |
| #endif
 | |
| 
 | |
|   sys_newmap(who, rmp->mp_seg);   /* report new map to the kernel */
 | |
| 
 | |
|   /* The old memory may have been swapped out, but the new memory is real. */
 | |
|   rmp->mp_flags &= ~(WAITING|ONSWAP|SWAPIN);
 | |
| 
 | |
|   /* Zero the bss, gap, and stack segment. */
 | |
|   bytes = (phys_bytes)(data_clicks + gap_clicks + stack_clicks) << CLICK_SHIFT;
 | |
|   base = (phys_bytes) rmp->mp_seg[D].mem_phys << CLICK_SHIFT;
 | |
|   bss_offset = (data_bytes >> CLICK_SHIFT) << CLICK_SHIFT;
 | |
|   base += bss_offset;
 | |
|   bytes -= bss_offset;
 | |
| 
 | |
|   if ((s=sys_memset(0, base, bytes)) != OK) {
 | |
| 	panic(__FILE__,"new_mem can't zero", s);
 | |
|   }
 | |
| 
 | |
|   return(OK);
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				patch_ptr				     *
 | |
|  *===========================================================================*/
 | |
| PRIVATE void patch_ptr(stack, base)
 | |
| char stack[ARG_MAX];	/* pointer to stack image within PM */
 | |
| vir_bytes base;			/* virtual address of stack base inside user */
 | |
| {
 | |
| /* When doing an exec(name, argv, envp) call, the user builds up a stack
 | |
|  * image with arg and env pointers relative to the start of the stack.  Now
 | |
|  * these pointers must be relocated, since the stack is not positioned at
 | |
|  * address 0 in the user's address space.
 | |
|  */
 | |
| 
 | |
|   char **ap, flag;
 | |
|   vir_bytes v;
 | |
| 
 | |
|   flag = 0;			/* counts number of 0-pointers seen */
 | |
|   ap = (char **) stack;		/* points initially to 'nargs' */
 | |
|   ap++;				/* now points to argv[0] */
 | |
|   while (flag < 2) {
 | |
| 	if (ap >= (char **) &stack[ARG_MAX]) return;	/* too bad */
 | |
| 	if (*ap != NULL) {
 | |
| 		v = (vir_bytes) *ap;	/* v is relative pointer */
 | |
| 		v += base;		/* relocate it */
 | |
| 		*ap = (char *) v;	/* put it back */
 | |
| 	} else {
 | |
| 		flag++;
 | |
| 	}
 | |
| 	ap++;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				insert_arg				     *
 | |
|  *===========================================================================*/
 | |
| PRIVATE int insert_arg(stack, stk_bytes, arg, replace)
 | |
| char stack[ARG_MAX];		/* pointer to stack image within PM */
 | |
| vir_bytes *stk_bytes;		/* size of initial stack */
 | |
| char *arg;			/* argument to prepend/replace as new argv[0] */
 | |
| int replace;
 | |
| {
 | |
| /* Patch the stack so that arg will become argv[0].  Be careful, the stack may
 | |
|  * be filled with garbage, although it normally looks like this:
 | |
|  *	nargs argv[0] ... argv[nargs-1] NULL envp[0] ... NULL
 | |
|  * followed by the strings "pointed" to by the argv[i] and the envp[i].  The
 | |
|  * pointers are really offsets from the start of stack.
 | |
|  * Return true iff the operation succeeded.
 | |
|  */
 | |
|   int offset, a0, a1, old_bytes = *stk_bytes;
 | |
| 
 | |
|   /* Prepending arg adds at least one string and a zero byte. */
 | |
|   offset = strlen(arg) + 1;
 | |
| 
 | |
|   a0 = (int) ((char **) stack)[1];	/* argv[0] */
 | |
|   if (a0 < 4 * PTRSIZE || a0 >= old_bytes) return(FALSE);
 | |
| 
 | |
|   a1 = a0;		/* a1 will point to the strings to be moved */
 | |
|   if (replace) {
 | |
| 	/* Move a1 to the end of argv[0][] (argv[1] if nargs > 1). */
 | |
| 	do {
 | |
| 		if (a1 == old_bytes) return(FALSE);
 | |
| 		--offset;
 | |
| 	} while (stack[a1++] != 0);
 | |
|   } else {
 | |
| 	offset += PTRSIZE;	/* new argv[0] needs new pointer in argv[] */
 | |
| 	a0 += PTRSIZE;		/* location of new argv[0][]. */
 | |
|   }
 | |
| 
 | |
|   /* stack will grow by offset bytes (or shrink by -offset bytes) */
 | |
|   if ((*stk_bytes += offset) > ARG_MAX) return(FALSE);
 | |
| 
 | |
|   /* Reposition the strings by offset bytes */
 | |
|   memmove(stack + a1 + offset, stack + a1, old_bytes - a1);
 | |
| 
 | |
|   strcpy(stack + a0, arg);	/* Put arg in the new space. */
 | |
| 
 | |
|   if (!replace) {
 | |
| 	/* Make space for a new argv[0]. */
 | |
| 	memmove(stack + 2 * PTRSIZE, stack + 1 * PTRSIZE, a0 - 2 * PTRSIZE);
 | |
| 
 | |
| 	((char **) stack)[0]++;	/* nargs++; */
 | |
|   }
 | |
|   /* Now patch up argv[] and envp[] by offset. */
 | |
|   patch_ptr(stack, (vir_bytes) offset);
 | |
|   ((char **) stack)[1] = (char *) a0;	/* set argv[0] correctly */
 | |
|   return(TRUE);
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				patch_stack				     *
 | |
|  *===========================================================================*/
 | |
| PRIVATE char *patch_stack(fd, stack, stk_bytes, script)
 | |
| int fd;				/* file descriptor to open script file */
 | |
| char stack[ARG_MAX];		/* pointer to stack image within PM */
 | |
| vir_bytes *stk_bytes;		/* size of initial stack */
 | |
| char *script;			/* name of script to interpret */
 | |
| {
 | |
| /* Patch the argument vector to include the path name of the script to be
 | |
|  * interpreted, and all strings on the #! line.  Returns the path name of
 | |
|  * the interpreter.
 | |
|  */
 | |
|   char *sp, *interp = NULL;
 | |
|   int n;
 | |
|   enum { INSERT=FALSE, REPLACE=TRUE };
 | |
| 
 | |
|   /* Make script[] the new argv[0]. */
 | |
|   if (!insert_arg(stack, stk_bytes, script, REPLACE)) return(NULL);
 | |
| 
 | |
|   if (lseek(fd, 2L, 0) == -1			/* just behind the #! */
 | |
|     || (n= read(fd, script, PATH_MAX)) < 0	/* read line one */
 | |
|     || (sp= memchr(script, '\n', n)) == NULL)	/* must be a proper line */
 | |
| 	return(NULL);
 | |
| 
 | |
|   /* Move sp backwards through script[], prepending each string to stack. */
 | |
|   for (;;) {
 | |
| 	/* skip spaces behind argument. */
 | |
| 	while (sp > script && (*--sp == ' ' || *sp == '\t')) {}
 | |
| 	if (sp == script) break;
 | |
| 
 | |
| 	sp[1] = 0;
 | |
| 	/* Move to the start of the argument. */
 | |
| 	while (sp > script && sp[-1] != ' ' && sp[-1] != '\t') --sp;
 | |
| 
 | |
| 	interp = sp;
 | |
| 	if (!insert_arg(stack, stk_bytes, sp, INSERT)) return(NULL);
 | |
|   }
 | |
| 
 | |
|   /* Round *stk_bytes up to the size of a pointer for alignment contraints. */
 | |
|   *stk_bytes= ((*stk_bytes + PTRSIZE - 1) / PTRSIZE) * PTRSIZE;
 | |
| 
 | |
|   close(fd);
 | |
|   return(interp);
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				rw_seg					     *
 | |
|  *===========================================================================*/
 | |
| PUBLIC void rw_seg(rw, fd, proc, seg, seg_bytes0)
 | |
| int rw;				/* 0 = read, 1 = write */
 | |
| int fd;				/* file descriptor to read from / write to */
 | |
| int proc;			/* process number */
 | |
| int seg;			/* T, D, or S */
 | |
| phys_bytes seg_bytes0;		/* how much is to be transferred? */
 | |
| {
 | |
| /* Transfer text or data from/to a file and copy to/from a process segment.
 | |
|  * This procedure is a little bit tricky.  The logical way to transfer a
 | |
|  * segment would be block by block and copying each block to/from the user
 | |
|  * space one at a time.  This is too slow, so we do something dirty here,
 | |
|  * namely send the user space and virtual address to the file system in the
 | |
|  * upper 10 bits of the file descriptor, and pass it the user virtual address
 | |
|  * instead of a PM address.  The file system extracts these parameters when 
 | |
|  * gets a read or write call from the process manager, which is the only 
 | |
|  * process that is permitted to use this trick.  The file system then copies 
 | |
|  * the whole segment directly to/from user space, bypassing PM completely.
 | |
|  *
 | |
|  * The byte count on read is usually smaller than the segment count, because
 | |
|  * a segment is padded out to a click multiple, and the data segment is only
 | |
|  * partially initialized.
 | |
|  */
 | |
| 
 | |
|   int new_fd, bytes, r;
 | |
|   char *ubuf_ptr;
 | |
|   struct mem_map *sp = &mproc[proc].mp_seg[seg];
 | |
|   phys_bytes seg_bytes = seg_bytes0;
 | |
| 
 | |
|   new_fd = (proc << 7) | (seg << 5) | fd;
 | |
|   ubuf_ptr = (char *) ((vir_bytes) sp->mem_vir << CLICK_SHIFT);
 | |
| 
 | |
|   while (seg_bytes != 0) {
 | |
| #define PM_CHUNK_SIZE 8192
 | |
| 	bytes = MIN((INT_MAX / PM_CHUNK_SIZE) * PM_CHUNK_SIZE, seg_bytes);
 | |
| 	if (rw == 0) {
 | |
| 		r = read(new_fd, ubuf_ptr, bytes);
 | |
| 	} else {
 | |
| 		r = write(new_fd, ubuf_ptr, bytes);
 | |
| 	}
 | |
| 	if (r != bytes) break;
 | |
| 	ubuf_ptr += bytes;
 | |
| 	seg_bytes -= bytes;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				find_share				     *
 | |
|  *===========================================================================*/
 | |
| PUBLIC struct mproc *find_share(mp_ign, ino, dev, ctime)
 | |
| struct mproc *mp_ign;		/* process that should not be looked at */
 | |
| ino_t ino;			/* parameters that uniquely identify a file */
 | |
| dev_t dev;
 | |
| time_t ctime;
 | |
| {
 | |
| /* Look for a process that is the file <ino, dev, ctime> in execution.  Don't
 | |
|  * accidentally "find" mp_ign, because it is the process on whose behalf this
 | |
|  * call is made.
 | |
|  */
 | |
|   struct mproc *sh_mp;
 | |
|   for (sh_mp = &mproc[0]; sh_mp < &mproc[NR_PROCS]; sh_mp++) {
 | |
| 
 | |
| 	if (!(sh_mp->mp_flags & SEPARATE)) continue;
 | |
| 	if (sh_mp == mp_ign) continue;
 | |
| 	if (sh_mp->mp_ino != ino) continue;
 | |
| 	if (sh_mp->mp_dev != dev) continue;
 | |
| 	if (sh_mp->mp_ctime != ctime) continue;
 | |
| 	return sh_mp;
 | |
|   }
 | |
|   return(NULL);
 | |
| }
 | 
