864 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			864 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /**
 | |
|  * @file
 | |
|  * This is the IPv4 packet segmentation and reassembly implementation.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Copyright (c) 2001-2004 Swedish Institute of Computer Science.
 | |
|  * All rights reserved. 
 | |
|  * 
 | |
|  * Redistribution and use in source and binary forms, with or without modification, 
 | |
|  * are permitted provided that the following conditions are met:
 | |
|  *
 | |
|  * 1. Redistributions of source code must retain the above copyright notice,
 | |
|  *    this list of conditions and the following disclaimer.
 | |
|  * 2. Redistributions in binary form must reproduce the above copyright notice,
 | |
|  *    this list of conditions and the following disclaimer in the documentation
 | |
|  *    and/or other materials provided with the distribution.
 | |
|  * 3. The name of the author may not be used to endorse or promote products
 | |
|  *    derived from this software without specific prior written permission. 
 | |
|  *
 | |
|  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 
 | |
|  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 
 | |
|  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT 
 | |
|  * SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, 
 | |
|  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT 
 | |
|  * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 
 | |
|  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 
 | |
|  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING 
 | |
|  * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY 
 | |
|  * OF SUCH DAMAGE.
 | |
|  *
 | |
|  * This file is part of the lwIP TCP/IP stack.
 | |
|  * 
 | |
|  * Author: Jani Monoses <jani@iv.ro> 
 | |
|  *         Simon Goldschmidt
 | |
|  * original reassembly code by Adam Dunkels <adam@sics.se>
 | |
|  * 
 | |
|  */
 | |
| 
 | |
| #include "lwip/opt.h"
 | |
| #include "lwip/ip_frag.h"
 | |
| #include "lwip/def.h"
 | |
| #include "lwip/inet_chksum.h"
 | |
| #include "lwip/netif.h"
 | |
| #include "lwip/snmp.h"
 | |
| #include "lwip/stats.h"
 | |
| #include "lwip/icmp.h"
 | |
| 
 | |
| #include <string.h>
 | |
| 
 | |
| #if IP_REASSEMBLY
 | |
| /**
 | |
|  * The IP reassembly code currently has the following limitations:
 | |
|  * - IP header options are not supported
 | |
|  * - fragments must not overlap (e.g. due to different routes),
 | |
|  *   currently, overlapping or duplicate fragments are thrown away
 | |
|  *   if IP_REASS_CHECK_OVERLAP=1 (the default)!
 | |
|  *
 | |
|  * @todo: work with IP header options
 | |
|  */
 | |
| 
 | |
| /** Setting this to 0, you can turn off checking the fragments for overlapping
 | |
|  * regions. The code gets a little smaller. Only use this if you know that
 | |
|  * overlapping won't occur on your network! */
 | |
| #ifndef IP_REASS_CHECK_OVERLAP
 | |
| #define IP_REASS_CHECK_OVERLAP 1
 | |
| #endif /* IP_REASS_CHECK_OVERLAP */
 | |
| 
 | |
| /** Set to 0 to prevent freeing the oldest datagram when the reassembly buffer is
 | |
|  * full (IP_REASS_MAX_PBUFS pbufs are enqueued). The code gets a little smaller.
 | |
|  * Datagrams will be freed by timeout only. Especially useful when MEMP_NUM_REASSDATA
 | |
|  * is set to 1, so one datagram can be reassembled at a time, only. */
 | |
| #ifndef IP_REASS_FREE_OLDEST
 | |
| #define IP_REASS_FREE_OLDEST 1
 | |
| #endif /* IP_REASS_FREE_OLDEST */
 | |
| 
 | |
| #define IP_REASS_FLAG_LASTFRAG 0x01
 | |
| 
 | |
| /** This is a helper struct which holds the starting
 | |
|  * offset and the ending offset of this fragment to
 | |
|  * easily chain the fragments.
 | |
|  * It has the same packing requirements as the IP header, since it replaces
 | |
|  * the IP header in memory in incoming fragments (after copying it) to keep
 | |
|  * track of the various fragments. (-> If the IP header doesn't need packing,
 | |
|  * this struct doesn't need packing, too.)
 | |
|  */
 | |
| #ifdef PACK_STRUCT_USE_INCLUDES
 | |
| #  include "arch/bpstruct.h"
 | |
| #endif
 | |
| PACK_STRUCT_BEGIN
 | |
| struct ip_reass_helper {
 | |
|   PACK_STRUCT_FIELD(struct pbuf *next_pbuf);
 | |
|   PACK_STRUCT_FIELD(u16_t start);
 | |
|   PACK_STRUCT_FIELD(u16_t end);
 | |
| } PACK_STRUCT_STRUCT;
 | |
| PACK_STRUCT_END
 | |
| #ifdef PACK_STRUCT_USE_INCLUDES
 | |
| #  include "arch/epstruct.h"
 | |
| #endif
 | |
| 
 | |
| #define IP_ADDRESSES_AND_ID_MATCH(iphdrA, iphdrB)  \
 | |
|   (ip_addr_cmp(&(iphdrA)->src, &(iphdrB)->src) && \
 | |
|    ip_addr_cmp(&(iphdrA)->dest, &(iphdrB)->dest) && \
 | |
|    IPH_ID(iphdrA) == IPH_ID(iphdrB)) ? 1 : 0
 | |
| 
 | |
| /* global variables */
 | |
| static struct ip_reassdata *reassdatagrams;
 | |
| static u16_t ip_reass_pbufcount;
 | |
| 
 | |
| /* function prototypes */
 | |
| static void ip_reass_dequeue_datagram(struct ip_reassdata *ipr, struct ip_reassdata *prev);
 | |
| static int ip_reass_free_complete_datagram(struct ip_reassdata *ipr, struct ip_reassdata *prev);
 | |
| 
 | |
| /**
 | |
|  * Reassembly timer base function
 | |
|  * for both NO_SYS == 0 and 1 (!).
 | |
|  *
 | |
|  * Should be called every 1000 msec (defined by IP_TMR_INTERVAL).
 | |
|  */
 | |
| void
 | |
| ip_reass_tmr(void)
 | |
| {
 | |
|   struct ip_reassdata *r, *prev = NULL;
 | |
| 
 | |
|   r = reassdatagrams;
 | |
|   while (r != NULL) {
 | |
|     /* Decrement the timer. Once it reaches 0,
 | |
|      * clean up the incomplete fragment assembly */
 | |
|     if (r->timer > 0) {
 | |
|       r->timer--;
 | |
|       LWIP_DEBUGF(IP_REASS_DEBUG, ("ip_reass_tmr: timer dec %"U16_F"\n",(u16_t)r->timer));
 | |
|       prev = r;
 | |
|       r = r->next;
 | |
|     } else {
 | |
|       /* reassembly timed out */
 | |
|       struct ip_reassdata *tmp;
 | |
|       LWIP_DEBUGF(IP_REASS_DEBUG, ("ip_reass_tmr: timer timed out\n"));
 | |
|       tmp = r;
 | |
|       /* get the next pointer before freeing */
 | |
|       r = r->next;
 | |
|       /* free the helper struct and all enqueued pbufs */
 | |
|       ip_reass_free_complete_datagram(tmp, prev);
 | |
|      }
 | |
|    }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Free a datagram (struct ip_reassdata) and all its pbufs.
 | |
|  * Updates the total count of enqueued pbufs (ip_reass_pbufcount),
 | |
|  * SNMP counters and sends an ICMP time exceeded packet.
 | |
|  *
 | |
|  * @param ipr datagram to free
 | |
|  * @param prev the previous datagram in the linked list
 | |
|  * @return the number of pbufs freed
 | |
|  */
 | |
| static int
 | |
| ip_reass_free_complete_datagram(struct ip_reassdata *ipr, struct ip_reassdata *prev)
 | |
| {
 | |
|   u16_t pbufs_freed = 0;
 | |
|   u8_t clen;
 | |
|   struct pbuf *p;
 | |
|   struct ip_reass_helper *iprh;
 | |
| 
 | |
|   LWIP_ASSERT("prev != ipr", prev != ipr);
 | |
|   if (prev != NULL) {
 | |
|     LWIP_ASSERT("prev->next == ipr", prev->next == ipr);
 | |
|   }
 | |
| 
 | |
|   snmp_inc_ipreasmfails();
 | |
| #if LWIP_ICMP
 | |
|   iprh = (struct ip_reass_helper *)ipr->p->payload;
 | |
|   if (iprh->start == 0) {
 | |
|     /* The first fragment was received, send ICMP time exceeded. */
 | |
|     /* First, de-queue the first pbuf from r->p. */
 | |
|     p = ipr->p;
 | |
|     ipr->p = iprh->next_pbuf;
 | |
|     /* Then, copy the original header into it. */
 | |
|     SMEMCPY(p->payload, &ipr->iphdr, IP_HLEN);
 | |
|     icmp_time_exceeded(p, ICMP_TE_FRAG);
 | |
|     clen = pbuf_clen(p);
 | |
|     LWIP_ASSERT("pbufs_freed + clen <= 0xffff", pbufs_freed + clen <= 0xffff);
 | |
|     pbufs_freed += clen;
 | |
|     pbuf_free(p);
 | |
|   }
 | |
| #endif /* LWIP_ICMP */
 | |
| 
 | |
|   /* First, free all received pbufs.  The individual pbufs need to be released 
 | |
|      separately as they have not yet been chained */
 | |
|   p = ipr->p;
 | |
|   while (p != NULL) {
 | |
|     struct pbuf *pcur;
 | |
|     iprh = (struct ip_reass_helper *)p->payload;
 | |
|     pcur = p;
 | |
|     /* get the next pointer before freeing */
 | |
|     p = iprh->next_pbuf;
 | |
|     clen = pbuf_clen(pcur);
 | |
|     LWIP_ASSERT("pbufs_freed + clen <= 0xffff", pbufs_freed + clen <= 0xffff);
 | |
|     pbufs_freed += clen;
 | |
|     pbuf_free(pcur);
 | |
|   }
 | |
|   /* Then, unchain the struct ip_reassdata from the list and free it. */
 | |
|   ip_reass_dequeue_datagram(ipr, prev);
 | |
|   LWIP_ASSERT("ip_reass_pbufcount >= clen", ip_reass_pbufcount >= pbufs_freed);
 | |
|   ip_reass_pbufcount -= pbufs_freed;
 | |
| 
 | |
|   return pbufs_freed;
 | |
| }
 | |
| 
 | |
| #if IP_REASS_FREE_OLDEST
 | |
| /**
 | |
|  * Free the oldest datagram to make room for enqueueing new fragments.
 | |
|  * The datagram 'fraghdr' belongs to is not freed!
 | |
|  *
 | |
|  * @param fraghdr IP header of the current fragment
 | |
|  * @param pbufs_needed number of pbufs needed to enqueue
 | |
|  *        (used for freeing other datagrams if not enough space)
 | |
|  * @return the number of pbufs freed
 | |
|  */
 | |
| static int
 | |
| ip_reass_remove_oldest_datagram(struct ip_hdr *fraghdr, int pbufs_needed)
 | |
| {
 | |
|   /* @todo Can't we simply remove the last datagram in the
 | |
|    *       linked list behind reassdatagrams?
 | |
|    */
 | |
|   struct ip_reassdata *r, *oldest, *prev;
 | |
|   int pbufs_freed = 0, pbufs_freed_current;
 | |
|   int other_datagrams;
 | |
| 
 | |
|   /* Free datagrams until being allowed to enqueue 'pbufs_needed' pbufs,
 | |
|    * but don't free the datagram that 'fraghdr' belongs to! */
 | |
|   do {
 | |
|     oldest = NULL;
 | |
|     prev = NULL;
 | |
|     other_datagrams = 0;
 | |
|     r = reassdatagrams;
 | |
|     while (r != NULL) {
 | |
|       if (!IP_ADDRESSES_AND_ID_MATCH(&r->iphdr, fraghdr)) {
 | |
|         /* Not the same datagram as fraghdr */
 | |
|         other_datagrams++;
 | |
|         if (oldest == NULL) {
 | |
|           oldest = r;
 | |
|         } else if (r->timer <= oldest->timer) {
 | |
|           /* older than the previous oldest */
 | |
|           oldest = r;
 | |
|         }
 | |
|       }
 | |
|       if (r->next != NULL) {
 | |
|         prev = r;
 | |
|       }
 | |
|       r = r->next;
 | |
|     }
 | |
|     if (oldest != NULL) {
 | |
|       pbufs_freed_current = ip_reass_free_complete_datagram(oldest, prev);
 | |
|       pbufs_freed += pbufs_freed_current;
 | |
|     }
 | |
|   } while ((pbufs_freed < pbufs_needed) && (other_datagrams > 1));
 | |
|   return pbufs_freed;
 | |
| }
 | |
| #endif /* IP_REASS_FREE_OLDEST */
 | |
| 
 | |
| /**
 | |
|  * Enqueues a new fragment into the fragment queue
 | |
|  * @param fraghdr points to the new fragments IP hdr
 | |
|  * @param clen number of pbufs needed to enqueue (used for freeing other datagrams if not enough space)
 | |
|  * @return A pointer to the queue location into which the fragment was enqueued
 | |
|  */
 | |
| static struct ip_reassdata*
 | |
| ip_reass_enqueue_new_datagram(struct ip_hdr *fraghdr, int clen)
 | |
| {
 | |
|   struct ip_reassdata* ipr;
 | |
|   /* No matching previous fragment found, allocate a new reassdata struct */
 | |
|   ipr = (struct ip_reassdata *)memp_malloc(MEMP_REASSDATA);
 | |
|   if (ipr == NULL) {
 | |
| #if IP_REASS_FREE_OLDEST
 | |
|     if (ip_reass_remove_oldest_datagram(fraghdr, clen) >= clen) {
 | |
|       ipr = (struct ip_reassdata *)memp_malloc(MEMP_REASSDATA);
 | |
|     }
 | |
|     if (ipr == NULL)
 | |
| #endif /* IP_REASS_FREE_OLDEST */
 | |
|     {
 | |
|       IPFRAG_STATS_INC(ip_frag.memerr);
 | |
|       LWIP_DEBUGF(IP_REASS_DEBUG,("Failed to alloc reassdata struct\n"));
 | |
|       return NULL;
 | |
|     }
 | |
|   }
 | |
|   memset(ipr, 0, sizeof(struct ip_reassdata));
 | |
|   ipr->timer = IP_REASS_MAXAGE;
 | |
| 
 | |
|   /* enqueue the new structure to the front of the list */
 | |
|   ipr->next = reassdatagrams;
 | |
|   reassdatagrams = ipr;
 | |
|   /* copy the ip header for later tests and input */
 | |
|   /* @todo: no ip options supported? */
 | |
|   SMEMCPY(&(ipr->iphdr), fraghdr, IP_HLEN);
 | |
|   return ipr;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Dequeues a datagram from the datagram queue. Doesn't deallocate the pbufs.
 | |
|  * @param ipr points to the queue entry to dequeue
 | |
|  */
 | |
| static void
 | |
| ip_reass_dequeue_datagram(struct ip_reassdata *ipr, struct ip_reassdata *prev)
 | |
| {
 | |
|   
 | |
|   /* dequeue the reass struct  */
 | |
|   if (reassdatagrams == ipr) {
 | |
|     /* it was the first in the list */
 | |
|     reassdatagrams = ipr->next;
 | |
|   } else {
 | |
|     /* it wasn't the first, so it must have a valid 'prev' */
 | |
|     LWIP_ASSERT("sanity check linked list", prev != NULL);
 | |
|     prev->next = ipr->next;
 | |
|   }
 | |
| 
 | |
|   /* now we can free the ip_reass struct */
 | |
|   memp_free(MEMP_REASSDATA, ipr);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Chain a new pbuf into the pbuf list that composes the datagram.  The pbuf list
 | |
|  * will grow over time as  new pbufs are rx.
 | |
|  * Also checks that the datagram passes basic continuity checks (if the last
 | |
|  * fragment was received at least once).
 | |
|  * @param root_p points to the 'root' pbuf for the current datagram being assembled.
 | |
|  * @param new_p points to the pbuf for the current fragment
 | |
|  * @return 0 if invalid, >0 otherwise
 | |
|  */
 | |
| static int
 | |
| ip_reass_chain_frag_into_datagram_and_validate(struct ip_reassdata *ipr, struct pbuf *new_p)
 | |
| {
 | |
|   struct ip_reass_helper *iprh, *iprh_tmp, *iprh_prev=NULL;
 | |
|   struct pbuf *q;
 | |
|   u16_t offset,len;
 | |
|   struct ip_hdr *fraghdr;
 | |
|   int valid = 1;
 | |
| 
 | |
|   /* Extract length and fragment offset from current fragment */
 | |
|   fraghdr = (struct ip_hdr*)new_p->payload; 
 | |
|   len = ntohs(IPH_LEN(fraghdr)) - IPH_HL(fraghdr) * 4;
 | |
|   offset = (ntohs(IPH_OFFSET(fraghdr)) & IP_OFFMASK) * 8;
 | |
| 
 | |
|   /* overwrite the fragment's ip header from the pbuf with our helper struct,
 | |
|    * and setup the embedded helper structure. */
 | |
|   /* make sure the struct ip_reass_helper fits into the IP header */
 | |
|   LWIP_ASSERT("sizeof(struct ip_reass_helper) <= IP_HLEN",
 | |
|               sizeof(struct ip_reass_helper) <= IP_HLEN);
 | |
|   iprh = (struct ip_reass_helper*)new_p->payload;
 | |
|   iprh->next_pbuf = NULL;
 | |
|   iprh->start = offset;
 | |
|   iprh->end = offset + len;
 | |
| 
 | |
|   /* Iterate through until we either get to the end of the list (append),
 | |
|    * or we find on with a larger offset (insert). */
 | |
|   for (q = ipr->p; q != NULL;) {
 | |
|     iprh_tmp = (struct ip_reass_helper*)q->payload;
 | |
|     if (iprh->start < iprh_tmp->start) {
 | |
|       /* the new pbuf should be inserted before this */
 | |
|       iprh->next_pbuf = q;
 | |
|       if (iprh_prev != NULL) {
 | |
|         /* not the fragment with the lowest offset */
 | |
| #if IP_REASS_CHECK_OVERLAP
 | |
|         if ((iprh->start < iprh_prev->end) || (iprh->end > iprh_tmp->start)) {
 | |
|           /* fragment overlaps with previous or following, throw away */
 | |
|           goto freepbuf;
 | |
|         }
 | |
| #endif /* IP_REASS_CHECK_OVERLAP */
 | |
|         iprh_prev->next_pbuf = new_p;
 | |
|       } else {
 | |
|         /* fragment with the lowest offset */
 | |
|         ipr->p = new_p;
 | |
|       }
 | |
|       break;
 | |
|     } else if(iprh->start == iprh_tmp->start) {
 | |
|       /* received the same datagram twice: no need to keep the datagram */
 | |
|       goto freepbuf;
 | |
| #if IP_REASS_CHECK_OVERLAP
 | |
|     } else if(iprh->start < iprh_tmp->end) {
 | |
|       /* overlap: no need to keep the new datagram */
 | |
|       goto freepbuf;
 | |
| #endif /* IP_REASS_CHECK_OVERLAP */
 | |
|     } else {
 | |
|       /* Check if the fragments received so far have no wholes. */
 | |
|       if (iprh_prev != NULL) {
 | |
|         if (iprh_prev->end != iprh_tmp->start) {
 | |
|           /* There is a fragment missing between the current
 | |
|            * and the previous fragment */
 | |
|           valid = 0;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     q = iprh_tmp->next_pbuf;
 | |
|     iprh_prev = iprh_tmp;
 | |
|   }
 | |
| 
 | |
|   /* If q is NULL, then we made it to the end of the list. Determine what to do now */
 | |
|   if (q == NULL) {
 | |
|     if (iprh_prev != NULL) {
 | |
|       /* this is (for now), the fragment with the highest offset:
 | |
|        * chain it to the last fragment */
 | |
| #if IP_REASS_CHECK_OVERLAP
 | |
|       LWIP_ASSERT("check fragments don't overlap", iprh_prev->end <= iprh->start);
 | |
| #endif /* IP_REASS_CHECK_OVERLAP */
 | |
|       iprh_prev->next_pbuf = new_p;
 | |
|       if (iprh_prev->end != iprh->start) {
 | |
|         valid = 0;
 | |
|       }
 | |
|     } else {
 | |
| #if IP_REASS_CHECK_OVERLAP
 | |
|       LWIP_ASSERT("no previous fragment, this must be the first fragment!",
 | |
|         ipr->p == NULL);
 | |
| #endif /* IP_REASS_CHECK_OVERLAP */
 | |
|       /* this is the first fragment we ever received for this ip datagram */
 | |
|       ipr->p = new_p;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* At this point, the validation part begins: */
 | |
|   /* If we already received the last fragment */
 | |
|   if ((ipr->flags & IP_REASS_FLAG_LASTFRAG) != 0) {
 | |
|     /* and had no wholes so far */
 | |
|     if (valid) {
 | |
|       /* then check if the rest of the fragments is here */
 | |
|       /* Check if the queue starts with the first datagram */
 | |
|       if (((struct ip_reass_helper*)ipr->p->payload)->start != 0) {
 | |
|         valid = 0;
 | |
|       } else {
 | |
|         /* and check that there are no wholes after this datagram */
 | |
|         iprh_prev = iprh;
 | |
|         q = iprh->next_pbuf;
 | |
|         while (q != NULL) {
 | |
|           iprh = (struct ip_reass_helper*)q->payload;
 | |
|           if (iprh_prev->end != iprh->start) {
 | |
|             valid = 0;
 | |
|             break;
 | |
|           }
 | |
|           iprh_prev = iprh;
 | |
|           q = iprh->next_pbuf;
 | |
|         }
 | |
|         /* if still valid, all fragments are received
 | |
|          * (because to the MF==0 already arrived */
 | |
|         if (valid) {
 | |
|           LWIP_ASSERT("sanity check", ipr->p != NULL);
 | |
|           LWIP_ASSERT("sanity check",
 | |
|             ((struct ip_reass_helper*)ipr->p->payload) != iprh);
 | |
|           LWIP_ASSERT("validate_datagram:next_pbuf!=NULL",
 | |
|             iprh->next_pbuf == NULL);
 | |
|           LWIP_ASSERT("validate_datagram:datagram end!=datagram len",
 | |
|             iprh->end == ipr->datagram_len);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     /* If valid is 0 here, there are some fragments missing in the middle
 | |
|      * (since MF == 0 has already arrived). Such datagrams simply time out if
 | |
|      * no more fragments are received... */
 | |
|     return valid;
 | |
|   }
 | |
|   /* If we come here, not all fragments were received, yet! */
 | |
|   return 0; /* not yet valid! */
 | |
| #if IP_REASS_CHECK_OVERLAP
 | |
| freepbuf:
 | |
|   ip_reass_pbufcount -= pbuf_clen(new_p);
 | |
|   pbuf_free(new_p);
 | |
|   return 0;
 | |
| #endif /* IP_REASS_CHECK_OVERLAP */
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Reassembles incoming IP fragments into an IP datagram.
 | |
|  *
 | |
|  * @param p points to a pbuf chain of the fragment
 | |
|  * @return NULL if reassembly is incomplete, ? otherwise
 | |
|  */
 | |
| struct pbuf *
 | |
| ip_reass(struct pbuf *p)
 | |
| {
 | |
|   struct pbuf *r;
 | |
|   struct ip_hdr *fraghdr;
 | |
|   struct ip_reassdata *ipr;
 | |
|   struct ip_reass_helper *iprh;
 | |
|   u16_t offset, len;
 | |
|   u8_t clen;
 | |
|   struct ip_reassdata *ipr_prev = NULL;
 | |
| 
 | |
|   IPFRAG_STATS_INC(ip_frag.recv);
 | |
|   snmp_inc_ipreasmreqds();
 | |
| 
 | |
|   fraghdr = (struct ip_hdr*)p->payload;
 | |
| 
 | |
|   if ((IPH_HL(fraghdr) * 4) != IP_HLEN) {
 | |
|     LWIP_DEBUGF(IP_REASS_DEBUG,("ip_reass: IP options currently not supported!\n"));
 | |
|     IPFRAG_STATS_INC(ip_frag.err);
 | |
|     goto nullreturn;
 | |
|   }
 | |
| 
 | |
|   offset = (ntohs(IPH_OFFSET(fraghdr)) & IP_OFFMASK) * 8;
 | |
|   len = ntohs(IPH_LEN(fraghdr)) - IPH_HL(fraghdr) * 4;
 | |
| 
 | |
|   /* Check if we are allowed to enqueue more datagrams. */
 | |
|   clen = pbuf_clen(p);
 | |
|   if ((ip_reass_pbufcount + clen) > IP_REASS_MAX_PBUFS) {
 | |
| #if IP_REASS_FREE_OLDEST
 | |
|     if (!ip_reass_remove_oldest_datagram(fraghdr, clen) ||
 | |
|         ((ip_reass_pbufcount + clen) > IP_REASS_MAX_PBUFS))
 | |
| #endif /* IP_REASS_FREE_OLDEST */
 | |
|     {
 | |
|       /* No datagram could be freed and still too many pbufs enqueued */
 | |
|       LWIP_DEBUGF(IP_REASS_DEBUG,("ip_reass: Overflow condition: pbufct=%d, clen=%d, MAX=%d\n",
 | |
|         ip_reass_pbufcount, clen, IP_REASS_MAX_PBUFS));
 | |
|       IPFRAG_STATS_INC(ip_frag.memerr);
 | |
|       /* @todo: send ICMP time exceeded here? */
 | |
|       /* drop this pbuf */
 | |
|       goto nullreturn;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* Look for the datagram the fragment belongs to in the current datagram queue,
 | |
|    * remembering the previous in the queue for later dequeueing. */
 | |
|   for (ipr = reassdatagrams; ipr != NULL; ipr = ipr->next) {
 | |
|     /* Check if the incoming fragment matches the one currently present
 | |
|        in the reassembly buffer. If so, we proceed with copying the
 | |
|        fragment into the buffer. */
 | |
|     if (IP_ADDRESSES_AND_ID_MATCH(&ipr->iphdr, fraghdr)) {
 | |
|       LWIP_DEBUGF(IP_REASS_DEBUG, ("ip_reass: matching previous fragment ID=%"X16_F"\n",
 | |
|         ntohs(IPH_ID(fraghdr))));
 | |
|       IPFRAG_STATS_INC(ip_frag.cachehit);
 | |
|       break;
 | |
|     }
 | |
|     ipr_prev = ipr;
 | |
|   }
 | |
| 
 | |
|   if (ipr == NULL) {
 | |
|   /* Enqueue a new datagram into the datagram queue */
 | |
|     ipr = ip_reass_enqueue_new_datagram(fraghdr, clen);
 | |
|     /* Bail if unable to enqueue */
 | |
|     if(ipr == NULL) {
 | |
|       goto nullreturn;
 | |
|     }
 | |
|   } else {
 | |
|     if (((ntohs(IPH_OFFSET(fraghdr)) & IP_OFFMASK) == 0) && 
 | |
|       ((ntohs(IPH_OFFSET(&ipr->iphdr)) & IP_OFFMASK) != 0)) {
 | |
|       /* ipr->iphdr is not the header from the first fragment, but fraghdr is
 | |
|        * -> copy fraghdr into ipr->iphdr since we want to have the header
 | |
|        * of the first fragment (for ICMP time exceeded and later, for copying
 | |
|        * all options, if supported)*/
 | |
|       SMEMCPY(&ipr->iphdr, fraghdr, IP_HLEN);
 | |
|     }
 | |
|   }
 | |
|   /* Track the current number of pbufs current 'in-flight', in order to limit 
 | |
|   the number of fragments that may be enqueued at any one time */
 | |
|   ip_reass_pbufcount += clen;
 | |
| 
 | |
|   /* At this point, we have either created a new entry or pointing 
 | |
|    * to an existing one */
 | |
| 
 | |
|   /* check for 'no more fragments', and update queue entry*/
 | |
|   if ((IPH_OFFSET(fraghdr) & PP_NTOHS(IP_MF)) == 0) {
 | |
|     ipr->flags |= IP_REASS_FLAG_LASTFRAG;
 | |
|     ipr->datagram_len = offset + len;
 | |
|     LWIP_DEBUGF(IP_REASS_DEBUG,
 | |
|      ("ip_reass: last fragment seen, total len %"S16_F"\n",
 | |
|       ipr->datagram_len));
 | |
|   }
 | |
|   /* find the right place to insert this pbuf */
 | |
|   /* @todo: trim pbufs if fragments are overlapping */
 | |
|   if (ip_reass_chain_frag_into_datagram_and_validate(ipr, p)) {
 | |
|     /* the totally last fragment (flag more fragments = 0) was received at least
 | |
|      * once AND all fragments are received */
 | |
|     ipr->datagram_len += IP_HLEN;
 | |
| 
 | |
|     /* save the second pbuf before copying the header over the pointer */
 | |
|     r = ((struct ip_reass_helper*)ipr->p->payload)->next_pbuf;
 | |
| 
 | |
|     /* copy the original ip header back to the first pbuf */
 | |
|     fraghdr = (struct ip_hdr*)(ipr->p->payload);
 | |
|     SMEMCPY(fraghdr, &ipr->iphdr, IP_HLEN);
 | |
|     IPH_LEN_SET(fraghdr, htons(ipr->datagram_len));
 | |
|     IPH_OFFSET_SET(fraghdr, 0);
 | |
|     IPH_CHKSUM_SET(fraghdr, 0);
 | |
|     /* @todo: do we need to set calculate the correct checksum? */
 | |
|     IPH_CHKSUM_SET(fraghdr, inet_chksum(fraghdr, IP_HLEN));
 | |
| 
 | |
|     p = ipr->p;
 | |
| 
 | |
|     /* chain together the pbufs contained within the reass_data list. */
 | |
|     while(r != NULL) {
 | |
|       iprh = (struct ip_reass_helper*)r->payload;
 | |
| 
 | |
|       /* hide the ip header for every succeding fragment */
 | |
|       pbuf_header(r, -IP_HLEN);
 | |
|       pbuf_cat(p, r);
 | |
|       r = iprh->next_pbuf;
 | |
|     }
 | |
|     /* release the sources allocate for the fragment queue entry */
 | |
|     ip_reass_dequeue_datagram(ipr, ipr_prev);
 | |
| 
 | |
|     /* and adjust the number of pbufs currently queued for reassembly. */
 | |
|     ip_reass_pbufcount -= pbuf_clen(p);
 | |
| 
 | |
|     /* Return the pbuf chain */
 | |
|     return p;
 | |
|   }
 | |
|   /* the datagram is not (yet?) reassembled completely */
 | |
|   LWIP_DEBUGF(IP_REASS_DEBUG,("ip_reass_pbufcount: %d out\n", ip_reass_pbufcount));
 | |
|   return NULL;
 | |
| 
 | |
| nullreturn:
 | |
|   LWIP_DEBUGF(IP_REASS_DEBUG,("ip_reass: nullreturn\n"));
 | |
|   IPFRAG_STATS_INC(ip_frag.drop);
 | |
|   pbuf_free(p);
 | |
|   return NULL;
 | |
| }
 | |
| #endif /* IP_REASSEMBLY */
 | |
| 
 | |
| #if IP_FRAG
 | |
| #if IP_FRAG_USES_STATIC_BUF
 | |
| static u8_t buf[LWIP_MEM_ALIGN_SIZE(IP_FRAG_MAX_MTU + MEM_ALIGNMENT - 1)];
 | |
| #else /* IP_FRAG_USES_STATIC_BUF */
 | |
| 
 | |
| #if !LWIP_NETIF_TX_SINGLE_PBUF
 | |
| /** Allocate a new struct pbuf_custom_ref */
 | |
| static struct pbuf_custom_ref*
 | |
| ip_frag_alloc_pbuf_custom_ref(void)
 | |
| {
 | |
|   return (struct pbuf_custom_ref*)memp_malloc(MEMP_FRAG_PBUF);
 | |
| }
 | |
| 
 | |
| /** Free a struct pbuf_custom_ref */
 | |
| static void
 | |
| ip_frag_free_pbuf_custom_ref(struct pbuf_custom_ref* p)
 | |
| {
 | |
|   LWIP_ASSERT("p != NULL", p != NULL);
 | |
|   memp_free(MEMP_FRAG_PBUF, p);
 | |
| }
 | |
| 
 | |
| /** Free-callback function to free a 'struct pbuf_custom_ref', called by
 | |
|  * pbuf_free. */
 | |
| static void
 | |
| ipfrag_free_pbuf_custom(struct pbuf *p)
 | |
| {
 | |
|   struct pbuf_custom_ref *pcr = (struct pbuf_custom_ref*)p;
 | |
|   LWIP_ASSERT("pcr != NULL", pcr != NULL);
 | |
|   LWIP_ASSERT("pcr == p", (void*)pcr == (void*)p);
 | |
|   if (pcr->original != NULL) {
 | |
|     pbuf_free(pcr->original);
 | |
|   }
 | |
|   ip_frag_free_pbuf_custom_ref(pcr);
 | |
| }
 | |
| #endif /* !LWIP_NETIF_TX_SINGLE_PBUF */
 | |
| #endif /* IP_FRAG_USES_STATIC_BUF */
 | |
| 
 | |
| /**
 | |
|  * Fragment an IP datagram if too large for the netif.
 | |
|  *
 | |
|  * Chop the datagram in MTU sized chunks and send them in order
 | |
|  * by using a fixed size static memory buffer (PBUF_REF) or
 | |
|  * point PBUF_REFs into p (depending on IP_FRAG_USES_STATIC_BUF).
 | |
|  *
 | |
|  * @param p ip packet to send
 | |
|  * @param netif the netif on which to send
 | |
|  * @param dest destination ip address to which to send
 | |
|  *
 | |
|  * @return ERR_OK if sent successfully, err_t otherwise
 | |
|  */
 | |
| err_t 
 | |
| ip_frag(struct pbuf *p, struct netif *netif, ip_addr_t *dest)
 | |
| {
 | |
|   struct pbuf *rambuf;
 | |
| #if IP_FRAG_USES_STATIC_BUF
 | |
|   struct pbuf *header;
 | |
| #else
 | |
| #if !LWIP_NETIF_TX_SINGLE_PBUF
 | |
|   struct pbuf *newpbuf;
 | |
| #endif
 | |
|   struct ip_hdr *original_iphdr;
 | |
| #endif
 | |
|   struct ip_hdr *iphdr;
 | |
|   u16_t nfb;
 | |
|   u16_t left, cop;
 | |
|   u16_t mtu = netif->mtu;
 | |
|   u16_t ofo, omf;
 | |
|   u16_t last;
 | |
|   u16_t poff = IP_HLEN;
 | |
|   u16_t tmp;
 | |
| #if !IP_FRAG_USES_STATIC_BUF && !LWIP_NETIF_TX_SINGLE_PBUF
 | |
|   u16_t newpbuflen = 0;
 | |
|   u16_t left_to_copy;
 | |
| #endif
 | |
| 
 | |
|   /* Get a RAM based MTU sized pbuf */
 | |
| #if IP_FRAG_USES_STATIC_BUF
 | |
|   /* When using a static buffer, we use a PBUF_REF, which we will
 | |
|    * use to reference the packet (without link header).
 | |
|    * Layer and length is irrelevant.
 | |
|    */
 | |
|   rambuf = pbuf_alloc(PBUF_LINK, 0, PBUF_REF);
 | |
|   if (rambuf == NULL) {
 | |
|     LWIP_DEBUGF(IP_REASS_DEBUG, ("ip_frag: pbuf_alloc(PBUF_LINK, 0, PBUF_REF) failed\n"));
 | |
|     return ERR_MEM;
 | |
|   }
 | |
|   rambuf->tot_len = rambuf->len = mtu;
 | |
|   rambuf->payload = LWIP_MEM_ALIGN((void *)buf);
 | |
| 
 | |
|   /* Copy the IP header in it */
 | |
|   iphdr = (struct ip_hdr *)rambuf->payload;
 | |
|   SMEMCPY(iphdr, p->payload, IP_HLEN);
 | |
| #else /* IP_FRAG_USES_STATIC_BUF */
 | |
|   original_iphdr = (struct ip_hdr *)p->payload;
 | |
|   iphdr = original_iphdr;
 | |
| #endif /* IP_FRAG_USES_STATIC_BUF */
 | |
| 
 | |
|   /* Save original offset */
 | |
|   tmp = ntohs(IPH_OFFSET(iphdr));
 | |
|   ofo = tmp & IP_OFFMASK;
 | |
|   omf = tmp & IP_MF;
 | |
| 
 | |
|   left = p->tot_len - IP_HLEN;
 | |
| 
 | |
|   nfb = (mtu - IP_HLEN) / 8;
 | |
| 
 | |
|   while (left) {
 | |
|     last = (left <= mtu - IP_HLEN);
 | |
| 
 | |
|     /* Set new offset and MF flag */
 | |
|     tmp = omf | (IP_OFFMASK & (ofo));
 | |
|     if (!last) {
 | |
|       tmp = tmp | IP_MF;
 | |
|     }
 | |
| 
 | |
|     /* Fill this fragment */
 | |
|     cop = last ? left : nfb * 8;
 | |
| 
 | |
| #if IP_FRAG_USES_STATIC_BUF
 | |
|     poff += pbuf_copy_partial(p, (u8_t*)iphdr + IP_HLEN, cop, poff);
 | |
| #else /* IP_FRAG_USES_STATIC_BUF */
 | |
| #if LWIP_NETIF_TX_SINGLE_PBUF
 | |
|     rambuf = pbuf_alloc(PBUF_IP, cop, PBUF_RAM);
 | |
|     if (rambuf == NULL) {
 | |
|       return ERR_MEM;
 | |
|     }
 | |
|     LWIP_ASSERT("this needs a pbuf in one piece!",
 | |
|       (rambuf->len == rambuf->tot_len) && (rambuf->next == NULL));
 | |
|     poff += pbuf_copy_partial(p, rambuf->payload, cop, poff);
 | |
|     /* make room for the IP header */
 | |
|     if(pbuf_header(rambuf, IP_HLEN)) {
 | |
|       pbuf_free(rambuf);
 | |
|       return ERR_MEM;
 | |
|     }
 | |
|     /* fill in the IP header */
 | |
|     SMEMCPY(rambuf->payload, original_iphdr, IP_HLEN);
 | |
|     iphdr = rambuf->payload;
 | |
| #else /* LWIP_NETIF_TX_SINGLE_PBUF */
 | |
|     /* When not using a static buffer, create a chain of pbufs.
 | |
|      * The first will be a PBUF_RAM holding the link and IP header.
 | |
|      * The rest will be PBUF_REFs mirroring the pbuf chain to be fragged,
 | |
|      * but limited to the size of an mtu.
 | |
|      */
 | |
|     rambuf = pbuf_alloc(PBUF_LINK, IP_HLEN, PBUF_RAM);
 | |
|     if (rambuf == NULL) {
 | |
|       return ERR_MEM;
 | |
|     }
 | |
|     LWIP_ASSERT("this needs a pbuf in one piece!",
 | |
|                 (p->len >= (IP_HLEN)));
 | |
|     SMEMCPY(rambuf->payload, original_iphdr, IP_HLEN);
 | |
|     iphdr = (struct ip_hdr *)rambuf->payload;
 | |
| 
 | |
|     /* Can just adjust p directly for needed offset. */
 | |
|     p->payload = (u8_t *)p->payload + poff;
 | |
|     p->len -= poff;
 | |
| 
 | |
|     left_to_copy = cop;
 | |
|     while (left_to_copy) {
 | |
|       struct pbuf_custom_ref *pcr;
 | |
|       newpbuflen = (left_to_copy < p->len) ? left_to_copy : p->len;
 | |
|       /* Is this pbuf already empty? */
 | |
|       if (!newpbuflen) {
 | |
|         p = p->next;
 | |
|         continue;
 | |
|       }
 | |
|       pcr = ip_frag_alloc_pbuf_custom_ref();
 | |
|       if (pcr == NULL) {
 | |
|         pbuf_free(rambuf);
 | |
|         return ERR_MEM;
 | |
|       }
 | |
|       /* Mirror this pbuf, although we might not need all of it. */
 | |
|       newpbuf = pbuf_alloced_custom(PBUF_RAW, newpbuflen, PBUF_REF, &pcr->pc, p->payload, newpbuflen);
 | |
|       if (newpbuf == NULL) {
 | |
|         ip_frag_free_pbuf_custom_ref(pcr);
 | |
|         pbuf_free(rambuf);
 | |
|         return ERR_MEM;
 | |
|       }
 | |
|       pbuf_ref(p);
 | |
|       pcr->original = p;
 | |
|       pcr->pc.custom_free_function = ipfrag_free_pbuf_custom;
 | |
| 
 | |
|       /* Add it to end of rambuf's chain, but using pbuf_cat, not pbuf_chain
 | |
|        * so that it is removed when pbuf_dechain is later called on rambuf.
 | |
|        */
 | |
|       pbuf_cat(rambuf, newpbuf);
 | |
|       left_to_copy -= newpbuflen;
 | |
|       if (left_to_copy) {
 | |
|         p = p->next;
 | |
|       }
 | |
|     }
 | |
|     poff = newpbuflen;
 | |
| #endif /* LWIP_NETIF_TX_SINGLE_PBUF */
 | |
| #endif /* IP_FRAG_USES_STATIC_BUF */
 | |
| 
 | |
|     /* Correct header */
 | |
|     IPH_OFFSET_SET(iphdr, htons(tmp));
 | |
|     IPH_LEN_SET(iphdr, htons(cop + IP_HLEN));
 | |
|     IPH_CHKSUM_SET(iphdr, 0);
 | |
|     IPH_CHKSUM_SET(iphdr, inet_chksum(iphdr, IP_HLEN));
 | |
| 
 | |
| #if IP_FRAG_USES_STATIC_BUF
 | |
|     if (last) {
 | |
|       pbuf_realloc(rambuf, left + IP_HLEN);
 | |
|     }
 | |
| 
 | |
|     /* This part is ugly: we alloc a RAM based pbuf for 
 | |
|      * the link level header for each chunk and then 
 | |
|      * free it.A PBUF_ROM style pbuf for which pbuf_header
 | |
|      * worked would make things simpler.
 | |
|      */
 | |
|     header = pbuf_alloc(PBUF_LINK, 0, PBUF_RAM);
 | |
|     if (header != NULL) {
 | |
|       pbuf_chain(header, rambuf);
 | |
|       netif->output(netif, header, dest);
 | |
|       IPFRAG_STATS_INC(ip_frag.xmit);
 | |
|       snmp_inc_ipfragcreates();
 | |
|       pbuf_free(header);
 | |
|     } else {
 | |
|       LWIP_DEBUGF(IP_REASS_DEBUG, ("ip_frag: pbuf_alloc() for header failed\n"));
 | |
|       pbuf_free(rambuf);
 | |
|       return ERR_MEM;
 | |
|     }
 | |
| #else /* IP_FRAG_USES_STATIC_BUF */
 | |
|     /* No need for separate header pbuf - we allowed room for it in rambuf
 | |
|      * when allocated.
 | |
|      */
 | |
|     netif->output(netif, rambuf, dest);
 | |
|     IPFRAG_STATS_INC(ip_frag.xmit);
 | |
| 
 | |
|     /* Unfortunately we can't reuse rambuf - the hardware may still be
 | |
|      * using the buffer. Instead we free it (and the ensuing chain) and
 | |
|      * recreate it next time round the loop. If we're lucky the hardware
 | |
|      * will have already sent the packet, the free will really free, and
 | |
|      * there will be zero memory penalty.
 | |
|      */
 | |
|     
 | |
|     pbuf_free(rambuf);
 | |
| #endif /* IP_FRAG_USES_STATIC_BUF */
 | |
|     left -= cop;
 | |
|     ofo += nfb;
 | |
|   }
 | |
| #if IP_FRAG_USES_STATIC_BUF
 | |
|   pbuf_free(rambuf);
 | |
| #endif /* IP_FRAG_USES_STATIC_BUF */
 | |
|   snmp_inc_ipfragoks();
 | |
|   return ERR_OK;
 | |
| }
 | |
| #endif /* IP_FRAG */
 | 
