639 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			639 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
		
			Executable File
		
	
	
	
	
| /* This file contains essentially all of the process and message handling.
 | |
|  * Together with "mpx.s" it forms the lowest layer of the MINIX kernel.
 | |
|  * There is one entry point from the outside:
 | |
|  *
 | |
|  *   sys_call: 	      a system call, i.e., the kernel is trapped with an INT 
 | |
|  *
 | |
|  * As well as several entry points used from the interrupt and task level:
 | |
|  *
 | |
|  *   lock_notify:     notify a process of a system event
 | |
|  *   lock_send:	      send a message to a process
 | |
|  *   lock_ready:      put a process on one of the ready queues 
 | |
|  *   lock_unready:    remove a process from the ready queues
 | |
|  *   lock_sched:      a process has run too long; schedule another one
 | |
|  *
 | |
|  * Changes:
 | |
|  *         , 2005     better protection in sys_call()  (Jorrit N. Herder)
 | |
|  *   May 26, 2005     optimized message passing functions  (Jorrit N. Herder)
 | |
|  *   May 24, 2005     new, queued NOTIFY system call  (Jorrit N. Herder)
 | |
|  *   Oct 28, 2004     new, non-blocking SEND and RECEIVE  (Jorrit N. Herder)
 | |
|  *   Oct 28, 2004     rewrite of sys_call() function  (Jorrit N. Herder)
 | |
|  *   Aug 19, 2004     generalized multilevel scheduling  (Jorrit N. Herder)
 | |
|  *
 | |
|  * The code here is critical to make everything work and is important for the
 | |
|  * overall performance of the system. A large fraction of the code deals with
 | |
|  * list manipulation. To make this both easy to understand and fast to execute 
 | |
|  * pointer pointers are used throughout the code. Pointer pointers prevent
 | |
|  * exceptions for the head or tail of a linked list. 
 | |
|  *
 | |
|  *  node_t *queue, *new_node;	// assume these as global variables
 | |
|  *  node_t **xpp = &queue; 	// get pointer pointer to head of queue 
 | |
|  *  while (*xpp != NULL) 	// find last pointer of the linked list
 | |
|  *      xpp = &(*xpp)->next;	// get pointer to next pointer 
 | |
|  *  *xpp = new_node;		// now replace the end (the NULL pointer) 
 | |
|  *  new_node->next = NULL;	// and mark the new end of the list
 | |
|  * 
 | |
|  * For example, when adding a new node to the end of the list, one normally 
 | |
|  * makes an exception for an empty list and looks up the end of the list for 
 | |
|  * nonempty lists. As shown above, this is not required with pointer pointers.
 | |
|  */
 | |
| 
 | |
| #include "kernel.h"
 | |
| #include <minix/callnr.h>
 | |
| #include <minix/com.h>
 | |
| #include "proc.h"
 | |
| #include "const.h"
 | |
| #include "debug.h"
 | |
| #include "ipc.h"
 | |
| #include "sendmask.h"
 | |
| 
 | |
| 
 | |
| /* Scheduling and message passing functions. The functions are available to 
 | |
|  * other parts of the kernel through lock_...(). The lock temporarily disables 
 | |
|  * interrupts to prevent race conditions. 
 | |
|  */
 | |
| FORWARD _PROTOTYPE( int mini_send, (struct proc *caller_ptr, int dst,
 | |
| 		message *m_ptr, unsigned flags) );
 | |
| FORWARD _PROTOTYPE( int mini_receive, (struct proc *caller_ptr, int src,
 | |
| 		message *m_ptr, unsigned flags) );
 | |
| FORWARD _PROTOTYPE( int mini_notify, (struct proc *caller_ptr, int dst,
 | |
| 		message *m_ptr ) );
 | |
| 
 | |
| FORWARD _PROTOTYPE( void ready, (struct proc *rp) );
 | |
| FORWARD _PROTOTYPE( void unready, (struct proc *rp) );
 | |
| FORWARD _PROTOTYPE( void sched, (struct proc *rp) );
 | |
| FORWARD _PROTOTYPE( void pick_proc, (void) );
 | |
| 
 | |
| #define BuildMess(m,n) \
 | |
| 	(m).NOTIFY_SOURCE = (n)->n_source, \
 | |
| 	(m).NOTIFY_TYPE = (n)->n_type, \
 | |
| 	(m).NOTIFY_FLAGS = (n)->n_flags, \
 | |
| 	(m).NOTIFY_ARG = (n)->n_arg;
 | |
| 
 | |
| #if (CHIP == INTEL)
 | |
| #define CopyMess(s,sp,sm,dp,dm) \
 | |
| 	cp_mess(s, (sp)->p_memmap[D].mem_phys, (vir_bytes)sm, (dp)->p_memmap[D].mem_phys, (vir_bytes)dm)
 | |
| #endif /* (CHIP == INTEL) */
 | |
| 
 | |
| #if (CHIP == M68000)
 | |
| /* M68000 does not have cp_mess() in assembly like INTEL. Declare prototype
 | |
|  * for cp_mess() here and define the function below. Also define CopyMess. 
 | |
|  */
 | |
| #endif /* (CHIP == M68000) */
 | |
| 
 | |
| 
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				sys_call				     * 
 | |
|  *===========================================================================*/
 | |
| PUBLIC int sys_call(call_nr, src_dst, m_ptr)
 | |
| int call_nr;			/* system call number and flags */
 | |
| int src_dst;			/* src to receive from or dst to send to */
 | |
| message *m_ptr;			/* pointer to message in the caller's space */
 | |
| {
 | |
| /* System calls are done by trapping to the kernel with an INT instruction.
 | |
|  * The trap is caught and sys_call() is called to send or receive a message
 | |
|  * (or both). The caller is always given by 'proc_ptr'.
 | |
|  */
 | |
|   register struct proc *caller_ptr = proc_ptr;	/* get pointer to caller */
 | |
|   int function = call_nr & SYSCALL_FUNC;	/* get system call function */
 | |
|   unsigned flags = call_nr & SYSCALL_FLAGS;	/* get flags */
 | |
|   int mask_entry;				/* bit to check in send mask */
 | |
|   int result;					/* the system call's result */
 | |
|   vir_bytes vb;			/* message buffer pointer as vir_bytes */
 | |
|   vir_clicks vlo, vhi;		/* virtual clicks containing message to send */
 | |
| 
 | |
|   /* Check if the process has privileges for the requested call. Calls to the 
 | |
|    * kernel may only be SENDREC, because tasks always reply and may not block 
 | |
|    * if the caller doesn't do receive(). 
 | |
|    */
 | |
|   if (! (caller_ptr->p_call_mask & (1 << function)) || 
 | |
|           (iskerneln(src_dst) && function != SENDREC))  
 | |
|       return(ECALLDENIED);	
 | |
|   
 | |
|   /* Require a valid source and/ or destination process, unless echoing. */
 | |
|   if (! (isokprocn(src_dst) || src_dst == ANY || function == ECHO))  
 | |
|       return(EBADSRCDST);
 | |
| 
 | |
|   /* Check validity of message pointer. */
 | |
|   vb = (vir_bytes) m_ptr;
 | |
|   vlo = vb >> CLICK_SHIFT;	/* vir click for bottom of message */
 | |
|   vhi = (vb + MESS_SIZE - 1) >> CLICK_SHIFT;	/* vir click for top of msg */
 | |
| #if ALLOW_GAP_MESSAGES
 | |
|   /* This check allows a message to be anywhere in data or stack or gap. 
 | |
|    * It will have to be made more elaborate later for machines which
 | |
|    * don't have the gap mapped.
 | |
|    */
 | |
|   if (vlo < caller_ptr->p_memmap[D].mem_vir || vlo > vhi ||
 | |
|       vhi >= caller_ptr->p_memmap[S].mem_vir + caller_ptr->p_memmap[S].mem_len) 
 | |
|         return(EFAULT); 
 | |
| #else
 | |
|   /* Check for messages wrapping around top of memory or outside data seg. */
 | |
|   if (vhi < vlo ||
 | |
|       vhi - caller_ptr->p_memmap[D].mem_vir >= caller_ptr->p_memmap[D].mem_len) 
 | |
|         return(EFAULT); 
 | |
| #endif
 | |
| 
 | |
|   /* Now check if the call is known and try to perform the request. The only
 | |
|    * system calls that exist in MINIX are sending and receiving messages.
 | |
|    *   - SENDREC: combines SEND and RECEIVE in a single system call
 | |
|    *   - SEND:    sender blocks until its message has been delivered
 | |
|    *   - RECEIVE: receiver blocks until an acceptable message has arrived
 | |
|    *   - NOTIFY:  sender continues; either directly deliver the message or
 | |
|    *              queue the notification message until it can be delivered  
 | |
|    *   - ECHO:    the message directly will be echoed to the sender 
 | |
|    */
 | |
|   switch(function) {
 | |
|   case SENDREC:				/* has FRESH_ANSWER flag */		
 | |
|       /* fall through */
 | |
|   case SEND:			
 | |
|       if (isemptyn(src_dst)) { 			
 | |
|           result = EDEADDST;		/* cannot send to the dead */
 | |
|           break;
 | |
|       }
 | |
| 
 | |
| #if DEAD_CODE	/* to be replaced by better mechanism */
 | |
|       mask_entry = isuserp(proc_addr(src_dst)) ? USER_PROC_NR : src_dst;
 | |
|       if (! isallowed(caller_ptr->p_sendmask, mask_entry)) {
 | |
|           kprintf("WARNING: sys_call denied %d ", caller_ptr->p_nr);
 | |
|           kprintf("sending to %d\n", proc_addr(src_dst)->p_nr);
 | |
|           result = ECALLDENIED;		/* call denied by send mask */
 | |
|           break;
 | |
|       } 
 | |
| #endif
 | |
| 
 | |
|       result = mini_send(caller_ptr, src_dst, m_ptr, flags);
 | |
|       if (function == SEND || result != OK) {	
 | |
|           break;				/* done, or SEND failed */
 | |
|       }						/* fall through for SENDREC */
 | |
|   case RECEIVE:			
 | |
|       result = mini_receive(caller_ptr, src_dst, m_ptr, flags);
 | |
|       break;
 | |
|   case NOTIFY:
 | |
|       result = mini_notify(caller_ptr, src_dst, m_ptr);
 | |
|       break;
 | |
|   case ECHO:
 | |
|       kprintf("Echo message from process %s\n", proc_nr(caller_ptr));
 | |
|       CopyMess(caller_ptr->p_nr, caller_ptr, m_ptr, caller_ptr, m_ptr);
 | |
|       result = OK;
 | |
|       break;
 | |
|   default:
 | |
|       result = EBADCALL;			/* illegal system call */
 | |
|   }
 | |
|   
 | |
|   /* If the caller made a successfull, blocking system call it's priority may
 | |
|    * be raised. The priority have been lowered if a process consumed to many 
 | |
|    * full quantums in a row to prevent damage from infinite loops 
 | |
|    */
 | |
|   if ((caller_ptr->p_priority > caller_ptr->p_max_priority) && 
 | |
|          ! (flags & NON_BLOCKING) && (result == OK)) {
 | |
|       caller_ptr->p_priority = caller_ptr->p_max_priority;
 | |
|       caller_ptr->p_full_quantums = QUANTUMS(caller_ptr->p_priority);
 | |
|   }
 | |
| 
 | |
|   /* Now, return the result of the system call to the caller. */
 | |
|   return(result);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				mini_send				     * 
 | |
|  *===========================================================================*/
 | |
| PRIVATE int mini_send(caller_ptr, dst, m_ptr, flags)
 | |
| register struct proc *caller_ptr;	/* who is trying to send a message? */
 | |
| int dst;				/* to whom is message being sent? */
 | |
| message *m_ptr;				/* pointer to message buffer */
 | |
| unsigned flags;				/* system call flags */
 | |
| {
 | |
| /* Send a message from 'caller_ptr' to 'dst'. If 'dst' is blocked waiting
 | |
|  * for this message, copy the message to it and unblock 'dst'. If 'dst' is
 | |
|  * not waiting at all, or is waiting for another source, queue 'caller_ptr'.
 | |
|  */
 | |
|   register struct proc *dst_ptr = proc_addr(dst);
 | |
|   register struct proc **xpp;
 | |
|   register struct proc *xp;
 | |
| 
 | |
|   /* Check for deadlock by 'caller_ptr' and 'dst' sending to each other. */
 | |
|   xp = dst_ptr;
 | |
|   while (xp->p_rts_flags & SENDING) {		/* check while sending */
 | |
|   	xp = proc_addr(xp->p_sendto);		/* get xp's destination */
 | |
|   	if (xp == caller_ptr) return(ELOCKED);	/* deadlock if cyclic */
 | |
|   }
 | |
| 
 | |
|   /* Check if 'dst' is blocked waiting for this message. The destination's 
 | |
|    * SENDING flag may be set when its SENDREC call blocked while sending.  
 | |
|    */
 | |
|   if ( (dst_ptr->p_rts_flags & (RECEIVING | SENDING)) == RECEIVING &&
 | |
|        (dst_ptr->p_getfrom == ANY || dst_ptr->p_getfrom == caller_ptr->p_nr)) {
 | |
| 	/* Destination is indeed waiting for this message. */
 | |
| 	CopyMess(caller_ptr->p_nr, caller_ptr, m_ptr, dst_ptr,
 | |
| 		 dst_ptr->p_messbuf);
 | |
| 	if ((dst_ptr->p_rts_flags &= ~RECEIVING) == 0) ready(dst_ptr);
 | |
|   } else if ( ! (flags & NON_BLOCKING)) {
 | |
| 	/* Destination is not waiting.  Block and queue caller. */
 | |
| 	caller_ptr->p_messbuf = m_ptr;
 | |
| 	if (caller_ptr->p_rts_flags == 0) unready(caller_ptr);
 | |
| 	caller_ptr->p_rts_flags |= SENDING;
 | |
| 	caller_ptr->p_sendto = dst;
 | |
| 
 | |
| 	/* Process is now blocked.  Put in on the destination's queue. */
 | |
| 	xpp = &dst_ptr->p_caller_q;		/* find end of list */
 | |
| 	while (*xpp != NIL_PROC) xpp = &(*xpp)->p_q_link;
 | |
| 	*xpp = caller_ptr;			/* add caller to end */
 | |
| 	caller_ptr->p_q_link = NIL_PROC;	/* mark new end of list */
 | |
|   } else {
 | |
| 	return(ENOTREADY);
 | |
|   }
 | |
|   return(OK);
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				mini_receive				     * 
 | |
|  *===========================================================================*/
 | |
| PRIVATE int mini_receive(caller_ptr, src, m_ptr, flags)
 | |
| register struct proc *caller_ptr;	/* process trying to get message */
 | |
| int src;				/* which message source is wanted */
 | |
| message *m_ptr;				/* pointer to message buffer */
 | |
| unsigned flags;				/* system call flags */
 | |
| {
 | |
| /* A process or task wants to get a message.  If a message is already queued,
 | |
|  * acquire it and deblock the sender.  If no message from the desired source
 | |
|  * is available block the caller, unless the flags don't allow blocking.  
 | |
|  */
 | |
|   register struct proc **xpp;
 | |
|   register struct notification **ntf_q_pp;
 | |
|   message m;
 | |
|   int bit_nr;
 | |
| 
 | |
|   /* Check to see if a message from desired source is already available.
 | |
|    * The caller's SENDING flag may be set if SENDREC couldn't send. If it is
 | |
|    * set, the process should be blocked.
 | |
|    */
 | |
|   if (!(caller_ptr->p_rts_flags & SENDING)) {
 | |
| 
 | |
|     /* Check caller queue. Use pointer pointers to keep code simple. */
 | |
|     xpp = &caller_ptr->p_caller_q;
 | |
|     while (*xpp != NIL_PROC) {
 | |
| 	if (src == ANY || src == proc_nr(*xpp)) {
 | |
| 	    /* Found acceptable message. Copy it and update status. */
 | |
| 	    CopyMess((*xpp)->p_nr, *xpp, (*xpp)->p_messbuf, caller_ptr, m_ptr);
 | |
|             if (((*xpp)->p_rts_flags &= ~SENDING) == 0) ready(*xpp);
 | |
|             *xpp = (*xpp)->p_q_link;		/* remove from queue */
 | |
|             return(OK);				/* report success */
 | |
| 	}
 | |
| 	xpp = &(*xpp)->p_q_link;		/* proceed to next */
 | |
|     }
 | |
| 
 | |
|     /* Check if there are pending notifications, except for SENDREC. */
 | |
|     if (! (flags & FRESH_ANSWER)) {
 | |
| 
 | |
|         ntf_q_pp = &caller_ptr->p_ntf_q;	/* get pointer pointer */
 | |
|         while (*ntf_q_pp != NULL) {
 | |
|             if (src == ANY || src == (*ntf_q_pp)->n_source) {
 | |
| 		/* Found notification. Assemble and copy message. */
 | |
| 		BuildMess(m, *ntf_q_pp);
 | |
|                 CopyMess((*ntf_q_pp)->n_source, proc_addr(HARDWARE), &m, 
 | |
|                 	caller_ptr, m_ptr);
 | |
|                 /* Remove notification from queue and bit map. */
 | |
|                 bit_nr = (int) (*ntf_q_pp - ¬ify_buffer[0]);  
 | |
|                 *ntf_q_pp = (*ntf_q_pp)->n_next;/* remove from queue */
 | |
|                 free_bit(bit_nr, notify_bitmap, NR_NOTIFY_BUFS);
 | |
|                 return(OK);			/* report success */
 | |
| 	    }
 | |
| 	    ntf_q_pp = &(*ntf_q_pp)->n_next;	/* proceed to next */
 | |
|         }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* No suitable message is available or the caller couldn't send in SENDREC. 
 | |
|    * Block the process trying to receive, unless the flags tell otherwise.
 | |
|    */
 | |
|   if ( ! (flags & NON_BLOCKING)) {
 | |
|       caller_ptr->p_getfrom = src;		
 | |
|       caller_ptr->p_messbuf = m_ptr;
 | |
|       if (caller_ptr->p_rts_flags == 0) unready(caller_ptr);
 | |
|       caller_ptr->p_rts_flags |= RECEIVING;		
 | |
|       return(OK);
 | |
|   } else {
 | |
|       return(ENOTREADY);
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				mini_notify				     * 
 | |
|  *===========================================================================*/
 | |
| PRIVATE int mini_notify(caller_ptr, dst, m_ptr)
 | |
| register struct proc *caller_ptr;	/* process trying to notify */
 | |
| int dst;				/* which process to notify */
 | |
| message *m_ptr;				/* pointer to message buffer */
 | |
| {
 | |
|   register struct proc *dst_ptr = proc_addr(dst);
 | |
|   register struct notification *ntf_p ;
 | |
|   register struct notification **ntf_q_pp;
 | |
|   int ntf_index;
 | |
|   message ntf_mess;
 | |
| 
 | |
|   /* Check to see if target is blocked waiting for this message. A process 
 | |
|    * can be both sending and receiving during a SENDREC system call.
 | |
|    */
 | |
|   if ( (dst_ptr->p_rts_flags & (RECEIVING|SENDING)) == RECEIVING &&
 | |
|        (dst_ptr->p_getfrom == ANY || dst_ptr->p_getfrom == caller_ptr->p_nr)) {
 | |
| 
 | |
| 	/* Destination is indeed waiting for this message. */
 | |
| 	CopyMess(proc_nr(caller_ptr), caller_ptr, m_ptr, 
 | |
| 		dst_ptr, dst_ptr->p_messbuf);
 | |
| 	dst_ptr->p_rts_flags &= ~RECEIVING;	/* deblock destination */
 | |
| 	if (dst_ptr->p_rts_flags == 0) ready(dst_ptr);
 | |
| 	return(OK);
 | |
|   } 
 | |
| 
 | |
|   /* Destination is not ready. Add the notification to the pending queue. 
 | |
|    * Get pointer to notification message. Don't copy if already in kernel. 
 | |
|    */
 | |
|   if (! iskernelp(caller_ptr)) {
 | |
|       CopyMess(proc_nr(caller_ptr), caller_ptr, m_ptr, 
 | |
|           proc_addr(HARDWARE), &ntf_mess);
 | |
|       m_ptr = &ntf_mess;
 | |
|   }
 | |
| 
 | |
|   /* Enqueue the message. Existing notifications with the same source
 | |
|    * and type are overwritten with newer ones. New notifications that
 | |
|    * are not yet on the list are added to the end.
 | |
|    */
 | |
|   ntf_q_pp = &dst_ptr->p_ntf_q;
 | |
|   while (*ntf_q_pp != NULL) {
 | |
|       /* Replace notifications with same source and type. */
 | |
|       if ((*ntf_q_pp)->n_type == m_ptr->NOTIFY_TYPE && 
 | |
|               (*ntf_q_pp)->n_source == proc_nr(caller_ptr)) {
 | |
|           (*ntf_q_pp)->n_flags = m_ptr->NOTIFY_FLAGS;
 | |
|           (*ntf_q_pp)->n_arg = m_ptr->NOTIFY_ARG;
 | |
|           return(OK);
 | |
|       }
 | |
|       ntf_q_pp = &(*ntf_q_pp)->n_next;
 | |
|   }
 | |
| 
 | |
|   /* Add to end of queue (found above). Get a free notification buffer. */
 | |
|   if ((ntf_index = alloc_bit(notify_bitmap, NR_NOTIFY_BUFS)) < 0)  
 | |
|       return(ENOSPC);
 | |
|   ntf_p = ¬ify_buffer[ntf_index];	/* get pointer to buffer */
 | |
|   ntf_p->n_source = proc_nr(caller_ptr);/* store notification data */
 | |
|   ntf_p->n_type = m_ptr->NOTIFY_TYPE;
 | |
|   ntf_p->n_flags = m_ptr->NOTIFY_FLAGS;
 | |
|   ntf_p->n_arg = m_ptr->NOTIFY_ARG;
 | |
|   *ntf_q_pp = ntf_p;			/* add to end of queue */
 | |
|   ntf_p->n_next = NULL;			/* mark new end of queue */
 | |
|   return(OK);
 | |
| }
 | |
| 
 | |
| /*==========================================================================*
 | |
|  *				lock_notify				    *
 | |
|  *==========================================================================*/
 | |
| PUBLIC int lock_notify(dst, m_ptr)
 | |
| int dst;			/* to whom is message being sent? */
 | |
| message *m_ptr;			/* pointer to message buffer */
 | |
| {
 | |
| /* Safe gateway to mini_notify() for tasks and interrupt handlers. MINIX 
 | |
|  * kernel is not reentrant, which means to interrupts are disabled after 
 | |
|  * the first kernel entry (hardware interrupt, trap, or exception). Locking
 | |
|  * work is done by temporarily disabling interrupts. 
 | |
|  */
 | |
|   int result;
 | |
| 
 | |
|   /* Exception or interrupt occurred, thus already locked. */
 | |
|   if (k_reenter >= 0) {
 | |
|       result = mini_notify(proc_addr(HARDWARE), dst, m_ptr); 
 | |
|   }
 | |
| 
 | |
|   /* Call from task level, locking is required. */
 | |
|   else {
 | |
|       lock(0, "notify");
 | |
|       result = mini_notify(proc_ptr, dst, m_ptr); 
 | |
|       unlock(0);
 | |
|   }
 | |
|   return(result);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				ready					     * 
 | |
|  *===========================================================================*/
 | |
| PRIVATE void ready(rp)
 | |
| register struct proc *rp;	/* this process is now runnable */
 | |
| {
 | |
| /* Add 'rp' to one of the queues of runnable processes.  */
 | |
|   register int q = rp->p_priority;		/* scheduling queue to use */
 | |
| 
 | |
| #if ENABLE_K_DEBUGGING
 | |
|   if(rp->p_ready) {
 | |
| 	kprintf("ready() already ready process\n", NO_NUM);
 | |
|   }
 | |
|   rp->p_ready = 1;
 | |
| #endif
 | |
| 
 | |
|   /* Processes, in principle, are added to the end of the queue. However, 
 | |
|    * user processes are added in front of the queue, because this is a bit 
 | |
|    * fairer to I/O bound processes. 
 | |
|    */
 | |
|   if (rdy_head[q] == NIL_PROC) {		/* add to empty queue */
 | |
|       rdy_head[q] = rdy_tail[q] = rp; 		/* create a new queue */
 | |
|       rp->p_nextready = NIL_PROC;		/* mark new end */
 | |
|   } 
 | |
|   else if (rp->p_flags & SCHED_Q_HEAD) {	/* add to head of queue */
 | |
|       rp->p_nextready = rdy_head[q];		/* chain head of queue */
 | |
|       rdy_head[q] = rp;				/* set new queue head */
 | |
|   } 
 | |
|   else {					/* add to tail of queue */
 | |
|       rdy_tail[q]->p_nextready = rp;		/* chain tail of queue */	
 | |
|       rdy_tail[q] = rp;				/* set new queue tail */
 | |
|       rp->p_nextready = NIL_PROC;		/* mark new end */
 | |
|   }
 | |
|   pick_proc();					/* select next to run */
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				unready					     * 
 | |
|  *===========================================================================*/
 | |
| PRIVATE void unready(rp)
 | |
| register struct proc *rp;	/* this process is no longer runnable */
 | |
| {
 | |
| /* A process has blocked. See ready for a description of the queues. */
 | |
| 
 | |
|   register int q = rp->p_priority;		/* queue to use */
 | |
|   register struct proc **xpp;			/* iterate over queue */
 | |
|   register struct proc *prev_xp;
 | |
| 
 | |
| #if ENABLE_K_DEBUGGING
 | |
|   if(!rp->p_ready) {
 | |
| 	kprintf("unready() already unready process\n", NO_NUM);
 | |
|   }
 | |
|   rp->p_ready = 0;
 | |
| #endif
 | |
| 
 | |
|   /* Side-effect for kernel: check if the task's stack still is ok? */
 | |
|   if (iskernelp(rp)) { 				
 | |
| 	if (*rp->p_stguard != STACK_GUARD)
 | |
| 		panic("stack overrun by task", proc_nr(rp));
 | |
|   }
 | |
| 
 | |
|   /* Now make sure that the process is not in its ready queue. Remove the 
 | |
|    * process if it is found. A process can be made unready even if it is not 
 | |
|    * running by being sent a signal that kills it.
 | |
|    */
 | |
|   prev_xp = NIL_PROC;				
 | |
|   for (xpp = &rdy_head[q]; *xpp != NIL_PROC; xpp = &(*xpp)->p_nextready) {
 | |
| 
 | |
|       if (*xpp == rp) {				/* found process to remove */
 | |
|           *xpp = (*xpp)->p_nextready;		/* replace with next chain */
 | |
|           if (rp == rdy_tail[q])		/* queue tail removed */
 | |
|               rdy_tail[q] = prev_xp;		/* set new tail */
 | |
|           if (rp == proc_ptr || rp == next_ptr)	/* active process removed */
 | |
|               pick_proc();			/* pick new process to run */
 | |
|           break;
 | |
|       }
 | |
|       prev_xp = *xpp;				/* save previous in chain */
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				sched					     * 
 | |
|  *===========================================================================*/
 | |
| PRIVATE void sched(sched_ptr)
 | |
| struct proc *sched_ptr;				/* quantum eating process */
 | |
| {
 | |
|   int q;
 | |
| 
 | |
|   /* Check if this process is preemptible, otherwise leave it as is. */
 | |
|   if (! (sched_ptr->p_flags & PREEMPTIBLE)) { 
 | |
|       kprintf("Warning, sched for nonpreemptible proc %d\n", sched_ptr->p_nr);
 | |
|       return;
 | |
|   }
 | |
| 
 | |
|   if (sched_ptr->p_nr == IS_PROC_NR) {
 | |
|       kprintf("Scheduling IS: pri: %d, ", sched_ptr->p_priority);
 | |
|       kprintf("qua %d", sched_ptr->p_full_quantums);
 | |
|   }
 | |
| 
 | |
|   /* Process exceeded the maximum number of full quantums it is allowed
 | |
|    * to use in a row. Lower the process' priority, but make sure we don't 
 | |
|    * end up in the IDLE queue. This helps to limit the damage caused by 
 | |
|    * for example infinite loops in high-priority processes. 
 | |
|    * This is a rare situation, so the overhead is acceptable.  
 | |
|    */
 | |
|   if (-- sched_ptr->p_full_quantums <= 0) {	/* exceeded threshold */ 
 | |
|       if (sched_ptr->p_priority + 1 < IDLE_Q ) {
 | |
|           unready(sched_ptr);			/* remove from queues */
 | |
|           sched_ptr->p_priority ++; 		/* lower priority */
 | |
|           ready(sched_ptr);			/* add to new queue */
 | |
| kprintf("Warning, proc %d got lower priority: ", sched_ptr->p_nr);
 | |
| kprintf("%d\n", sched_ptr->p_priority);
 | |
|       }
 | |
|       sched_ptr->p_full_quantums = QUANTUMS(sched_ptr->p_priority);
 | |
|   }
 | |
| 
 | |
|   /* The current process has run too long. If another low priority (user)
 | |
|    * process is runnable, put the current process on the tail of its queue,
 | |
|    * possibly promoting another user to head of the queue. Don't do anything
 | |
|    * if the queue is empty, or the process to be scheduled is not the head.
 | |
|    */
 | |
|   q = sched_ptr->p_priority;			/* convenient shorthand */
 | |
|   if (rdy_head[q] == sched_ptr) {		  
 | |
|       rdy_tail[q]->p_nextready = rdy_head[q];  	/* add expired to end */
 | |
|       rdy_tail[q] = rdy_head[q];	   	/* set new queue tail */
 | |
|       rdy_head[q] = rdy_head[q]->p_nextready;  	/* set new queue head */
 | |
|       rdy_tail[q]->p_nextready = NIL_PROC;   	/* mark new queue end */
 | |
|   }
 | |
| 
 | |
|   /* Give the expired process a new quantum and see who is next to run. */
 | |
|   sched_ptr->p_sched_ticks = sched_ptr->p_quantum_size;
 | |
|   pick_proc();					
 | |
| 
 | |
|   if (sched_ptr->p_nr == IS_PROC_NR) {
 | |
|       kprintf("Next proc: %d, ", next_ptr->p_nr); 
 | |
|       kprintf("pri: %d, ", next_ptr->p_priority); 
 | |
|       kprintf("qua: %d\n", next_ptr->p_full_quantums); 
 | |
| 
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				pick_proc				     * 
 | |
|  *===========================================================================*/
 | |
| PRIVATE void pick_proc()
 | |
| {
 | |
| /* Decide who to run now.  A new process is selected by setting 'next_ptr'.
 | |
|  * When a billable process is selected, record it in 'bill_ptr', so that the 
 | |
|  * clock task can tell who to bill for system time.
 | |
|  */
 | |
|   register struct proc *rp;			/* process to run */
 | |
|   int q;					/* iterate over queues */
 | |
| 
 | |
|   /* Check each of the scheduling queues for ready processes. The number of
 | |
|    * queues is defined in proc.h, and priorities are set in the task table.
 | |
|    * The lowest queue contains IDLE, which is always ready.
 | |
|    */
 | |
|   for (q=0; q < NR_SCHED_QUEUES; q++) {	
 | |
|       if ( (rp = rdy_head[q]) != NIL_PROC) {
 | |
|           next_ptr = rp;			/* run process 'rp' next */
 | |
|           if (rp->p_flags & BILLABLE)	 	
 | |
|               bill_ptr = rp;			/* bill for system time */
 | |
|           return;				 
 | |
|       }
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /*==========================================================================*
 | |
|  *				lock_send				    *
 | |
|  *==========================================================================*/
 | |
| PUBLIC int lock_send(dst, m_ptr)
 | |
| int dst;			/* to whom is message being sent? */
 | |
| message *m_ptr;			/* pointer to message buffer */
 | |
| {
 | |
| /* Safe gateway to mini_send() for tasks. */
 | |
|   int result;
 | |
|   lock(2, "send");
 | |
|   result = mini_send(proc_ptr, dst, m_ptr, NON_BLOCKING);
 | |
|   unlock(2);
 | |
|   return(result);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*==========================================================================*
 | |
|  *				lock_ready				    *
 | |
|  *==========================================================================*/
 | |
| PUBLIC void lock_ready(rp)
 | |
| struct proc *rp;		/* this process is now runnable */
 | |
| {
 | |
| /* Safe gateway to ready() for tasks. */
 | |
|   lock(3, "ready");
 | |
|   ready(rp);
 | |
|   unlock(3);
 | |
| }
 | |
| 
 | |
| /*==========================================================================*
 | |
|  *				lock_unready				    *
 | |
|  *==========================================================================*/
 | |
| PUBLIC void lock_unready(rp)
 | |
| struct proc *rp;		/* this process is no longer runnable */
 | |
| {
 | |
| /* Safe gateway to unready() for tasks. */
 | |
|   lock(4, "unready");
 | |
|   unready(rp);
 | |
|   unlock(4);
 | |
| }
 | |
| 
 | |
| /*==========================================================================*
 | |
|  *				lock_sched				    *
 | |
|  *==========================================================================*/
 | |
| PUBLIC void lock_sched(sched_ptr)
 | |
| struct proc *sched_ptr;
 | |
| {
 | |
| /* Safe gateway to sched() for tasks. */
 | |
|   lock(5, "sched");
 | |
|   sched(sched_ptr);
 | |
|   unlock(5);
 | |
| }
 | |
| 
 | 
