 f14fb60209
			
		
	
	
		f14fb60209
		
	
	
	
	
		
			
			* Updating common/lib * Updating lib/csu * Updating lib/libc * Updating libexec/ld.elf_so * Corrected test on __minix in featuretest to actually follow the meaning of the comment. * Cleaned up _REENTRANT-related defintions. * Disabled -D_REENTRANT for libfetch * Removing some unneeded __NBSD_LIBC defines and tests Change-Id: Ic1394baef74d11b9f86b312f5ff4bbc3cbf72ce2
		
			
				
	
	
		
			1891 lines
		
	
	
		
			56 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1891 lines
		
	
	
		
			56 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* This file contains essentially all of the process and message handling.
 | |
|  * Together with "mpx.s" it forms the lowest layer of the MINIX kernel.
 | |
|  * There is one entry point from the outside:
 | |
|  *
 | |
|  *   sys_call: 	      a system call, i.e., the kernel is trapped with an INT
 | |
|  *
 | |
|  * Changes:
 | |
|  *   Aug 19, 2005     rewrote scheduling code  (Jorrit N. Herder)
 | |
|  *   Jul 25, 2005     rewrote system call handling  (Jorrit N. Herder)
 | |
|  *   May 26, 2005     rewrote message passing functions  (Jorrit N. Herder)
 | |
|  *   May 24, 2005     new notification system call  (Jorrit N. Herder)
 | |
|  *   Oct 28, 2004     nonblocking send and receive calls  (Jorrit N. Herder)
 | |
|  *
 | |
|  * The code here is critical to make everything work and is important for the
 | |
|  * overall performance of the system. A large fraction of the code deals with
 | |
|  * list manipulation. To make this both easy to understand and fast to execute 
 | |
|  * pointer pointers are used throughout the code. Pointer pointers prevent
 | |
|  * exceptions for the head or tail of a linked list. 
 | |
|  *
 | |
|  *  node_t *queue, *new_node;	// assume these as global variables
 | |
|  *  node_t **xpp = &queue; 	// get pointer pointer to head of queue 
 | |
|  *  while (*xpp != NULL) 	// find last pointer of the linked list
 | |
|  *      xpp = &(*xpp)->next;	// get pointer to next pointer 
 | |
|  *  *xpp = new_node;		// now replace the end (the NULL pointer) 
 | |
|  *  new_node->next = NULL;	// and mark the new end of the list
 | |
|  * 
 | |
|  * For example, when adding a new node to the end of the list, one normally 
 | |
|  * makes an exception for an empty list and looks up the end of the list for 
 | |
|  * nonempty lists. As shown above, this is not required with pointer pointers.
 | |
|  */
 | |
| 
 | |
| #include <minix/com.h>
 | |
| #include <minix/ipcconst.h>
 | |
| #include <stddef.h>
 | |
| #include <signal.h>
 | |
| #include <assert.h>
 | |
| 
 | |
| #include "kernel/kernel.h"
 | |
| #include "vm.h"
 | |
| #include "clock.h"
 | |
| #include "spinlock.h"
 | |
| #include "arch_proto.h"
 | |
| 
 | |
| #include <minix/syslib.h>
 | |
| 
 | |
| /* Scheduling and message passing functions */
 | |
| static void idle(void);
 | |
| /**
 | |
|  * Made public for use in clock.c (for user-space scheduling)
 | |
| static int mini_send(struct proc *caller_ptr, endpoint_t dst_e, message
 | |
| 	*m_ptr, int flags);
 | |
| */
 | |
| static int mini_receive(struct proc *caller_ptr, endpoint_t src,
 | |
| 	message *m_ptr, int flags);
 | |
| static int mini_senda(struct proc *caller_ptr, asynmsg_t *table, size_t
 | |
| 	size);
 | |
| static int deadlock(int function, register struct proc *caller,
 | |
| 	endpoint_t src_dst_e);
 | |
| static int try_async(struct proc *caller_ptr);
 | |
| static int try_one(struct proc *src_ptr, struct proc *dst_ptr);
 | |
| static struct proc * pick_proc(void);
 | |
| static void enqueue_head(struct proc *rp);
 | |
| 
 | |
| /* all idles share the same idle_priv structure */
 | |
| static struct priv idle_priv;
 | |
| 
 | |
| static void set_idle_name(char * name, int n)
 | |
| {
 | |
|         int i, c;
 | |
|         int p_z = 0;
 | |
| 
 | |
|         if (n > 999) 
 | |
|                 n = 999; 
 | |
| 
 | |
|         name[0] = 'i'; 
 | |
|         name[1] = 'd'; 
 | |
|         name[2] = 'l'; 
 | |
|         name[3] = 'e'; 
 | |
| 
 | |
|         for (i = 4, c = 100; c > 0; c /= 10) {
 | |
|                 int digit;
 | |
| 
 | |
|                 digit = n / c;  
 | |
|                 n -= digit * c;  
 | |
| 
 | |
|                 if (p_z || digit != 0 || c == 1) {
 | |
|                         p_z = 1;
 | |
|                         name[i++] = '0' + digit;
 | |
|                 }   
 | |
|         }    
 | |
| 
 | |
|         name[i] = '\0';
 | |
| 
 | |
| }
 | |
| 
 | |
| 
 | |
| #define PICK_ANY	1
 | |
| #define PICK_HIGHERONLY	2
 | |
| 
 | |
| #define BuildNotifyMessage(m_ptr, src, dst_ptr) \
 | |
| 	(m_ptr)->m_type = NOTIFY_MESSAGE;				\
 | |
| 	(m_ptr)->NOTIFY_TIMESTAMP = get_uptime();			\
 | |
| 	switch (src) {							\
 | |
| 	case HARDWARE:							\
 | |
| 		(m_ptr)->NOTIFY_ARG = priv(dst_ptr)->s_int_pending;	\
 | |
| 		priv(dst_ptr)->s_int_pending = 0;			\
 | |
| 		break;							\
 | |
| 	case SYSTEM:							\
 | |
| 		(m_ptr)->NOTIFY_ARG = priv(dst_ptr)->s_sig_pending;	\
 | |
| 		priv(dst_ptr)->s_sig_pending = 0;			\
 | |
| 		break;							\
 | |
| 	}
 | |
| 
 | |
| void proc_init(void)
 | |
| {
 | |
| 	struct proc * rp;
 | |
| 	struct priv *sp;
 | |
| 	int i;
 | |
| 
 | |
| 	/* Clear the process table. Anounce each slot as empty and set up
 | |
| 	 * mappings for proc_addr() and proc_nr() macros. Do the same for the
 | |
| 	 * table with privilege structures for the system processes. 
 | |
| 	 */
 | |
| 	for (rp = BEG_PROC_ADDR, i = -NR_TASKS; rp < END_PROC_ADDR; ++rp, ++i) {
 | |
| 		rp->p_rts_flags = RTS_SLOT_FREE;/* initialize free slot */
 | |
| 		rp->p_magic = PMAGIC;
 | |
| 		rp->p_nr = i;			/* proc number from ptr */
 | |
| 		rp->p_endpoint = _ENDPOINT(0, rp->p_nr); /* generation no. 0 */
 | |
| 		rp->p_scheduler = NULL;		/* no user space scheduler */
 | |
| 		rp->p_priority = 0;		/* no priority */
 | |
| 		rp->p_quantum_size_ms = 0;	/* no quantum size */
 | |
| 
 | |
| 		/* arch-specific initialization */
 | |
| 		arch_proc_reset(rp);
 | |
| 	}
 | |
| 	for (sp = BEG_PRIV_ADDR, i = 0; sp < END_PRIV_ADDR; ++sp, ++i) {
 | |
| 		sp->s_proc_nr = NONE;		/* initialize as free */
 | |
| 		sp->s_id = (sys_id_t) i;	/* priv structure index */
 | |
| 		ppriv_addr[i] = sp;		/* priv ptr from number */
 | |
| 		sp->s_sig_mgr = NONE;		/* clear signal managers */
 | |
| 		sp->s_bak_sig_mgr = NONE;
 | |
| 	}
 | |
| 
 | |
| 	idle_priv.s_flags = IDL_F;
 | |
| 	/* initialize IDLE structures for every CPU */
 | |
| 	for (i = 0; i < CONFIG_MAX_CPUS; i++) {
 | |
| 		struct proc * ip = get_cpu_var_ptr(i, idle_proc);
 | |
| 		ip->p_endpoint = IDLE;
 | |
| 		ip->p_priv = &idle_priv;
 | |
| 		/* must not let idle ever get scheduled */
 | |
| 		ip->p_rts_flags |= RTS_PROC_STOP;
 | |
| 		set_idle_name(ip->p_name, i);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void switch_address_space_idle(void)
 | |
| {
 | |
| #ifdef CONFIG_SMP
 | |
| 	/*
 | |
| 	 * currently we bet that VM is always alive and its pages available so
 | |
| 	 * when the CPU wakes up the kernel is mapped and no surprises happen.
 | |
| 	 * This is only a problem if more than 1 cpus are available
 | |
| 	 */
 | |
| 	switch_address_space(proc_addr(VM_PROC_NR));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				idle					     * 
 | |
|  *===========================================================================*/
 | |
| static void idle(void)
 | |
| {
 | |
| 	struct proc * p;
 | |
| 
 | |
| 	/* This function is called whenever there is no work to do.
 | |
| 	 * Halt the CPU, and measure how many timestamp counter ticks are
 | |
| 	 * spent not doing anything. This allows test setups to measure
 | |
| 	 * the CPU utiliziation of certain workloads with high precision.
 | |
| 	 */
 | |
| 
 | |
| 	p = get_cpulocal_var(proc_ptr) = get_cpulocal_var_ptr(idle_proc);
 | |
| 	if (priv(p)->s_flags & BILLABLE)
 | |
| 		get_cpulocal_var(bill_ptr) = p;
 | |
| 
 | |
| 	switch_address_space_idle();
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 	get_cpulocal_var(cpu_is_idle) = 1;
 | |
| 	/* we don't need to keep time on APs as it is handled on the BSP */
 | |
| 	if (cpuid != bsp_cpu_id)
 | |
| 		stop_local_timer();
 | |
| 	else
 | |
| #endif
 | |
| 	{
 | |
| 		/*
 | |
| 		 * If the timer has expired while in kernel we must
 | |
| 		 * rearm it before we go to sleep
 | |
| 		 */
 | |
| 		restart_local_timer();
 | |
| 	}
 | |
| 
 | |
| 	/* start accounting for the idle time */
 | |
| 	context_stop(proc_addr(KERNEL));
 | |
| #if !SPROFILE
 | |
| 	halt_cpu();
 | |
| #else
 | |
| 	if (!sprofiling)
 | |
| 		halt_cpu();
 | |
| 	else {
 | |
| 		volatile int * v;
 | |
| 
 | |
| 		v = get_cpulocal_var_ptr(idle_interrupted);
 | |
| 		interrupts_enable();
 | |
| 		while (!*v)
 | |
| 			arch_pause();
 | |
| 		interrupts_disable();
 | |
| 		*v = 0;
 | |
| 	}
 | |
| #endif
 | |
| 	/*
 | |
| 	 * end of accounting for the idle task does not happen here, the kernel
 | |
| 	 * is handling stuff for quite a while before it gets back here!
 | |
| 	 */
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				switch_to_user				     * 
 | |
|  *===========================================================================*/
 | |
| void switch_to_user(void)
 | |
| {
 | |
| 	/* This function is called an instant before proc_ptr is
 | |
| 	 * to be scheduled again.
 | |
| 	 */
 | |
| 	struct proc * p;
 | |
| #ifdef CONFIG_SMP
 | |
| 	int tlb_must_refresh = 0;
 | |
| #endif
 | |
| 
 | |
| 	p = get_cpulocal_var(proc_ptr);
 | |
| 	/*
 | |
| 	 * if the current process is still runnable check the misc flags and let
 | |
| 	 * it run unless it becomes not runnable in the meantime
 | |
| 	 */
 | |
| 	if (proc_is_runnable(p))
 | |
| 		goto check_misc_flags;
 | |
| 	/*
 | |
| 	 * if a process becomes not runnable while handling the misc flags, we
 | |
| 	 * need to pick a new one here and start from scratch. Also if the
 | |
| 	 * current process wasn' runnable, we pick a new one here
 | |
| 	 */
 | |
| not_runnable_pick_new:
 | |
| 	if (proc_is_preempted(p)) {
 | |
| 		p->p_rts_flags &= ~RTS_PREEMPTED;
 | |
| 		if (proc_is_runnable(p)) {
 | |
| 			if (!is_zero64(p->p_cpu_time_left))
 | |
| 				enqueue_head(p);
 | |
| 			else
 | |
| 				enqueue(p);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * if we have no process to run, set IDLE as the current process for
 | |
| 	 * time accounting and put the cpu in and idle state. After the next
 | |
| 	 * timer interrupt the execution resumes here and we can pick another
 | |
| 	 * process. If there is still nothing runnable we "schedule" IDLE again
 | |
| 	 */
 | |
| 	while (!(p = pick_proc())) {
 | |
| 		idle();
 | |
| 	}
 | |
| 
 | |
| 	/* update the global variable */
 | |
| 	get_cpulocal_var(proc_ptr) = p;
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 	if (p->p_misc_flags & MF_FLUSH_TLB && get_cpulocal_var(ptproc) == p)
 | |
| 		tlb_must_refresh = 1;
 | |
| #endif
 | |
| 	switch_address_space(p);
 | |
| 
 | |
| check_misc_flags:
 | |
| 
 | |
| 	assert(p);
 | |
| 	assert(proc_is_runnable(p));
 | |
| 	while (p->p_misc_flags &
 | |
| 		(MF_KCALL_RESUME | MF_DELIVERMSG |
 | |
| 		 MF_SC_DEFER | MF_SC_TRACE | MF_SC_ACTIVE)) {
 | |
| 
 | |
| 		assert(proc_is_runnable(p));
 | |
| 		if (p->p_misc_flags & MF_KCALL_RESUME) {
 | |
| 			kernel_call_resume(p);
 | |
| 		}
 | |
| 		else if (p->p_misc_flags & MF_DELIVERMSG) {
 | |
| 			TRACE(VF_SCHEDULING, printf("delivering to %s / %d\n",
 | |
| 				p->p_name, p->p_endpoint););
 | |
| 			delivermsg(p);
 | |
| 		}
 | |
| 		else if (p->p_misc_flags & MF_SC_DEFER) {
 | |
| 			/* Perform the system call that we deferred earlier. */
 | |
| 
 | |
| 			assert (!(p->p_misc_flags & MF_SC_ACTIVE));
 | |
| 
 | |
| 			arch_do_syscall(p);
 | |
| 
 | |
| 			/* If the process is stopped for signal delivery, and
 | |
| 			 * not blocked sending a message after the system call,
 | |
| 			 * inform PM.
 | |
| 			 */
 | |
| 			if ((p->p_misc_flags & MF_SIG_DELAY) &&
 | |
| 					!RTS_ISSET(p, RTS_SENDING))
 | |
| 				sig_delay_done(p);
 | |
| 		}
 | |
| 		else if (p->p_misc_flags & MF_SC_TRACE) {
 | |
| 			/* Trigger a system call leave event if this was a
 | |
| 			 * system call. We must do this after processing the
 | |
| 			 * other flags above, both for tracing correctness and
 | |
| 			 * to be able to use 'break'.
 | |
| 			 */
 | |
| 			if (!(p->p_misc_flags & MF_SC_ACTIVE))
 | |
| 				break;
 | |
| 
 | |
| 			p->p_misc_flags &=
 | |
| 				~(MF_SC_TRACE | MF_SC_ACTIVE);
 | |
| 
 | |
| 			/* Signal the "leave system call" event.
 | |
| 			 * Block the process.
 | |
| 			 */
 | |
| 			cause_sig(proc_nr(p), SIGTRAP);
 | |
| 		}
 | |
| 		else if (p->p_misc_flags & MF_SC_ACTIVE) {
 | |
| 			/* If MF_SC_ACTIVE was set, remove it now:
 | |
| 			 * we're leaving the system call.
 | |
| 			 */
 | |
| 			p->p_misc_flags &= ~MF_SC_ACTIVE;
 | |
| 
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * the selected process might not be runnable anymore. We have
 | |
| 		 * to checkit and schedule another one
 | |
| 		 */
 | |
| 		if (!proc_is_runnable(p))
 | |
| 			goto not_runnable_pick_new;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * check the quantum left before it runs again. We must do it only here
 | |
| 	 * as we are sure that a possible out-of-quantum message to the
 | |
| 	 * scheduler will not collide with the regular ipc
 | |
| 	 */
 | |
| 	if (is_zero64(p->p_cpu_time_left))
 | |
| 		proc_no_time(p);
 | |
| 	/*
 | |
| 	 * After handling the misc flags the selected process might not be
 | |
| 	 * runnable anymore. We have to checkit and schedule another one
 | |
| 	 */
 | |
| 	if (!proc_is_runnable(p))
 | |
| 		goto not_runnable_pick_new;
 | |
| 
 | |
| 	TRACE(VF_SCHEDULING, printf("cpu %d starting %s / %d "
 | |
| 				"pc 0x%08x\n",
 | |
| 		cpuid, p->p_name, p->p_endpoint, p->p_reg.pc););
 | |
| #if DEBUG_TRACE
 | |
| 	p->p_schedules++;
 | |
| #endif
 | |
| 
 | |
| 	p = arch_finish_switch_to_user();
 | |
| 	assert(!is_zero64(p->p_cpu_time_left));
 | |
| 
 | |
| 	context_stop(proc_addr(KERNEL));
 | |
| 
 | |
| 	/* If the process isn't the owner of FPU, enable the FPU exception */
 | |
| 	if(get_cpulocal_var(fpu_owner) != p)
 | |
| 		enable_fpu_exception();
 | |
| 	else
 | |
| 		disable_fpu_exception();
 | |
| 
 | |
| 	/* If MF_CONTEXT_SET is set, don't clobber process state within
 | |
| 	 * the kernel. The next kernel entry is OK again though.
 | |
| 	 */
 | |
| 	p->p_misc_flags &= ~MF_CONTEXT_SET;
 | |
| 
 | |
| #if defined(__i386__)
 | |
|   	assert(p->p_seg.p_cr3 != 0);
 | |
| #elif defined(__arm__)
 | |
| 	assert(p->p_seg.p_ttbr != 0);
 | |
| #endif
 | |
| #ifdef CONFIG_SMP
 | |
| 	if (p->p_misc_flags & MF_FLUSH_TLB) {
 | |
| 		if (tlb_must_refresh)
 | |
| 			refresh_tlb();
 | |
| 		p->p_misc_flags &= ~MF_FLUSH_TLB;
 | |
| 	}
 | |
| #endif
 | |
| 	
 | |
| 	restart_local_timer();
 | |
| 	
 | |
| 	/*
 | |
| 	 * restore_user_context() carries out the actual mode switch from kernel
 | |
| 	 * to userspace. This function does not return
 | |
| 	 */
 | |
| 	restore_user_context(p);
 | |
| 	NOT_REACHABLE;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * handler for all synchronous IPC calls
 | |
|  */
 | |
| static int do_sync_ipc(struct proc * caller_ptr, /* who made the call */
 | |
| 			int call_nr,	/* system call number and flags */
 | |
| 			endpoint_t src_dst_e,	/* src or dst of the call */
 | |
| 			message *m_ptr)	/* users pointer to a message */
 | |
| {
 | |
|   int result;					/* the system call's result */
 | |
|   int src_dst_p;				/* Process slot number */
 | |
|   char *callname;
 | |
| 
 | |
|   /* Check destination. RECEIVE is the only call that accepts ANY (in addition
 | |
|    * to a real endpoint). The other calls (SEND, SENDREC, and NOTIFY) require an
 | |
|    * endpoint to corresponds to a process. In addition, it is necessary to check
 | |
|    * whether a process is allowed to send to a given destination.
 | |
|    */
 | |
|   assert(call_nr != SENDA);
 | |
| 
 | |
|   /* Only allow non-negative call_nr values less than 32 */
 | |
|   if (call_nr < 0 || call_nr > IPCNO_HIGHEST || call_nr >= 32
 | |
|       || !(callname = ipc_call_names[call_nr])) {
 | |
| #if DEBUG_ENABLE_IPC_WARNINGS
 | |
|       printf("sys_call: trap %d not allowed, caller %d, src_dst %d\n", 
 | |
|           call_nr, proc_nr(caller_ptr), src_dst_e);
 | |
| #endif
 | |
| 	return(ETRAPDENIED);		/* trap denied by mask or kernel */
 | |
|   }
 | |
| 
 | |
|   if (src_dst_e == ANY)
 | |
|   {
 | |
| 	if (call_nr != RECEIVE)
 | |
| 	{
 | |
| #if 0
 | |
| 		printf("sys_call: %s by %d with bad endpoint %d\n", 
 | |
| 			callname,
 | |
| 			proc_nr(caller_ptr), src_dst_e);
 | |
| #endif
 | |
| 		return EINVAL;
 | |
| 	}
 | |
| 	src_dst_p = (int) src_dst_e;
 | |
|   }
 | |
|   else
 | |
|   {
 | |
| 	/* Require a valid source and/or destination process. */
 | |
| 	if(!isokendpt(src_dst_e, &src_dst_p)) {
 | |
| #if 0
 | |
| 		printf("sys_call: %s by %d with bad endpoint %d\n", 
 | |
| 			callname,
 | |
| 			proc_nr(caller_ptr), src_dst_e);
 | |
| #endif
 | |
| 		return EDEADSRCDST;
 | |
| 	}
 | |
| 
 | |
| 	/* If the call is to send to a process, i.e., for SEND, SENDNB,
 | |
| 	 * SENDREC or NOTIFY, verify that the caller is allowed to send to
 | |
| 	 * the given destination. 
 | |
| 	 */
 | |
| 	if (call_nr != RECEIVE)
 | |
| 	{
 | |
| 		if (!may_send_to(caller_ptr, src_dst_p)) {
 | |
| #if DEBUG_ENABLE_IPC_WARNINGS
 | |
| 			printf(
 | |
| 			"sys_call: ipc mask denied %s from %d to %d\n",
 | |
| 				callname,
 | |
| 				caller_ptr->p_endpoint, src_dst_e);
 | |
| #endif
 | |
| 			return(ECALLDENIED);	/* call denied by ipc mask */
 | |
| 		}
 | |
| 	}
 | |
|   }
 | |
| 
 | |
|   /* Check if the process has privileges for the requested call. Calls to the 
 | |
|    * kernel may only be SENDREC, because tasks always reply and may not block 
 | |
|    * if the caller doesn't do receive(). 
 | |
|    */
 | |
|   if (!(priv(caller_ptr)->s_trap_mask & (1 << call_nr))) {
 | |
| #if DEBUG_ENABLE_IPC_WARNINGS
 | |
|       printf("sys_call: %s not allowed, caller %d, src_dst %d\n", 
 | |
|           callname, proc_nr(caller_ptr), src_dst_p);
 | |
| #endif
 | |
| 	return(ETRAPDENIED);		/* trap denied by mask or kernel */
 | |
|   }
 | |
| 
 | |
|   if (call_nr != SENDREC && call_nr != RECEIVE && iskerneln(src_dst_p)) {
 | |
| #if DEBUG_ENABLE_IPC_WARNINGS
 | |
|       printf("sys_call: trap %s not allowed, caller %d, src_dst %d\n",
 | |
|            callname, proc_nr(caller_ptr), src_dst_e);
 | |
| #endif
 | |
| 	return(ETRAPDENIED);		/* trap denied by mask or kernel */
 | |
|   }
 | |
| 
 | |
|   switch(call_nr) {
 | |
|   case SENDREC:
 | |
| 	/* A flag is set so that notifications cannot interrupt SENDREC. */
 | |
| 	caller_ptr->p_misc_flags |= MF_REPLY_PEND;
 | |
| 	/* fall through */
 | |
|   case SEND:			
 | |
| 	result = mini_send(caller_ptr, src_dst_e, m_ptr, 0);
 | |
| 	if (call_nr == SEND || result != OK)
 | |
| 		break;				/* done, or SEND failed */
 | |
| 	/* fall through for SENDREC */
 | |
|   case RECEIVE:			
 | |
| 	if (call_nr == RECEIVE) {
 | |
| 		caller_ptr->p_misc_flags &= ~MF_REPLY_PEND;
 | |
| 		IPC_STATUS_CLEAR(caller_ptr);  /* clear IPC status code */
 | |
| 	}
 | |
| 	result = mini_receive(caller_ptr, src_dst_e, m_ptr, 0);
 | |
| 	break;
 | |
|   case NOTIFY:
 | |
| 	result = mini_notify(caller_ptr, src_dst_e);
 | |
| 	break;
 | |
|   case SENDNB:
 | |
|         result = mini_send(caller_ptr, src_dst_e, m_ptr, NON_BLOCKING);
 | |
|         break;
 | |
|   default:
 | |
| 	result = EBADCALL;			/* illegal system call */
 | |
|   }
 | |
| 
 | |
|   /* Now, return the result of the system call to the caller. */
 | |
|   return(result);
 | |
| }
 | |
| 
 | |
| int do_ipc(reg_t r1, reg_t r2, reg_t r3)
 | |
| {
 | |
|   struct proc *const caller_ptr = get_cpulocal_var(proc_ptr);	/* get pointer to caller */
 | |
|   int call_nr = (int) r1;
 | |
| 
 | |
|   assert(!RTS_ISSET(caller_ptr, RTS_SLOT_FREE));
 | |
| 
 | |
|   /* bill kernel time to this process. */
 | |
|   kbill_ipc = caller_ptr;
 | |
| 
 | |
|   /* If this process is subject to system call tracing, handle that first. */
 | |
|   if (caller_ptr->p_misc_flags & (MF_SC_TRACE | MF_SC_DEFER)) {
 | |
| 	/* Are we tracing this process, and is it the first sys_call entry? */
 | |
| 	if ((caller_ptr->p_misc_flags & (MF_SC_TRACE | MF_SC_DEFER)) ==
 | |
| 							MF_SC_TRACE) {
 | |
| 		/* We must notify the tracer before processing the actual
 | |
| 		 * system call. If we don't, the tracer could not obtain the
 | |
| 		 * input message. Postpone the entire system call.
 | |
| 		 */
 | |
| 		caller_ptr->p_misc_flags &= ~MF_SC_TRACE;
 | |
| 		assert(!(caller_ptr->p_misc_flags & MF_SC_DEFER));
 | |
| 		caller_ptr->p_misc_flags |= MF_SC_DEFER;
 | |
| 		caller_ptr->p_defer.r1 = r1;
 | |
| 		caller_ptr->p_defer.r2 = r2;
 | |
| 		caller_ptr->p_defer.r3 = r3;
 | |
| 
 | |
| 		/* Signal the "enter system call" event. Block the process. */
 | |
| 		cause_sig(proc_nr(caller_ptr), SIGTRAP);
 | |
| 
 | |
| 		/* Preserve the return register's value. */
 | |
| 		return caller_ptr->p_reg.retreg;
 | |
| 	}
 | |
| 
 | |
| 	/* If the MF_SC_DEFER flag is set, the syscall is now being resumed. */
 | |
| 	caller_ptr->p_misc_flags &= ~MF_SC_DEFER;
 | |
| 
 | |
| 	assert (!(caller_ptr->p_misc_flags & MF_SC_ACTIVE));
 | |
| 
 | |
| 	/* Set a flag to allow reliable tracing of leaving the system call. */
 | |
| 	caller_ptr->p_misc_flags |= MF_SC_ACTIVE;
 | |
|   }
 | |
| 
 | |
|   if(caller_ptr->p_misc_flags & MF_DELIVERMSG) {
 | |
| 	panic("sys_call: MF_DELIVERMSG on for %s / %d\n",
 | |
| 		caller_ptr->p_name, caller_ptr->p_endpoint);
 | |
|   }
 | |
| 
 | |
|   /* Now check if the call is known and try to perform the request. The only
 | |
|    * system calls that exist in MINIX are sending and receiving messages.
 | |
|    *   - SENDREC: combines SEND and RECEIVE in a single system call
 | |
|    *   - SEND:    sender blocks until its message has been delivered
 | |
|    *   - RECEIVE: receiver blocks until an acceptable message has arrived
 | |
|    *   - NOTIFY:  asynchronous call; deliver notification or mark pending
 | |
|    *   - SENDA:   list of asynchronous send requests
 | |
|    */
 | |
|   switch(call_nr) {
 | |
|   	case SENDREC:
 | |
|   	case SEND:			
 | |
|   	case RECEIVE:			
 | |
|   	case NOTIFY:
 | |
|   	case SENDNB:
 | |
|   	{
 | |
|   	    /* Process accounting for scheduling */
 | |
| 	    caller_ptr->p_accounting.ipc_sync++;
 | |
| 
 | |
|   	    return do_sync_ipc(caller_ptr, call_nr, (endpoint_t) r2,
 | |
| 			    (message *) r3);
 | |
|   	}
 | |
|   	case SENDA:
 | |
|   	{
 | |
|  	    /*
 | |
|   	     * Get and check the size of the argument in bytes as it is a
 | |
|   	     * table
 | |
|   	     */
 | |
|   	    size_t msg_size = (size_t) r2;
 | |
|   
 | |
|   	    /* Process accounting for scheduling */
 | |
| 	    caller_ptr->p_accounting.ipc_async++;
 | |
|  
 | |
|   	    /* Limit size to something reasonable. An arbitrary choice is 16
 | |
|   	     * times the number of process table entries.
 | |
|   	     */
 | |
|   	    if (msg_size > 16*(NR_TASKS + NR_PROCS))
 | |
| 	        return EDOM;
 | |
|   	    return mini_senda(caller_ptr, (asynmsg_t *) r3, msg_size);
 | |
|   	}
 | |
|   	case MINIX_KERNINFO:
 | |
| 	{
 | |
| 		/* It might not be initialized yet. */
 | |
| 	  	if(!minix_kerninfo_user) {
 | |
| 			return EBADCALL;
 | |
| 		}
 | |
| 
 | |
|   		arch_set_secondary_ipc_return(caller_ptr, minix_kerninfo_user);
 | |
|   		return OK;
 | |
| 	}
 | |
|   	default:
 | |
| 	return EBADCALL;		/* illegal system call */
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				deadlock				     * 
 | |
|  *===========================================================================*/
 | |
| static int deadlock(function, cp, src_dst_e) 
 | |
| int function;					/* trap number */
 | |
| register struct proc *cp;			/* pointer to caller */
 | |
| endpoint_t src_dst_e;				/* src or dst process */
 | |
| {
 | |
| /* Check for deadlock. This can happen if 'caller_ptr' and 'src_dst' have
 | |
|  * a cyclic dependency of blocking send and receive calls. The only cyclic 
 | |
|  * depency that is not fatal is if the caller and target directly SEND(REC)
 | |
|  * and RECEIVE to each other. If a deadlock is found, the group size is 
 | |
|  * returned. Otherwise zero is returned. 
 | |
|  */
 | |
|   register struct proc *xp;			/* process pointer */
 | |
|   int group_size = 1;				/* start with only caller */
 | |
| #if DEBUG_ENABLE_IPC_WARNINGS
 | |
|   static struct proc *processes[NR_PROCS + NR_TASKS];
 | |
|   processes[0] = cp;
 | |
| #endif
 | |
| 
 | |
|   while (src_dst_e != ANY) { 			/* check while process nr */
 | |
|       int src_dst_slot;
 | |
|       okendpt(src_dst_e, &src_dst_slot);
 | |
|       xp = proc_addr(src_dst_slot);		/* follow chain of processes */
 | |
|       assert(proc_ptr_ok(xp));
 | |
|       assert(!RTS_ISSET(xp, RTS_SLOT_FREE));
 | |
| #if DEBUG_ENABLE_IPC_WARNINGS
 | |
|       processes[group_size] = xp;
 | |
| #endif
 | |
|       group_size ++;				/* extra process in group */
 | |
| 
 | |
|       /* Check whether the last process in the chain has a dependency. If it 
 | |
|        * has not, the cycle cannot be closed and we are done.
 | |
|        */
 | |
|       if((src_dst_e = P_BLOCKEDON(xp)) == NONE)
 | |
| 	return 0;
 | |
| 
 | |
|       /* Now check if there is a cyclic dependency. For group sizes of two,  
 | |
|        * a combination of SEND(REC) and RECEIVE is not fatal. Larger groups
 | |
|        * or other combinations indicate a deadlock.  
 | |
|        */
 | |
|       if (src_dst_e == cp->p_endpoint) {	/* possible deadlock */
 | |
| 	  if (group_size == 2) {		/* caller and src_dst */
 | |
| 	      /* The function number is magically converted to flags. */
 | |
| 	      if ((xp->p_rts_flags ^ (function << 2)) & RTS_SENDING) { 
 | |
| 	          return(0);			/* not a deadlock */
 | |
| 	      }
 | |
| 	  }
 | |
| #if DEBUG_ENABLE_IPC_WARNINGS
 | |
| 	  {
 | |
| 		int i;
 | |
| 		printf("deadlock between these processes:\n");
 | |
| 		for(i = 0; i < group_size; i++) {
 | |
| 			printf(" %10s ", processes[i]->p_name);
 | |
| 		}
 | |
| 		printf("\n\n");
 | |
| 		for(i = 0; i < group_size; i++) {
 | |
| 			print_proc(processes[i]);
 | |
| 			proc_stacktrace(processes[i]);
 | |
| 		}
 | |
| 	  }
 | |
| #endif
 | |
|           return(group_size);			/* deadlock found */
 | |
|       }
 | |
|   }
 | |
|   return(0);					/* not a deadlock */
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				has_pending				     * 
 | |
|  *===========================================================================*/
 | |
| static int has_pending(sys_map_t *map, int src_p, int asynm)
 | |
| {
 | |
| /* Check to see if there is a pending message from the desired source
 | |
|  * available.
 | |
|  */
 | |
| 
 | |
|   int src_id;
 | |
|   sys_id_t id = NULL_PRIV_ID;
 | |
| #ifdef CONFIG_SMP
 | |
|   struct proc * p;
 | |
| #endif
 | |
| 
 | |
|   /* Either check a specific bit in the mask map, or find the first bit set in
 | |
|    * it (if any), depending on whether the receive was called on a specific
 | |
|    * source endpoint.
 | |
|    */
 | |
|   if (src_p != ANY) {
 | |
| 	src_id = nr_to_id(src_p);
 | |
| 	if (get_sys_bit(*map, src_id)) {
 | |
| #ifdef CONFIG_SMP
 | |
| 		p = proc_addr(id_to_nr(src_id));
 | |
| 		if (asynm && RTS_ISSET(p, RTS_VMINHIBIT))
 | |
| 			p->p_misc_flags |= MF_SENDA_VM_MISS;
 | |
| 		else
 | |
| #endif
 | |
| 			id = src_id;
 | |
| 	}
 | |
|   } else {
 | |
| 	/* Find a source with a pending message */
 | |
| 	for (src_id = 0; src_id < NR_SYS_PROCS; src_id += BITCHUNK_BITS) {
 | |
| 		if (get_sys_bits(*map, src_id) != 0) {
 | |
| #ifdef CONFIG_SMP
 | |
| 			while (src_id < NR_SYS_PROCS) {
 | |
| 				while (!get_sys_bit(*map, src_id)) {
 | |
| 					if (src_id == NR_SYS_PROCS)
 | |
| 						goto quit_search;
 | |
| 					src_id++;
 | |
| 				}
 | |
| 				p = proc_addr(id_to_nr(src_id));
 | |
| 				/*
 | |
| 				 * We must not let kernel fiddle with pages of a
 | |
| 				 * process which are currently being changed by
 | |
| 				 * VM.  It is dangerous! So do not report such a
 | |
| 				 * process as having pending async messages.
 | |
| 				 * Skip it.
 | |
| 				 */
 | |
| 				if (asynm && RTS_ISSET(p, RTS_VMINHIBIT)) {
 | |
| 					p->p_misc_flags |= MF_SENDA_VM_MISS;
 | |
| 					src_id++;
 | |
| 				} else
 | |
| 					goto quit_search;
 | |
| 			}
 | |
| #else
 | |
| 			while (!get_sys_bit(*map, src_id)) src_id++;
 | |
| 			goto quit_search;
 | |
| #endif
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| quit_search:
 | |
| 	if (src_id < NR_SYS_PROCS)	/* Found one */
 | |
| 		id = src_id;
 | |
|   }
 | |
| 
 | |
|   return(id);
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				has_pending_notify			     *
 | |
|  *===========================================================================*/
 | |
| int has_pending_notify(struct proc * caller, int src_p)
 | |
| {
 | |
| 	sys_map_t * map = &priv(caller)->s_notify_pending;
 | |
| 	return has_pending(map, src_p, 0);
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				has_pending_asend			     *
 | |
|  *===========================================================================*/
 | |
| int has_pending_asend(struct proc * caller, int src_p)
 | |
| {
 | |
| 	sys_map_t * map = &priv(caller)->s_asyn_pending;
 | |
| 	return has_pending(map, src_p, 1);
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				unset_notify_pending			     *
 | |
|  *===========================================================================*/
 | |
| void unset_notify_pending(struct proc * caller, int src_p)
 | |
| {
 | |
| 	sys_map_t * map = &priv(caller)->s_notify_pending;
 | |
| 	unset_sys_bit(*map, src_p);
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				mini_send				     * 
 | |
|  *===========================================================================*/
 | |
| int mini_send(
 | |
|   register struct proc *caller_ptr,	/* who is trying to send a message? */
 | |
|   endpoint_t dst_e,			/* to whom is message being sent? */
 | |
|   message *m_ptr,			/* pointer to message buffer */
 | |
|   const int flags
 | |
| )
 | |
| {
 | |
| /* Send a message from 'caller_ptr' to 'dst'. If 'dst' is blocked waiting
 | |
|  * for this message, copy the message to it and unblock 'dst'. If 'dst' is
 | |
|  * not waiting at all, or is waiting for another source, queue 'caller_ptr'.
 | |
|  */
 | |
|   register struct proc *dst_ptr;
 | |
|   register struct proc **xpp;
 | |
|   int dst_p;
 | |
|   dst_p = _ENDPOINT_P(dst_e);
 | |
|   dst_ptr = proc_addr(dst_p);
 | |
| 
 | |
|   if (RTS_ISSET(dst_ptr, RTS_NO_ENDPOINT))
 | |
|   {
 | |
| 	return EDEADSRCDST;
 | |
|   }
 | |
| 
 | |
|   /* Check if 'dst' is blocked waiting for this message. The destination's 
 | |
|    * RTS_SENDING flag may be set when its SENDREC call blocked while sending.  
 | |
|    */
 | |
|   if (WILLRECEIVE(dst_ptr, caller_ptr->p_endpoint)) {
 | |
| 	int call;
 | |
| 	/* Destination is indeed waiting for this message. */
 | |
| 	assert(!(dst_ptr->p_misc_flags & MF_DELIVERMSG));	
 | |
| 
 | |
| 	if (!(flags & FROM_KERNEL)) {
 | |
| 		if(copy_msg_from_user(m_ptr, &dst_ptr->p_delivermsg))
 | |
| 			return EFAULT;
 | |
| 	} else {
 | |
| 		dst_ptr->p_delivermsg = *m_ptr;
 | |
| 		IPC_STATUS_ADD_FLAGS(dst_ptr, IPC_FLG_MSG_FROM_KERNEL);
 | |
| 	}
 | |
| 
 | |
| 	dst_ptr->p_delivermsg.m_source = caller_ptr->p_endpoint;
 | |
| 	dst_ptr->p_misc_flags |= MF_DELIVERMSG;
 | |
| 
 | |
| 	call = (caller_ptr->p_misc_flags & MF_REPLY_PEND ? SENDREC
 | |
| 		: (flags & NON_BLOCKING ? SENDNB : SEND));
 | |
| 	IPC_STATUS_ADD_CALL(dst_ptr, call);
 | |
| 
 | |
| 	if (dst_ptr->p_misc_flags & MF_REPLY_PEND)
 | |
| 		dst_ptr->p_misc_flags &= ~MF_REPLY_PEND;
 | |
| 
 | |
| 	RTS_UNSET(dst_ptr, RTS_RECEIVING);
 | |
| 
 | |
| #if DEBUG_IPC_HOOK
 | |
| 	hook_ipc_msgsend(&dst_ptr->p_delivermsg, caller_ptr, dst_ptr);
 | |
| 	hook_ipc_msgrecv(&dst_ptr->p_delivermsg, caller_ptr, dst_ptr);
 | |
| #endif
 | |
|   } else {
 | |
| 	if(flags & NON_BLOCKING) {
 | |
| 		return(ENOTREADY);
 | |
| 	}
 | |
| 
 | |
| 	/* Check for a possible deadlock before actually blocking. */
 | |
| 	if (deadlock(SEND, caller_ptr, dst_e)) {
 | |
| 		return(ELOCKED);
 | |
| 	}
 | |
| 
 | |
| 	/* Destination is not waiting.  Block and dequeue caller. */
 | |
| 	if (!(flags & FROM_KERNEL)) {
 | |
| 		if(copy_msg_from_user(m_ptr, &caller_ptr->p_sendmsg))
 | |
| 			return EFAULT;
 | |
| 	} else {
 | |
| 		caller_ptr->p_sendmsg = *m_ptr;
 | |
| 		/*
 | |
| 		 * we need to remember that this message is from kernel so we
 | |
| 		 * can set the delivery status flags when the message is
 | |
| 		 * actually delivered
 | |
| 		 */
 | |
| 		caller_ptr->p_misc_flags |= MF_SENDING_FROM_KERNEL;
 | |
| 	}
 | |
| 
 | |
| 	RTS_SET(caller_ptr, RTS_SENDING);
 | |
| 	caller_ptr->p_sendto_e = dst_e;
 | |
| 
 | |
| 	/* Process is now blocked.  Put in on the destination's queue. */
 | |
| 	assert(caller_ptr->p_q_link == NULL);
 | |
| 	xpp = &dst_ptr->p_caller_q;		/* find end of list */
 | |
| 	while (*xpp) xpp = &(*xpp)->p_q_link;	
 | |
| 	*xpp = caller_ptr;			/* add caller to end */
 | |
| 
 | |
| #if DEBUG_IPC_HOOK
 | |
| 	hook_ipc_msgsend(&caller_ptr->p_sendmsg, caller_ptr, dst_ptr);
 | |
| #endif
 | |
|   }
 | |
|   return(OK);
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				mini_receive				     * 
 | |
|  *===========================================================================*/
 | |
| static int mini_receive(struct proc * caller_ptr,
 | |
| 			endpoint_t src_e, /* which message source is wanted */
 | |
| 			message * m_buff_usr, /* pointer to message buffer */
 | |
| 			const int flags)
 | |
| {
 | |
| /* A process or task wants to get a message.  If a message is already queued,
 | |
|  * acquire it and deblock the sender.  If no message from the desired source
 | |
|  * is available block the caller.
 | |
|  */
 | |
|   register struct proc **xpp;
 | |
|   int r, src_id, src_proc_nr, src_p;
 | |
| 
 | |
|   assert(!(caller_ptr->p_misc_flags & MF_DELIVERMSG));
 | |
| 
 | |
|   /* This is where we want our message. */
 | |
|   caller_ptr->p_delivermsg_vir = (vir_bytes) m_buff_usr;
 | |
| 
 | |
|   if(src_e == ANY) src_p = ANY;
 | |
|   else
 | |
|   {
 | |
| 	okendpt(src_e, &src_p);
 | |
| 	if (RTS_ISSET(proc_addr(src_p), RTS_NO_ENDPOINT))
 | |
| 	{
 | |
| 		return EDEADSRCDST;
 | |
| 	}
 | |
|   }
 | |
| 
 | |
| 
 | |
|   /* Check to see if a message from desired source is already available.  The
 | |
|    * caller's RTS_SENDING flag may be set if SENDREC couldn't send. If it is
 | |
|    * set, the process should be blocked.
 | |
|    */
 | |
|   if (!RTS_ISSET(caller_ptr, RTS_SENDING)) {
 | |
| 
 | |
|     /* Check if there are pending notifications, except for SENDREC. */
 | |
|     if (! (caller_ptr->p_misc_flags & MF_REPLY_PEND)) {
 | |
| 
 | |
| 	/* Check for pending notifications */
 | |
|         if ((src_id = has_pending_notify(caller_ptr, src_p)) != NULL_PRIV_ID) {
 | |
|             endpoint_t hisep;
 | |
| 
 | |
|             src_proc_nr = id_to_nr(src_id);		/* get source proc */
 | |
| #if DEBUG_ENABLE_IPC_WARNINGS
 | |
| 	    if(src_proc_nr == NONE) {
 | |
| 		printf("mini_receive: sending notify from NONE\n");
 | |
| 	    }
 | |
| #endif
 | |
| 	    assert(src_proc_nr != NONE);
 | |
|             unset_notify_pending(caller_ptr, src_id);	/* no longer pending */
 | |
| 
 | |
|             /* Found a suitable source, deliver the notification message. */
 | |
| 	    hisep = proc_addr(src_proc_nr)->p_endpoint;
 | |
| 	    assert(!(caller_ptr->p_misc_flags & MF_DELIVERMSG));	
 | |
| 	    assert(src_e == ANY || hisep == src_e);
 | |
| 
 | |
| 	    /* assemble message */
 | |
| 	    BuildNotifyMessage(&caller_ptr->p_delivermsg, src_proc_nr, caller_ptr);
 | |
| 	    caller_ptr->p_delivermsg.m_source = hisep;
 | |
| 	    caller_ptr->p_misc_flags |= MF_DELIVERMSG;
 | |
| 
 | |
| 	    IPC_STATUS_ADD_CALL(caller_ptr, NOTIFY);
 | |
| 
 | |
| 	    goto receive_done;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Check for pending asynchronous messages */
 | |
|     if (has_pending_asend(caller_ptr, src_p) != NULL_PRIV_ID) {
 | |
|         if (src_p != ANY)
 | |
|         	r = try_one(proc_addr(src_p), caller_ptr);
 | |
|         else
 | |
|         	r = try_async(caller_ptr);
 | |
| 
 | |
| 	if (r == OK) {
 | |
|             IPC_STATUS_ADD_CALL(caller_ptr, SENDA);
 | |
|             goto receive_done;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Check caller queue. Use pointer pointers to keep code simple. */
 | |
|     xpp = &caller_ptr->p_caller_q;
 | |
|     while (*xpp) {
 | |
| 	struct proc * sender = *xpp;
 | |
| 
 | |
|         if (src_e == ANY || src_p == proc_nr(sender)) {
 | |
|             int call;
 | |
| 	    assert(!RTS_ISSET(sender, RTS_SLOT_FREE));
 | |
| 	    assert(!RTS_ISSET(sender, RTS_NO_ENDPOINT));
 | |
| 
 | |
| 	    /* Found acceptable message. Copy it and update status. */
 | |
|   	    assert(!(caller_ptr->p_misc_flags & MF_DELIVERMSG));
 | |
| 	    caller_ptr->p_delivermsg = sender->p_sendmsg;
 | |
| 	    caller_ptr->p_delivermsg.m_source = sender->p_endpoint;
 | |
| 	    caller_ptr->p_misc_flags |= MF_DELIVERMSG;
 | |
| 	    RTS_UNSET(sender, RTS_SENDING);
 | |
| 
 | |
| 	    call = (sender->p_misc_flags & MF_REPLY_PEND ? SENDREC : SEND);
 | |
| 	    IPC_STATUS_ADD_CALL(caller_ptr, call);
 | |
| 
 | |
| 	    /*
 | |
| 	     * if the message is originaly from the kernel on behalf of this
 | |
| 	     * process, we must send the status flags accordingly
 | |
| 	     */
 | |
| 	    if (sender->p_misc_flags & MF_SENDING_FROM_KERNEL) {
 | |
| 		IPC_STATUS_ADD_FLAGS(caller_ptr, IPC_FLG_MSG_FROM_KERNEL);
 | |
| 		/* we can clean the flag now, not need anymore */
 | |
| 		sender->p_misc_flags &= ~MF_SENDING_FROM_KERNEL;
 | |
| 	    }
 | |
| 	    if (sender->p_misc_flags & MF_SIG_DELAY)
 | |
| 		sig_delay_done(sender);
 | |
| 
 | |
| #if DEBUG_IPC_HOOK
 | |
|             hook_ipc_msgrecv(&caller_ptr->p_delivermsg, *xpp, caller_ptr);
 | |
| #endif
 | |
| 		
 | |
|             *xpp = sender->p_q_link;		/* remove from queue */
 | |
| 	    sender->p_q_link = NULL;
 | |
| 	    goto receive_done;
 | |
| 	}
 | |
| 	xpp = &sender->p_q_link;		/* proceed to next */
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* No suitable message is available or the caller couldn't send in SENDREC. 
 | |
|    * Block the process trying to receive, unless the flags tell otherwise.
 | |
|    */
 | |
|   if ( ! (flags & NON_BLOCKING)) {
 | |
|       /* Check for a possible deadlock before actually blocking. */
 | |
|       if (deadlock(RECEIVE, caller_ptr, src_e)) {
 | |
|           return(ELOCKED);
 | |
|       }
 | |
| 
 | |
|       caller_ptr->p_getfrom_e = src_e;		
 | |
|       RTS_SET(caller_ptr, RTS_RECEIVING);
 | |
|       return(OK);
 | |
|   } else {
 | |
| 	return(ENOTREADY);
 | |
|   }
 | |
| 
 | |
| receive_done:
 | |
|   if (caller_ptr->p_misc_flags & MF_REPLY_PEND)
 | |
| 	  caller_ptr->p_misc_flags &= ~MF_REPLY_PEND;
 | |
|   return OK;
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				mini_notify				     * 
 | |
|  *===========================================================================*/
 | |
| int mini_notify(
 | |
|   const struct proc *caller_ptr,	/* sender of the notification */
 | |
|   endpoint_t dst_e			/* which process to notify */
 | |
| )
 | |
| {
 | |
|   register struct proc *dst_ptr;
 | |
|   int src_id;				/* source id for late delivery */
 | |
|   int dst_p;
 | |
| 
 | |
|   if (!isokendpt(dst_e, &dst_p)) {
 | |
| 	util_stacktrace();
 | |
| 	printf("mini_notify: bogus endpoint %d\n", dst_e);
 | |
| 	return EDEADSRCDST;
 | |
|   }
 | |
| 
 | |
|   dst_ptr = proc_addr(dst_p);
 | |
| 
 | |
|   /* Check to see if target is blocked waiting for this message. A process 
 | |
|    * can be both sending and receiving during a SENDREC system call.
 | |
|    */
 | |
|     if (WILLRECEIVE(dst_ptr, caller_ptr->p_endpoint) &&
 | |
|       ! (dst_ptr->p_misc_flags & MF_REPLY_PEND)) {
 | |
|       /* Destination is indeed waiting for a message. Assemble a notification 
 | |
|        * message and deliver it. Copy from pseudo-source HARDWARE, since the
 | |
|        * message is in the kernel's address space.
 | |
|        */ 
 | |
|       assert(!(dst_ptr->p_misc_flags & MF_DELIVERMSG));
 | |
| 
 | |
|       BuildNotifyMessage(&dst_ptr->p_delivermsg, proc_nr(caller_ptr), dst_ptr);
 | |
|       dst_ptr->p_delivermsg.m_source = caller_ptr->p_endpoint;
 | |
|       dst_ptr->p_misc_flags |= MF_DELIVERMSG;
 | |
| 
 | |
|       IPC_STATUS_ADD_CALL(dst_ptr, NOTIFY);
 | |
|       RTS_UNSET(dst_ptr, RTS_RECEIVING);
 | |
| 
 | |
|       return(OK);
 | |
|   } 
 | |
| 
 | |
|   /* Destination is not ready to receive the notification. Add it to the 
 | |
|    * bit map with pending notifications. Note the indirectness: the privilege id
 | |
|    * instead of the process number is used in the pending bit map.
 | |
|    */ 
 | |
|   src_id = priv(caller_ptr)->s_id;
 | |
|   set_sys_bit(priv(dst_ptr)->s_notify_pending, src_id); 
 | |
|   return(OK);
 | |
| }
 | |
| 
 | |
| #define ASCOMPLAIN(caller, entry, field)	\
 | |
| 	printf("kernel:%s:%d: asyn failed for %s in %s "	\
 | |
| 	"(%d/%d, tab 0x%lx)\n",__FILE__,__LINE__,	\
 | |
| field, caller->p_name, entry, priv(caller)->s_asynsize, priv(caller)->s_asyntab)
 | |
| 
 | |
| #define A_RETR_FLD(entry, field)	\
 | |
|   if(data_copy(caller_ptr->p_endpoint,	\
 | |
| 	 table_v + (entry)*sizeof(asynmsg_t) + offsetof(struct asynmsg,field),\
 | |
| 		KERNEL, (vir_bytes) &tabent.field,	\
 | |
| 			sizeof(tabent.field)) != OK) {\
 | |
| 		ASCOMPLAIN(caller_ptr, entry, #field);	\
 | |
| 		r = EFAULT; \
 | |
| 	        goto asyn_error; \
 | |
| 	}
 | |
| 
 | |
| #define A_RETR(entry) do {			\
 | |
|   if (data_copy(				\
 | |
|   		caller_ptr->p_endpoint, table_v + (entry)*sizeof(asynmsg_t),\
 | |
|   		KERNEL, (vir_bytes) &tabent,	\
 | |
|   		sizeof(tabent)) != OK) {	\
 | |
|   			ASCOMPLAIN(caller_ptr, entry, "message entry");	\
 | |
|   			r = EFAULT;		\
 | |
| 	                goto asyn_error; \
 | |
|   }						\
 | |
|   			 } while(0)
 | |
| 
 | |
| #define A_INSRT_FLD(entry, field)	\
 | |
|   if(data_copy(KERNEL, (vir_bytes) &tabent.field, \
 | |
| 	caller_ptr->p_endpoint,	\
 | |
|  	table_v + (entry)*sizeof(asynmsg_t) + offsetof(struct asynmsg,field),\
 | |
| 		sizeof(tabent.field)) != OK) {\
 | |
| 		ASCOMPLAIN(caller_ptr, entry, #field);	\
 | |
| 		r = EFAULT; \
 | |
| 	        goto asyn_error; \
 | |
| 	}
 | |
| 
 | |
| #define A_INSRT(entry) do {			\
 | |
|   if (data_copy(KERNEL, (vir_bytes) &tabent,	\
 | |
|   		caller_ptr->p_endpoint, table_v + (entry)*sizeof(asynmsg_t),\
 | |
|   		sizeof(tabent)) != OK) {	\
 | |
|   			ASCOMPLAIN(caller_ptr, entry, "message entry");	\
 | |
|   			r = EFAULT;		\
 | |
| 	                goto asyn_error; \
 | |
|   }						\
 | |
|   			  } while(0)	
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				try_deliver_senda			     *
 | |
|  *===========================================================================*/
 | |
| int try_deliver_senda(struct proc *caller_ptr,
 | |
| 				asynmsg_t *table,
 | |
| 				size_t size)
 | |
| {
 | |
|   int r, dst_p, done, do_notify;
 | |
|   unsigned int i;
 | |
|   unsigned flags;
 | |
|   endpoint_t dst;
 | |
|   struct proc *dst_ptr;
 | |
|   struct priv *privp;
 | |
|   asynmsg_t tabent;
 | |
|   const vir_bytes table_v = (vir_bytes) table;
 | |
| 
 | |
|   privp = priv(caller_ptr);
 | |
| 
 | |
|   /* Clear table */
 | |
|   privp->s_asyntab = -1;
 | |
|   privp->s_asynsize = 0;
 | |
| 
 | |
|   if (size == 0) return(OK);  /* Nothing to do, just return */
 | |
| 
 | |
|   /* Scan the table */
 | |
|   do_notify = FALSE;
 | |
|   done = TRUE;
 | |
| 
 | |
|   /* Limit size to something reasonable. An arbitrary choice is 16
 | |
|    * times the number of process table entries.
 | |
|    *
 | |
|    * (this check has been duplicated in sys_call but is left here
 | |
|    * as a sanity check)
 | |
|    */
 | |
|   if (size > 16*(NR_TASKS + NR_PROCS)) {
 | |
|     r = EDOM;
 | |
|     return r;
 | |
|   }
 | |
| 
 | |
|   for (i = 0; i < size; i++) {
 | |
| 	/* Process each entry in the table and store the result in the table.
 | |
| 	 * If we're done handling a message, copy the result to the sender. */
 | |
| 
 | |
| 	dst = NONE;
 | |
| 	/* Copy message to kernel */
 | |
| 	A_RETR(i);
 | |
| 	flags = tabent.flags;
 | |
| 	dst = tabent.dst;
 | |
| 
 | |
| 	if (flags == 0) continue; /* Skip empty entries */
 | |
| 
 | |
| 	/* 'flags' field must contain only valid bits */
 | |
| 	if(flags & ~(AMF_VALID|AMF_DONE|AMF_NOTIFY|AMF_NOREPLY|AMF_NOTIFY_ERR)) {
 | |
| 		r = EINVAL;
 | |
| 		goto asyn_error;
 | |
| 	}
 | |
| 	if (!(flags & AMF_VALID)) { /* Must contain message */
 | |
| 		r = EINVAL;
 | |
| 		goto asyn_error;
 | |
| 	}
 | |
| 	if (flags & AMF_DONE) continue;	/* Already done processing */
 | |
| 
 | |
| 	r = OK;
 | |
| 	if (!isokendpt(tabent.dst, &dst_p)) 
 | |
| 		r = EDEADSRCDST; /* Bad destination, report the error */
 | |
| 	else if (iskerneln(dst_p)) 
 | |
| 		r = ECALLDENIED; /* Asyn sends to the kernel are not allowed */
 | |
| 	else if (!may_send_to(caller_ptr, dst_p)) 
 | |
| 		r = ECALLDENIED; /* Send denied by IPC mask */
 | |
| 	else 	/* r == OK */
 | |
| 		dst_ptr = proc_addr(dst_p);
 | |
| 
 | |
| 	/* XXX: RTS_NO_ENDPOINT should be removed */
 | |
| 	if (r == OK && RTS_ISSET(dst_ptr, RTS_NO_ENDPOINT)) {
 | |
| 		r = EDEADSRCDST;
 | |
| 	}
 | |
| 
 | |
| 	/* Check if 'dst' is blocked waiting for this message.
 | |
| 	 * If AMF_NOREPLY is set, do not satisfy the receiving part of
 | |
| 	 * a SENDREC.
 | |
| 	 */
 | |
| 	if (r == OK && WILLRECEIVE(dst_ptr, caller_ptr->p_endpoint) &&
 | |
| 	    (!(flags&AMF_NOREPLY) || !(dst_ptr->p_misc_flags&MF_REPLY_PEND))) {
 | |
| 		/* Destination is indeed waiting for this message. */
 | |
| 		dst_ptr->p_delivermsg = tabent.msg;
 | |
| 		dst_ptr->p_delivermsg.m_source = caller_ptr->p_endpoint;
 | |
| 		dst_ptr->p_misc_flags |= MF_DELIVERMSG;
 | |
| 		IPC_STATUS_ADD_CALL(dst_ptr, SENDA);
 | |
| 		RTS_UNSET(dst_ptr, RTS_RECEIVING);
 | |
| 	} else if (r == OK) {
 | |
| 		/* Inform receiver that something is pending */
 | |
| 		set_sys_bit(priv(dst_ptr)->s_asyn_pending, 
 | |
| 			    priv(caller_ptr)->s_id); 
 | |
| 		done = FALSE;
 | |
| 		continue;
 | |
| 	} 
 | |
| 
 | |
| 	/* Store results */
 | |
| 	tabent.result = r;
 | |
| 	tabent.flags = flags | AMF_DONE;
 | |
| 	if (flags & AMF_NOTIFY)
 | |
| 		do_notify = TRUE;
 | |
| 	else if (r != OK && (flags & AMF_NOTIFY_ERR))
 | |
| 		do_notify = TRUE;
 | |
| 	A_INSRT(i);	/* Copy results to caller */
 | |
| 	continue;
 | |
| 
 | |
| asyn_error:
 | |
| 	if (dst != NONE)
 | |
| 		printf("KERNEL senda error %d to %d\n", r, dst);
 | |
| 	else
 | |
| 		printf("KERNEL senda error %d\n", r);
 | |
|   }
 | |
| 
 | |
|   if (do_notify) 
 | |
| 	mini_notify(proc_addr(ASYNCM), caller_ptr->p_endpoint);
 | |
| 
 | |
|   if (!done) {
 | |
| 	privp->s_asyntab = (vir_bytes) table;
 | |
| 	privp->s_asynsize = size;
 | |
|   }
 | |
| 
 | |
|   return(OK);
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				mini_senda				     *
 | |
|  *===========================================================================*/
 | |
| static int mini_senda(struct proc *caller_ptr, asynmsg_t *table, size_t size)
 | |
| {
 | |
|   struct priv *privp;
 | |
| 
 | |
|   privp = priv(caller_ptr);
 | |
|   if (!(privp->s_flags & SYS_PROC)) {
 | |
| 	printf( "mini_senda: warning caller has no privilege structure\n");
 | |
| 	return(EPERM);
 | |
|   }
 | |
| 
 | |
|   return try_deliver_senda(caller_ptr, table, size);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				try_async				     * 
 | |
|  *===========================================================================*/
 | |
| static int try_async(caller_ptr)
 | |
| struct proc *caller_ptr;
 | |
| {
 | |
|   int r;
 | |
|   struct priv *privp;
 | |
|   struct proc *src_ptr;
 | |
|   sys_map_t *map;
 | |
| 
 | |
|   map = &priv(caller_ptr)->s_asyn_pending;
 | |
| 
 | |
|   /* Try all privilege structures */
 | |
|   for (privp = BEG_PRIV_ADDR; privp < END_PRIV_ADDR; ++privp)  {
 | |
| 	if (privp->s_proc_nr == NONE)
 | |
| 		continue;
 | |
| 
 | |
| 	if (!get_sys_bit(*map, privp->s_id)) 
 | |
| 		continue;
 | |
| 
 | |
| 	src_ptr = proc_addr(privp->s_proc_nr);
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 	/*
 | |
| 	 * Do not copy from a process which does not have a stable address space
 | |
| 	 * due to VM fiddling with it
 | |
| 	 */
 | |
| 	if (RTS_ISSET(src_ptr, RTS_VMINHIBIT)) {
 | |
| 		src_ptr->p_misc_flags |= MF_SENDA_VM_MISS;
 | |
| 		continue;
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	assert(!(caller_ptr->p_misc_flags & MF_DELIVERMSG));
 | |
| 	if ((r = try_one(src_ptr, caller_ptr)) == OK)
 | |
| 		return(r);
 | |
|   }
 | |
| 
 | |
|   return(ESRCH);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				try_one					     *
 | |
|  *===========================================================================*/
 | |
| static int try_one(struct proc *src_ptr, struct proc *dst_ptr)
 | |
| {
 | |
| /* Try to receive an asynchronous message from 'src_ptr' */
 | |
|   int r = EAGAIN, done, do_notify;
 | |
|   unsigned int flags, i;
 | |
|   size_t size;
 | |
|   endpoint_t dst;
 | |
|   struct proc *caller_ptr;
 | |
|   struct priv *privp;
 | |
|   asynmsg_t tabent;
 | |
|   vir_bytes table_v;
 | |
| 
 | |
|   privp = priv(src_ptr);
 | |
|   if (!(privp->s_flags & SYS_PROC)) return(EPERM);
 | |
|   size = privp->s_asynsize;
 | |
|   table_v = privp->s_asyntab;
 | |
| 
 | |
|   /* Clear table pending message flag. We're done unless we're not. */
 | |
|   unset_sys_bit(priv(dst_ptr)->s_asyn_pending, privp->s_id);
 | |
| 
 | |
|   if (size == 0) return(EAGAIN);
 | |
|   if (!may_send_to(src_ptr, proc_nr(dst_ptr))) return(ECALLDENIED);
 | |
| 
 | |
|   caller_ptr = src_ptr;	/* Needed for A_ macros later on */
 | |
| 
 | |
|   /* Scan the table */
 | |
|   do_notify = FALSE;
 | |
|   done = TRUE;
 | |
| 
 | |
|   for (i = 0; i < size; i++) {
 | |
|   	/* Process each entry in the table and store the result in the table.
 | |
|   	 * If we're done handling a message, copy the result to the sender.
 | |
|   	 * Some checks done in mini_senda are duplicated here, as the sender
 | |
|   	 * could've altered the contents of the table in the meantime.
 | |
|   	 */
 | |
| 
 | |
| 	/* Copy message to kernel */
 | |
| 	A_RETR(i);
 | |
| 	flags = tabent.flags;
 | |
| 	dst = tabent.dst;
 | |
| 
 | |
| 	if (flags == 0) continue;	/* Skip empty entries */
 | |
| 
 | |
| 	/* 'flags' field must contain only valid bits */
 | |
| 	if(flags & ~(AMF_VALID|AMF_DONE|AMF_NOTIFY|AMF_NOREPLY|AMF_NOTIFY_ERR))
 | |
| 		r = EINVAL;
 | |
| 	else if (!(flags & AMF_VALID)) /* Must contain message */
 | |
| 		r = EINVAL; 
 | |
| 	else if (flags & AMF_DONE) continue; /* Already done processing */
 | |
| 
 | |
| 	/* Clear done flag. The sender is done sending when all messages in the
 | |
| 	 * table are marked done or empty. However, we will know that only
 | |
| 	 * the next time we enter this function or when the sender decides to
 | |
| 	 * send additional asynchronous messages and manages to deliver them
 | |
| 	 * all.
 | |
| 	 */
 | |
| 	done = FALSE;
 | |
| 
 | |
| 	if (r == EINVAL)
 | |
| 		goto store_result;
 | |
| 
 | |
| 	/* Message must be directed at receiving end */
 | |
| 	if (dst != dst_ptr->p_endpoint) continue;
 | |
| 
 | |
| 	/* If AMF_NOREPLY is set, then this message is not a reply to a
 | |
| 	 * SENDREC and thus should not satisfy the receiving part of the
 | |
| 	 * SENDREC. This message is to be delivered later.
 | |
| 	 */
 | |
| 	if ((flags & AMF_NOREPLY) && (dst_ptr->p_misc_flags & MF_REPLY_PEND)) 
 | |
| 		continue;
 | |
| 
 | |
| 	/* Destination is ready to receive the message; deliver it */
 | |
| 	r = OK;
 | |
| 	dst_ptr->p_delivermsg = tabent.msg;
 | |
| 	dst_ptr->p_delivermsg.m_source = src_ptr->p_endpoint;
 | |
| 	dst_ptr->p_misc_flags |= MF_DELIVERMSG;
 | |
| 
 | |
| store_result:
 | |
| 	/* Store results for sender */
 | |
| 	tabent.result = r;
 | |
| 	tabent.flags = flags | AMF_DONE;
 | |
| 	if (flags & AMF_NOTIFY) do_notify = TRUE;
 | |
| 	else if (r != OK && (flags & AMF_NOTIFY_ERR)) do_notify = TRUE;
 | |
| 	A_INSRT(i);	/* Copy results to sender */
 | |
| 
 | |
| 	break;
 | |
|   }
 | |
| 
 | |
|   if (do_notify) 
 | |
| 	mini_notify(proc_addr(ASYNCM), src_ptr->p_endpoint);
 | |
| 
 | |
|   if (done) {
 | |
| 	privp->s_asyntab = -1;
 | |
| 	privp->s_asynsize = 0;
 | |
|   } else {
 | |
| 	set_sys_bit(priv(dst_ptr)->s_asyn_pending, privp->s_id);
 | |
|   }
 | |
| 
 | |
| asyn_error:
 | |
|   return(r);
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				cancel_async				     *
 | |
|  *===========================================================================*/
 | |
| int cancel_async(struct proc *src_ptr, struct proc *dst_ptr)
 | |
| {
 | |
| /* Cancel asynchronous messages from src to dst, because dst is not interested
 | |
|  * in them (e.g., dst has been restarted) */
 | |
|   int done, do_notify;
 | |
|   unsigned int flags, i;
 | |
|   size_t size;
 | |
|   endpoint_t dst;
 | |
|   struct proc *caller_ptr;
 | |
|   struct priv *privp;
 | |
|   asynmsg_t tabent;
 | |
|   vir_bytes table_v;
 | |
| 
 | |
|   privp = priv(src_ptr);
 | |
|   if (!(privp->s_flags & SYS_PROC)) return(EPERM);
 | |
|   size = privp->s_asynsize;
 | |
|   table_v = privp->s_asyntab;
 | |
| 
 | |
|   /* Clear table pending message flag. We're done unless we're not. */
 | |
|   privp->s_asyntab = -1;
 | |
|   privp->s_asynsize = 0;
 | |
|   unset_sys_bit(priv(dst_ptr)->s_asyn_pending, privp->s_id);
 | |
| 
 | |
|   if (size == 0) return(EAGAIN);
 | |
|   if (!may_send_to(src_ptr, proc_nr(dst_ptr))) return(ECALLDENIED);
 | |
| 
 | |
|   caller_ptr = src_ptr;	/* Needed for A_ macros later on */
 | |
| 
 | |
|   /* Scan the table */
 | |
|   do_notify = FALSE;
 | |
|   done = TRUE;
 | |
| 
 | |
| 
 | |
|   for (i = 0; i < size; i++) {
 | |
|   	/* Process each entry in the table and store the result in the table.
 | |
|   	 * If we're done handling a message, copy the result to the sender.
 | |
|   	 * Some checks done in mini_senda are duplicated here, as the sender
 | |
|   	 * could've altered the contents of the table in the mean time.
 | |
|   	 */
 | |
| 
 | |
|   	int r = EDEADSRCDST;	/* Cancel delivery due to dead dst */
 | |
| 
 | |
| 	/* Copy message to kernel */
 | |
| 	A_RETR(i);
 | |
| 	flags = tabent.flags;
 | |
| 	dst = tabent.dst;
 | |
| 
 | |
| 	if (flags == 0) continue;	/* Skip empty entries */
 | |
| 
 | |
| 	/* 'flags' field must contain only valid bits */
 | |
| 	if(flags & ~(AMF_VALID|AMF_DONE|AMF_NOTIFY|AMF_NOREPLY|AMF_NOTIFY_ERR))
 | |
| 		r = EINVAL;
 | |
| 	else if (!(flags & AMF_VALID)) /* Must contain message */
 | |
| 		r = EINVAL; 
 | |
| 	else if (flags & AMF_DONE) continue; /* Already done processing */
 | |
| 
 | |
| 	/* Message must be directed at receiving end */
 | |
| 	if (dst != dst_ptr->p_endpoint) {
 | |
| 		done = FALSE;
 | |
| 		continue;
 | |
| 	}
 | |
| 
 | |
| 	/* Store results for sender */
 | |
| 	tabent.result = r;
 | |
| 	tabent.flags = flags | AMF_DONE;
 | |
| 	if (flags & AMF_NOTIFY) do_notify = TRUE;
 | |
| 	else if (r != OK && (flags & AMF_NOTIFY_ERR)) do_notify = TRUE;
 | |
| 	A_INSRT(i);	/* Copy results to sender */
 | |
|   }
 | |
| 
 | |
|   if (do_notify) 
 | |
| 	mini_notify(proc_addr(ASYNCM), src_ptr->p_endpoint);
 | |
| 
 | |
|   if (!done) {
 | |
| 	privp->s_asyntab = table_v;
 | |
| 	privp->s_asynsize = size;
 | |
|   }
 | |
| 
 | |
| asyn_error:
 | |
|   return(OK);
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				enqueue					     * 
 | |
|  *===========================================================================*/
 | |
| void enqueue(
 | |
|   register struct proc *rp	/* this process is now runnable */
 | |
| )
 | |
| {
 | |
| /* Add 'rp' to one of the queues of runnable processes.  This function is 
 | |
|  * responsible for inserting a process into one of the scheduling queues. 
 | |
|  * The mechanism is implemented here.   The actual scheduling policy is
 | |
|  * defined in sched() and pick_proc().
 | |
|  *
 | |
|  * This function can be used x-cpu as it always uses the queues of the cpu the
 | |
|  * process is assigned to.
 | |
|  */
 | |
|   int q = rp->p_priority;	 		/* scheduling queue to use */
 | |
|   struct proc **rdy_head, **rdy_tail;
 | |
|   
 | |
|   assert(proc_is_runnable(rp));
 | |
| 
 | |
|   assert(q >= 0);
 | |
| 
 | |
|   rdy_head = get_cpu_var(rp->p_cpu, run_q_head);
 | |
|   rdy_tail = get_cpu_var(rp->p_cpu, run_q_tail);
 | |
| 
 | |
|   /* Now add the process to the queue. */
 | |
|   if (!rdy_head[q]) {		/* add to empty queue */
 | |
|       rdy_head[q] = rdy_tail[q] = rp; 		/* create a new queue */
 | |
|       rp->p_nextready = NULL;		/* mark new end */
 | |
|   } 
 | |
|   else {					/* add to tail of queue */
 | |
|       rdy_tail[q]->p_nextready = rp;		/* chain tail of queue */	
 | |
|       rdy_tail[q] = rp;				/* set new queue tail */
 | |
|       rp->p_nextready = NULL;		/* mark new end */
 | |
|   }
 | |
| 
 | |
|   if (cpuid == rp->p_cpu) {
 | |
| 	  /*
 | |
| 	   * enqueueing a process with a higher priority than the current one,
 | |
| 	   * it gets preempted. The current process must be preemptible. Testing
 | |
| 	   * the priority also makes sure that a process does not preempt itself
 | |
| 	   */
 | |
| 	  struct proc * p;
 | |
| 	  p = get_cpulocal_var(proc_ptr);
 | |
| 	  assert(p);
 | |
| 	  if((p->p_priority > rp->p_priority) &&
 | |
| 			  (priv(p)->s_flags & PREEMPTIBLE))
 | |
| 		  RTS_SET(p, RTS_PREEMPTED); /* calls dequeue() */
 | |
|   }
 | |
| #ifdef CONFIG_SMP
 | |
|   /*
 | |
|    * if the process was enqueued on a different cpu and the cpu is idle, i.e.
 | |
|    * the time is off, we need to wake up that cpu and let it schedule this new
 | |
|    * process
 | |
|    */
 | |
|   else if (get_cpu_var(rp->p_cpu, cpu_is_idle)) {
 | |
| 	  smp_schedule(rp->p_cpu);
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   /* Make note of when this process was added to queue */
 | |
|   read_tsc_64(&(get_cpulocal_var(proc_ptr)->p_accounting.enter_queue));
 | |
| 
 | |
| 
 | |
| #if DEBUG_SANITYCHECKS
 | |
|   assert(runqueues_ok_local());
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				enqueue_head				     *
 | |
|  *===========================================================================*/
 | |
| /*
 | |
|  * put a process at the front of its run queue. It comes handy when a process is
 | |
|  * preempted and removed from run queue to not to have a currently not-runnable
 | |
|  * process on a run queue. We have to put this process back at the fron to be
 | |
|  * fair
 | |
|  */
 | |
| static void enqueue_head(struct proc *rp)
 | |
| {
 | |
|   const int q = rp->p_priority;	 		/* scheduling queue to use */
 | |
| 
 | |
|   struct proc **rdy_head, **rdy_tail;
 | |
| 
 | |
|   assert(proc_ptr_ok(rp));
 | |
|   assert(proc_is_runnable(rp));
 | |
| 
 | |
|   /*
 | |
|    * the process was runnable without its quantum expired when dequeued. A
 | |
|    * process with no time left should vahe been handled else and differently
 | |
|    */
 | |
|   assert(!is_zero64(rp->p_cpu_time_left));
 | |
| 
 | |
|   assert(q >= 0);
 | |
| 
 | |
| 
 | |
|   rdy_head = get_cpu_var(rp->p_cpu, run_q_head);
 | |
|   rdy_tail = get_cpu_var(rp->p_cpu, run_q_tail);
 | |
| 
 | |
|   /* Now add the process to the queue. */
 | |
|   if (!rdy_head[q]) {		/* add to empty queue */
 | |
|       rdy_head[q] = rdy_tail[q] = rp; 		/* create a new queue */
 | |
|       rp->p_nextready = NULL;		/* mark new end */
 | |
|   }
 | |
|   else						/* add to head of queue */
 | |
|       rp->p_nextready = rdy_head[q];		/* chain head of queue */
 | |
|       rdy_head[q] = rp;				/* set new queue head */
 | |
| 
 | |
|   /* Make note of when this process was added to queue */
 | |
|   read_tsc_64(&(get_cpulocal_var(proc_ptr->p_accounting.enter_queue)));
 | |
| 
 | |
| 
 | |
|   /* Process accounting for scheduling */
 | |
|   rp->p_accounting.dequeues--;
 | |
|   rp->p_accounting.preempted++;
 | |
| 
 | |
| #if DEBUG_SANITYCHECKS
 | |
|   assert(runqueues_ok_local());
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				dequeue					     * 
 | |
|  *===========================================================================*/
 | |
| void dequeue(struct proc *rp)
 | |
| /* this process is no longer runnable */
 | |
| {
 | |
| /* A process must be removed from the scheduling queues, for example, because
 | |
|  * it has blocked.  If the currently active process is removed, a new process
 | |
|  * is picked to run by calling pick_proc().
 | |
|  *
 | |
|  * This function can operate x-cpu as it always removes the process from the
 | |
|  * queue of the cpu the process is currently assigned to.
 | |
|  */
 | |
|   int q = rp->p_priority;		/* queue to use */
 | |
|   struct proc **xpp;			/* iterate over queue */
 | |
|   struct proc *prev_xp;
 | |
|   u64_t tsc, tsc_delta;
 | |
| 
 | |
|   struct proc **rdy_tail;
 | |
| 
 | |
|   assert(proc_ptr_ok(rp));
 | |
|   assert(!proc_is_runnable(rp));
 | |
| 
 | |
|   /* Side-effect for kernel: check if the task's stack still is ok? */
 | |
|   assert (!iskernelp(rp) || *priv(rp)->s_stack_guard == STACK_GUARD);
 | |
| 
 | |
|   rdy_tail = get_cpu_var(rp->p_cpu, run_q_tail);
 | |
| 
 | |
|   /* Now make sure that the process is not in its ready queue. Remove the 
 | |
|    * process if it is found. A process can be made unready even if it is not 
 | |
|    * running by being sent a signal that kills it.
 | |
|    */
 | |
|   prev_xp = NULL;				
 | |
|   for (xpp = get_cpu_var_ptr(rp->p_cpu, run_q_head[q]); *xpp;
 | |
| 		  xpp = &(*xpp)->p_nextready) {
 | |
|       if (*xpp == rp) {				/* found process to remove */
 | |
|           *xpp = (*xpp)->p_nextready;		/* replace with next chain */
 | |
|           if (rp == rdy_tail[q]) {		/* queue tail removed */
 | |
|               rdy_tail[q] = prev_xp;		/* set new tail */
 | |
| 	  }
 | |
| 
 | |
|           break;
 | |
|       }
 | |
|       prev_xp = *xpp;				/* save previous in chain */
 | |
|   }
 | |
| 
 | |
| 	
 | |
|   /* Process accounting for scheduling */
 | |
|   rp->p_accounting.dequeues++;
 | |
| 
 | |
|   /* this is not all that accurate on virtual machines, especially with
 | |
|      IO bound processes that only spend a short amount of time in the queue
 | |
|      at a time. */
 | |
|   if (!is_zero64(rp->p_accounting.enter_queue)) {
 | |
| 	read_tsc_64(&tsc);
 | |
| 	tsc_delta = sub64(tsc, rp->p_accounting.enter_queue);
 | |
| 	rp->p_accounting.time_in_queue = add64(rp->p_accounting.time_in_queue,
 | |
| 		tsc_delta);
 | |
| 	make_zero64(rp->p_accounting.enter_queue);
 | |
|   }
 | |
| 
 | |
| 
 | |
| #if DEBUG_SANITYCHECKS
 | |
|   assert(runqueues_ok_local());
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				pick_proc				     * 
 | |
|  *===========================================================================*/
 | |
| static struct proc * pick_proc(void)
 | |
| {
 | |
| /* Decide who to run now.  A new process is selected an returned.
 | |
|  * When a billable process is selected, record it in 'bill_ptr', so that the 
 | |
|  * clock task can tell who to bill for system time.
 | |
|  *
 | |
|  * This function always uses the run queues of the local cpu!
 | |
|  */
 | |
|   register struct proc *rp;			/* process to run */
 | |
|   struct proc **rdy_head;
 | |
|   int q;				/* iterate over queues */
 | |
| 
 | |
|   /* Check each of the scheduling queues for ready processes. The number of
 | |
|    * queues is defined in proc.h, and priorities are set in the task table.
 | |
|    * If there are no processes ready to run, return NULL.
 | |
|    */
 | |
|   rdy_head = get_cpulocal_var(run_q_head);
 | |
|   for (q=0; q < NR_SCHED_QUEUES; q++) {	
 | |
| 	if(!(rp = rdy_head[q])) {
 | |
| 		TRACE(VF_PICKPROC, printf("cpu %d queue %d empty\n", cpuid, q););
 | |
| 		continue;
 | |
| 	}
 | |
| 	assert(proc_is_runnable(rp));
 | |
| 	if (priv(rp)->s_flags & BILLABLE)	 	
 | |
| 		get_cpulocal_var(bill_ptr) = rp; /* bill for system time */
 | |
| 	return rp;
 | |
|   }
 | |
|   return NULL;
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				endpoint_lookup				     *
 | |
|  *===========================================================================*/
 | |
| struct proc *endpoint_lookup(endpoint_t e)
 | |
| {
 | |
| 	int n;
 | |
| 
 | |
| 	if(!isokendpt(e, &n)) return NULL;
 | |
| 
 | |
| 	return proc_addr(n);
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				isokendpt_f				     *
 | |
|  *===========================================================================*/
 | |
| #if DEBUG_ENABLE_IPC_WARNINGS
 | |
| int isokendpt_f(file, line, e, p, fatalflag)
 | |
| const char *file;
 | |
| int line;
 | |
| #else
 | |
| int isokendpt_f(e, p, fatalflag)
 | |
| #endif
 | |
| endpoint_t e;
 | |
| int *p;
 | |
| const int fatalflag;
 | |
| {
 | |
| 	int ok = 0;
 | |
| 	/* Convert an endpoint number into a process number.
 | |
| 	 * Return nonzero if the process is alive with the corresponding
 | |
| 	 * generation number, zero otherwise.
 | |
| 	 *
 | |
| 	 * This function is called with file and line number by the
 | |
| 	 * isokendpt_d macro if DEBUG_ENABLE_IPC_WARNINGS is defined,
 | |
| 	 * otherwise without. This allows us to print the where the
 | |
| 	 * conversion was attempted, making the errors verbose without
 | |
| 	 * adding code for that at every call.
 | |
| 	 * 
 | |
| 	 * If fatalflag is nonzero, we must panic if the conversion doesn't
 | |
| 	 * succeed.
 | |
| 	 */
 | |
| 	*p = _ENDPOINT_P(e);
 | |
| 	ok = 0;
 | |
| 	if(isokprocn(*p) && !isemptyn(*p) && proc_addr(*p)->p_endpoint == e)
 | |
| 		ok = 1;
 | |
| 	if(!ok && fatalflag)
 | |
| 		panic("invalid endpoint: %d",  e);
 | |
| 	return ok;
 | |
| }
 | |
| 
 | |
| static void notify_scheduler(struct proc *p)
 | |
| {
 | |
| 	message m_no_quantum;
 | |
| 	int err;
 | |
| 
 | |
| 	assert(!proc_kernel_scheduler(p));
 | |
| 
 | |
| 	/* dequeue the process */
 | |
| 	RTS_SET(p, RTS_NO_QUANTUM);
 | |
| 	/*
 | |
| 	 * Notify the process's scheduler that it has run out of
 | |
| 	 * quantum. This is done by sending a message to the scheduler
 | |
| 	 * on the process's behalf
 | |
| 	 */
 | |
| 	m_no_quantum.m_source = p->p_endpoint;
 | |
| 	m_no_quantum.m_type   = SCHEDULING_NO_QUANTUM;
 | |
| 	m_no_quantum.SCHEDULING_ACNT_QUEUE = cpu_time_2_ms(p->p_accounting.time_in_queue);
 | |
| 	m_no_quantum.SCHEDULING_ACNT_DEQS      = p->p_accounting.dequeues;
 | |
| 	m_no_quantum.SCHEDULING_ACNT_IPC_SYNC  = p->p_accounting.ipc_sync;
 | |
| 	m_no_quantum.SCHEDULING_ACNT_IPC_ASYNC = p->p_accounting.ipc_async;
 | |
| 	m_no_quantum.SCHEDULING_ACNT_PREEMPT   = p->p_accounting.preempted;
 | |
| 	m_no_quantum.SCHEDULING_ACNT_CPU       = cpuid;
 | |
| 	m_no_quantum.SCHEDULING_ACNT_CPU_LOAD  = cpu_load();
 | |
| 
 | |
| 	/* Reset accounting */
 | |
| 	reset_proc_accounting(p);
 | |
| 
 | |
| 	if ((err = mini_send(p, p->p_scheduler->p_endpoint,
 | |
| 					&m_no_quantum, FROM_KERNEL))) {
 | |
| 		panic("WARNING: Scheduling: mini_send returned %d\n", err);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void proc_no_time(struct proc * p)
 | |
| {
 | |
| 	if (!proc_kernel_scheduler(p) && priv(p)->s_flags & PREEMPTIBLE) {
 | |
| 		/* this dequeues the process */
 | |
| 		notify_scheduler(p);
 | |
| 	}
 | |
| 	else {
 | |
| 		/*
 | |
| 		 * non-preemptible processes only need their quantum to
 | |
| 		 * be renewed. In fact, they by pass scheduling
 | |
| 		 */
 | |
| 		p->p_cpu_time_left = ms_2_cpu_time(p->p_quantum_size_ms);
 | |
| #if DEBUG_RACE
 | |
| 		RTS_SET(p, RTS_PREEMPTED);
 | |
| 		RTS_UNSET(p, RTS_PREEMPTED);
 | |
| #endif
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void reset_proc_accounting(struct proc *p)
 | |
| {
 | |
|   p->p_accounting.preempted = 0;
 | |
|   p->p_accounting.ipc_sync  = 0;
 | |
|   p->p_accounting.ipc_async = 0;
 | |
|   p->p_accounting.dequeues  = 0;
 | |
|   make_zero64(p->p_accounting.time_in_queue);
 | |
|   make_zero64(p->p_accounting.enter_queue);
 | |
| }
 | |
| 	
 | |
| void copr_not_available_handler(void)
 | |
| {
 | |
| 	struct proc * p;
 | |
| 	struct proc ** local_fpu_owner;
 | |
| 	/*
 | |
| 	 * Disable the FPU exception (both for the kernel and for the process
 | |
| 	 * once it's scheduled), and initialize or restore the FPU state.
 | |
| 	 */
 | |
| 
 | |
| 	disable_fpu_exception();
 | |
| 
 | |
| 	p = get_cpulocal_var(proc_ptr);
 | |
| 
 | |
| 	/* if FPU is not owned by anyone, do not store anything */
 | |
| 	local_fpu_owner = get_cpulocal_var_ptr(fpu_owner);
 | |
| 	if (*local_fpu_owner != NULL) {
 | |
| 		assert(*local_fpu_owner != p);
 | |
| 		save_local_fpu(*local_fpu_owner, FALSE /*retain*/);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * restore the current process' state and let it run again, do not
 | |
| 	 * schedule!
 | |
| 	 */
 | |
| 	if (restore_fpu(p) != OK) {
 | |
| 		/* Restoring FPU state failed. This is always the process's own
 | |
| 		 * fault. Send a signal, and schedule another process instead.
 | |
| 		 */
 | |
| 		*local_fpu_owner = NULL;		/* release FPU */
 | |
| 		cause_sig(proc_nr(p), SIGFPE);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	*local_fpu_owner = p;
 | |
| 	context_stop(proc_addr(KERNEL));
 | |
| 	restore_user_context(p);
 | |
| 	NOT_REACHABLE;
 | |
| }
 | |
| 
 | |
| void release_fpu(struct proc * p) {
 | |
| 	struct proc ** fpu_owner_ptr;
 | |
| 
 | |
| 	fpu_owner_ptr = get_cpu_var_ptr(p->p_cpu, fpu_owner);
 | |
| 
 | |
| 	if (*fpu_owner_ptr == p)
 | |
| 		*fpu_owner_ptr = NULL;
 | |
| }
 |