438 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			438 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* This file contains code for initialization of protected mode, to initialize
 | |
|  * code and data segment descriptors, and to initialize global descriptors
 | |
|  * for local descriptors in the process table.
 | |
|  */
 | |
| 
 | |
| #include <string.h>
 | |
| #include <assert.h>
 | |
| #include <minix/cpufeature.h>
 | |
| #include <machine/multiboot.h>
 | |
| 
 | |
| #include "kernel/kernel.h"
 | |
| #include "archconst.h"
 | |
| 
 | |
| #include "arch_proto.h"
 | |
| 
 | |
| #include <libexec.h>
 | |
| 
 | |
| #define INT_GATE_TYPE	(INT_286_GATE | DESC_386_BIT)
 | |
| #define TSS_TYPE	(AVL_286_TSS  | DESC_386_BIT)
 | |
| 
 | |
| /* This is OK initially, when the 1:1 mapping is still there. */
 | |
| char *video_mem = (char *) MULTIBOOT_VIDEO_BUFFER;
 | |
| 
 | |
| /* Storage for gdt, idt and tss. */
 | |
| struct segdesc_s gdt[GDT_SIZE] __aligned(DESC_SIZE);
 | |
| struct gatedesc_s idt[IDT_SIZE] __aligned(DESC_SIZE);
 | |
| struct tss_s tss[CONFIG_MAX_CPUS];
 | |
| 
 | |
| u32_t k_percpu_stacks[CONFIG_MAX_CPUS];
 | |
| 
 | |
| int prot_init_done = 0;
 | |
| 
 | |
| phys_bytes vir2phys(void *vir)
 | |
| {
 | |
| 	extern char _kern_vir_base, _kern_phys_base;	/* in kernel.lds */
 | |
| 	u32_t offset = (vir_bytes) &_kern_vir_base -
 | |
| 		(vir_bytes) &_kern_phys_base;
 | |
| 	return (phys_bytes)vir - offset;
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				enable_iop				     * 
 | |
|  *===========================================================================*/
 | |
| void enable_iop(struct proc *pp)
 | |
| {
 | |
| /* Allow a user process to use I/O instructions.  Change the I/O Permission
 | |
|  * Level bits in the psw. These specify least-privileged Current Permission
 | |
|  * Level allowed to execute I/O instructions. Users and servers have CPL 3. 
 | |
|  * You can't have less privilege than that. Kernel has CPL 0, tasks CPL 1.
 | |
|  */
 | |
|   pp->p_reg.psw |= 0x3000;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				sdesc					     *
 | |
|  *===========================================================================*/
 | |
|  void sdesc(struct segdesc_s *segdp, phys_bytes base, vir_bytes size)
 | |
| {
 | |
| /* Fill in the size fields (base, limit and granularity) of a descriptor. */
 | |
|   segdp->base_low = base;
 | |
|   segdp->base_middle = base >> BASE_MIDDLE_SHIFT;
 | |
|   segdp->base_high = base >> BASE_HIGH_SHIFT;
 | |
| 
 | |
|   --size;			/* convert to a limit, 0 size means 4G */
 | |
|   if (size > BYTE_GRAN_MAX) {
 | |
| 	segdp->limit_low = size >> PAGE_GRAN_SHIFT;
 | |
| 	segdp->granularity = GRANULAR | (size >>
 | |
| 			     (PAGE_GRAN_SHIFT + GRANULARITY_SHIFT));
 | |
|   } else {
 | |
| 	segdp->limit_low = size;
 | |
| 	segdp->granularity = size >> GRANULARITY_SHIFT;
 | |
|   }
 | |
|   segdp->granularity |= DEFAULT;	/* means BIG for data seg */
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				init_dataseg				     *
 | |
|  *===========================================================================*/
 | |
| void init_param_dataseg(register struct segdesc_s *segdp,
 | |
| 	phys_bytes base, vir_bytes size, const int privilege)
 | |
| {
 | |
| 	/* Build descriptor for a data segment. */
 | |
| 	sdesc(segdp, base, size);
 | |
| 	segdp->access = (privilege << DPL_SHIFT) | (PRESENT | SEGMENT |
 | |
| 		WRITEABLE | ACCESSED);
 | |
| 		/* EXECUTABLE = 0, EXPAND_DOWN = 0, ACCESSED = 0 */
 | |
| }
 | |
| 
 | |
| void init_dataseg(int index, const int privilege)
 | |
| {
 | |
| 	init_param_dataseg(&gdt[index], 0, 0xFFFFFFFF, privilege);
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				init_codeseg				     *
 | |
|  *===========================================================================*/
 | |
| static void init_codeseg(int index, int privilege)
 | |
| {
 | |
| 	/* Build descriptor for a code segment. */
 | |
| 	sdesc(&gdt[index], 0, 0xFFFFFFFF);
 | |
| 	gdt[index].access = (privilege << DPL_SHIFT)
 | |
| 	        | (PRESENT | SEGMENT | EXECUTABLE | READABLE);
 | |
| 		/* CONFORMING = 0, ACCESSED = 0 */
 | |
| }
 | |
| 
 | |
| static struct gate_table_s gate_table_pic[] = {
 | |
| 	{ hwint00, VECTOR( 0), INTR_PRIVILEGE },
 | |
| 	{ hwint01, VECTOR( 1), INTR_PRIVILEGE },
 | |
| 	{ hwint02, VECTOR( 2), INTR_PRIVILEGE },
 | |
| 	{ hwint03, VECTOR( 3), INTR_PRIVILEGE },
 | |
| 	{ hwint04, VECTOR( 4), INTR_PRIVILEGE },
 | |
| 	{ hwint05, VECTOR( 5), INTR_PRIVILEGE },
 | |
| 	{ hwint06, VECTOR( 6), INTR_PRIVILEGE },
 | |
| 	{ hwint07, VECTOR( 7), INTR_PRIVILEGE },
 | |
| 	{ hwint08, VECTOR( 8), INTR_PRIVILEGE },
 | |
| 	{ hwint09, VECTOR( 9), INTR_PRIVILEGE },
 | |
| 	{ hwint10, VECTOR(10), INTR_PRIVILEGE },
 | |
| 	{ hwint11, VECTOR(11), INTR_PRIVILEGE },
 | |
| 	{ hwint12, VECTOR(12), INTR_PRIVILEGE },
 | |
| 	{ hwint13, VECTOR(13), INTR_PRIVILEGE },
 | |
| 	{ hwint14, VECTOR(14), INTR_PRIVILEGE },
 | |
| 	{ hwint15, VECTOR(15), INTR_PRIVILEGE },
 | |
| 	{ NULL, 0, 0}
 | |
| };
 | |
| 
 | |
| static struct gate_table_s gate_table_exceptions[] = {
 | |
| 	{ divide_error, DIVIDE_VECTOR, INTR_PRIVILEGE },
 | |
| 	{ single_step_exception, DEBUG_VECTOR, INTR_PRIVILEGE },
 | |
| 	{ nmi, NMI_VECTOR, INTR_PRIVILEGE },
 | |
| 	{ breakpoint_exception, BREAKPOINT_VECTOR, USER_PRIVILEGE },
 | |
| 	{ overflow, OVERFLOW_VECTOR, USER_PRIVILEGE },
 | |
| 	{ bounds_check, BOUNDS_VECTOR, INTR_PRIVILEGE },
 | |
| 	{ inval_opcode, INVAL_OP_VECTOR, INTR_PRIVILEGE },
 | |
| 	{ copr_not_available, COPROC_NOT_VECTOR, INTR_PRIVILEGE },
 | |
| 	{ double_fault, DOUBLE_FAULT_VECTOR, INTR_PRIVILEGE },
 | |
| 	{ copr_seg_overrun, COPROC_SEG_VECTOR, INTR_PRIVILEGE },
 | |
| 	{ inval_tss, INVAL_TSS_VECTOR, INTR_PRIVILEGE },
 | |
| 	{ segment_not_present, SEG_NOT_VECTOR, INTR_PRIVILEGE },
 | |
| 	{ stack_exception, STACK_FAULT_VECTOR, INTR_PRIVILEGE },
 | |
| 	{ general_protection, PROTECTION_VECTOR, INTR_PRIVILEGE },
 | |
| 	{ page_fault, PAGE_FAULT_VECTOR, INTR_PRIVILEGE },
 | |
| 	{ copr_error, COPROC_ERR_VECTOR, INTR_PRIVILEGE },
 | |
| 	{ alignment_check, ALIGNMENT_CHECK_VECTOR, INTR_PRIVILEGE },
 | |
| 	{ machine_check, MACHINE_CHECK_VECTOR, INTR_PRIVILEGE },
 | |
| 	{ simd_exception, SIMD_EXCEPTION_VECTOR, INTR_PRIVILEGE },
 | |
| 	{ ipc_entry_softint_orig, IPC_VECTOR_ORIG, USER_PRIVILEGE },
 | |
| 	{ kernel_call_entry_orig, KERN_CALL_VECTOR_ORIG, USER_PRIVILEGE },
 | |
| 	{ ipc_entry_softint_um, IPC_VECTOR_UM, USER_PRIVILEGE },
 | |
| 	{ kernel_call_entry_um, KERN_CALL_VECTOR_UM, USER_PRIVILEGE },
 | |
| 	{ NULL, 0, 0}
 | |
| };
 | |
| 
 | |
| int tss_init(unsigned cpu, void * kernel_stack)
 | |
| {
 | |
| 	struct tss_s * t = &tss[cpu];
 | |
| 	int index = TSS_INDEX(cpu);
 | |
| 	struct segdesc_s *tssgdt;
 | |
| 
 | |
| 	tssgdt = &gdt[index];
 | |
|   
 | |
| 	init_param_dataseg(tssgdt, (phys_bytes) t,
 | |
| 			sizeof(struct tss_s), INTR_PRIVILEGE);
 | |
| 	tssgdt->access = PRESENT | (INTR_PRIVILEGE << DPL_SHIFT) | TSS_TYPE;
 | |
| 
 | |
| 	/* Build TSS. */
 | |
| 	memset(t, 0, sizeof(*t));
 | |
| 	t->ds = t->es = t->fs = t->gs = t->ss0 = KERN_DS_SELECTOR;
 | |
| 	t->cs = KERN_CS_SELECTOR;
 | |
| 	t->iobase = sizeof(struct tss_s);	/* empty i/o permissions map */
 | |
| 
 | |
| 	/* 
 | |
| 	 * make space for process pointer and cpu id and point to the first
 | |
| 	 * usable word
 | |
| 	 */
 | |
| 	k_percpu_stacks[cpu] = t->sp0 = ((unsigned) kernel_stack) - X86_STACK_TOP_RESERVED;
 | |
| 	/* 
 | |
| 	 * set the cpu id at the top of the stack so we know on which cpu is
 | |
| 	 * this stak in use when we trap to kernel
 | |
| 	 */
 | |
| 	*((reg_t *)(t->sp0 + 1 * sizeof(reg_t))) = cpu;
 | |
| 
 | |
| 	/* Set up Intel SYSENTER support if available. */
 | |
| 	if(minix_feature_flags & MKF_I386_INTEL_SYSENTER) {
 | |
| 	  ia32_msr_write(INTEL_MSR_SYSENTER_CS, 0, KERN_CS_SELECTOR);
 | |
|   	  ia32_msr_write(INTEL_MSR_SYSENTER_ESP, 0, t->sp0);
 | |
|   	  ia32_msr_write(INTEL_MSR_SYSENTER_EIP, 0, (u32_t) ipc_entry_sysenter);
 | |
|   	}
 | |
| 
 | |
| 	/* Set up AMD SYSCALL support if available. */
 | |
| 	if(minix_feature_flags & MKF_I386_AMD_SYSCALL) {
 | |
| 		u32_t msr_lo, msr_hi;
 | |
| 
 | |
| 		/* set SYSCALL ENABLE bit in EFER MSR */
 | |
| 		ia32_msr_read(AMD_MSR_EFER, &msr_hi, &msr_lo);
 | |
| 		msr_lo |= AMD_EFER_SCE;
 | |
| 		ia32_msr_write(AMD_MSR_EFER, msr_hi, msr_lo);
 | |
| 
 | |
| 		/* set STAR register value */
 | |
| #define set_star_cpu(forcpu) if(cpu == forcpu) {				\
 | |
| 		ia32_msr_write(AMD_MSR_STAR,					\
 | |
| 		  ((u32_t)USER_CS_SELECTOR << 16) | (u32_t)KERN_CS_SELECTOR,	\
 | |
| 		  (u32_t) ipc_entry_syscall_cpu ## forcpu); }
 | |
| 		set_star_cpu(0);
 | |
| 		set_star_cpu(1);
 | |
| 		set_star_cpu(2);
 | |
| 		set_star_cpu(3);
 | |
| 		set_star_cpu(4);
 | |
| 		set_star_cpu(5);
 | |
| 		set_star_cpu(6);
 | |
| 		set_star_cpu(7);
 | |
| 		assert(CONFIG_MAX_CPUS <= 8);
 | |
|   	}
 | |
| 
 | |
| 	return SEG_SELECTOR(index);
 | |
| }
 | |
| 
 | |
| phys_bytes init_segdesc(int gdt_index, void *base, int size)
 | |
| {
 | |
| 	struct desctableptr_s *dtp = (struct desctableptr_s *) &gdt[gdt_index];
 | |
| 	dtp->limit = size - 1;
 | |
| 	dtp->base = (phys_bytes) base;
 | |
| 
 | |
| 	return (phys_bytes) dtp;
 | |
| }
 | |
| 
 | |
| void int_gate(struct gatedesc_s *tab,
 | |
| 	unsigned vec_nr, vir_bytes offset, unsigned dpl_type)
 | |
| {
 | |
| /* Build descriptor for an interrupt gate. */
 | |
|   register struct gatedesc_s *idp;
 | |
| 
 | |
|   idp = &tab[vec_nr];
 | |
|   idp->offset_low = offset;
 | |
|   idp->selector = KERN_CS_SELECTOR;
 | |
|   idp->p_dpl_type = dpl_type;
 | |
|   idp->offset_high = offset >> OFFSET_HIGH_SHIFT;
 | |
| }
 | |
| 
 | |
| void int_gate_idt(unsigned vec_nr, vir_bytes offset, unsigned dpl_type)
 | |
| {
 | |
| 	int_gate(idt, vec_nr, offset, dpl_type);
 | |
| }
 | |
| 
 | |
| void idt_copy_vectors(struct gate_table_s * first)
 | |
| {
 | |
| 	struct gate_table_s *gtp;
 | |
| 	for (gtp = first; gtp->gate; gtp++) {
 | |
| 		int_gate(idt, gtp->vec_nr, (vir_bytes) gtp->gate,
 | |
| 				PRESENT | INT_GATE_TYPE |
 | |
| 				(gtp->privilege << DPL_SHIFT));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void idt_copy_vectors_pic(void)
 | |
| {
 | |
| 	idt_copy_vectors(gate_table_pic);
 | |
| }
 | |
| 
 | |
| void idt_init(void)
 | |
| {
 | |
| 	idt_copy_vectors_pic();
 | |
| 	idt_copy_vectors(gate_table_exceptions);
 | |
| }
 | |
| 
 | |
| struct desctableptr_s gdt_desc, idt_desc;
 | |
| 
 | |
| void idt_reload(void)
 | |
| {
 | |
| 	x86_lidt(&idt_desc);
 | |
| }
 | |
| 
 | |
| multiboot_module_t *bootmod(int pnr)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	assert(pnr >= 0);
 | |
| 
 | |
| 	/* Search for desired process in boot process
 | |
| 	 * list. The first NR_TASKS ones do not correspond
 | |
| 	 * to a module, however, so we don't search those.
 | |
| 	 */
 | |
| 	for(i = NR_TASKS; i < NR_BOOT_PROCS; i++) {
 | |
| 		int p;
 | |
| 		p = i - NR_TASKS;
 | |
| 		if(image[i].proc_nr == pnr) {
 | |
| 			assert(p < MULTIBOOT_MAX_MODS);
 | |
| 			assert(p < kinfo.mbi.mods_count);
 | |
| 			return &kinfo.module_list[p];
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	panic("boot module %d not found", pnr);
 | |
| }
 | |
| 
 | |
| int booting_cpu = 0;
 | |
| 
 | |
| void prot_load_selectors(void)
 | |
| {
 | |
|   /* this function is called by both prot_init by the BSP and
 | |
|    * the early AP booting code in mpx.S by secondary CPU's.
 | |
|    * everything is set up the same except for the TSS that is per-CPU.
 | |
|    */
 | |
|   x86_lgdt(&gdt_desc);	/* Load gdt */ 
 | |
|   idt_init();
 | |
|   idt_reload();
 | |
|   x86_lldt(LDT_SELECTOR); 	/* Load bogus ldt */
 | |
|   x86_ltr(TSS_SELECTOR(booting_cpu));
 | |
| 
 | |
|   x86_load_kerncs();
 | |
|   x86_load_ds(KERN_DS_SELECTOR);
 | |
|   x86_load_es(KERN_DS_SELECTOR);
 | |
|   x86_load_fs(KERN_DS_SELECTOR);
 | |
|   x86_load_gs(KERN_DS_SELECTOR);
 | |
|   x86_load_ss(KERN_DS_SELECTOR);
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				prot_init				     *
 | |
|  *===========================================================================*/
 | |
| void prot_init()
 | |
| {
 | |
|   extern char k_boot_stktop;
 | |
| 
 | |
|   if(_cpufeature(_CPUF_I386_SYSENTER))
 | |
| 	minix_feature_flags |= MKF_I386_INTEL_SYSENTER;
 | |
|   if(_cpufeature(_CPUF_I386_SYSCALL))
 | |
| 	minix_feature_flags |= MKF_I386_AMD_SYSCALL;
 | |
| 
 | |
|   memset(gdt, 0, sizeof(gdt));
 | |
|   memset(idt, 0, sizeof(idt));
 | |
| 
 | |
|   /* Build GDT, IDT, IDT descriptors. */
 | |
|   gdt_desc.base = (u32_t) gdt;
 | |
|   gdt_desc.limit = sizeof(gdt)-1;
 | |
|   idt_desc.base = (u32_t) idt;
 | |
|   idt_desc.limit = sizeof(idt)-1;
 | |
|   tss_init(0, &k_boot_stktop);
 | |
| 
 | |
|   /* Build GDT */
 | |
|   init_param_dataseg(&gdt[LDT_INDEX],
 | |
|     (phys_bytes) 0, 0, INTR_PRIVILEGE); /* unusable LDT */
 | |
|   gdt[LDT_INDEX].access = PRESENT | LDT;
 | |
|   init_codeseg(KERN_CS_INDEX, INTR_PRIVILEGE);
 | |
|   init_dataseg(KERN_DS_INDEX, INTR_PRIVILEGE);
 | |
|   init_codeseg(USER_CS_INDEX, USER_PRIVILEGE);
 | |
|   init_dataseg(USER_DS_INDEX, USER_PRIVILEGE);
 | |
| 
 | |
|   /* Currently the multiboot segments are loaded; which is fine, but
 | |
|    * let's replace them with the ones from our own GDT so we test
 | |
|    * right away whether they work as expected.
 | |
|    */
 | |
|   prot_load_selectors();
 | |
| 
 | |
|   /* Set up a new post-relocate bootstrap pagetable so that
 | |
|    * we can map in VM, and we no longer rely on pre-relocated
 | |
|    * data.
 | |
|    */
 | |
| 
 | |
|   pg_clear();
 | |
|   pg_identity(&kinfo); /* Still need 1:1 for lapic and video mem and such. */
 | |
|   pg_mapkernel();
 | |
|   pg_load();
 | |
| 
 | |
|   prot_init_done = 1;
 | |
| }
 | |
| 
 | |
| static int alloc_for_vm = 0;
 | |
| 
 | |
| void arch_post_init(void)
 | |
| {
 | |
|   /* Let memory mapping code know what's going on at bootstrap time */
 | |
|   struct proc *vm;
 | |
|   vm = proc_addr(VM_PROC_NR);
 | |
|   get_cpulocal_var(ptproc) = vm;
 | |
|   pg_info(&vm->p_seg.p_cr3, &vm->p_seg.p_cr3_v);
 | |
| }
 | |
| 
 | |
| int libexec_pg_alloc(struct exec_info *execi, off_t vaddr, size_t len)
 | |
| {
 | |
|         pg_map(PG_ALLOCATEME, vaddr, vaddr+len, &kinfo);
 | |
|   	pg_load();
 | |
|         memset((char *) vaddr, 0, len);
 | |
| 	alloc_for_vm += len;
 | |
|         return OK;
 | |
| }
 | |
| 
 | |
| void arch_boot_proc(struct boot_image *ip, struct proc *rp)
 | |
| {
 | |
| 	multiboot_module_t *mod;
 | |
| 
 | |
| 	if(rp->p_nr < 0) return;
 | |
| 
 | |
| 	mod = bootmod(rp->p_nr);
 | |
| 
 | |
| 	/* Important special case: we put VM in the bootstrap pagetable
 | |
| 	 * so it can run.
 | |
| 	 */
 | |
| 
 | |
| 	if(rp->p_nr == VM_PROC_NR) {
 | |
| 		struct exec_info execi;
 | |
| 
 | |
| 		memset(&execi, 0, sizeof(execi));
 | |
| 
 | |
| 		/* exec parameters */
 | |
| 		execi.stack_high = kinfo.user_sp;
 | |
| 		execi.stack_size = 64 * 1024;   /* not too crazy as it must be preallocated */
 | |
| 		execi.proc_e = ip->endpoint;
 | |
| 		execi.hdr = (char *) mod->mod_start; /* phys mem direct */
 | |
| 		execi.filesize = execi.hdr_len = mod->mod_end - mod->mod_start;
 | |
| 		strlcpy(execi.progname, ip->proc_name, sizeof(execi.progname));
 | |
| 		execi.frame_len = 0;
 | |
| 
 | |
| 		/* callbacks for use in the kernel */
 | |
| 		execi.copymem = libexec_copy_memcpy;
 | |
| 		execi.clearmem = libexec_clear_memset;
 | |
| 		execi.allocmem_prealloc = libexec_pg_alloc;
 | |
| 		execi.allocmem_ondemand = libexec_pg_alloc;
 | |
| 		execi.clearproc = NULL;
 | |
| 
 | |
| 		/* parse VM ELF binary and alloc/map it into bootstrap pagetable */
 | |
| 		if(libexec_load_elf(&execi) != OK)
 | |
| 			panic("VM loading failed");
 | |
| 
 | |
| 	        /* Initialize the server stack pointer. Take it down three words
 | |
| 		 * to give startup code something to use as "argc", "argv" and "envp".
 | |
| 		 */
 | |
| 		arch_proc_init(rp, execi.pc, kinfo.user_sp - 3*4, ip->proc_name);
 | |
| 
 | |
| 		/* Free VM blob that was just copied into existence. */
 | |
| 		add_memmap(&kinfo, mod->mod_start, mod->mod_end-mod->mod_start);
 | |
|                 mod->mod_end = mod->mod_start = 0;
 | |
| 
 | |
| 		/* Remember them */
 | |
| 		kinfo.vm_allocated_bytes = alloc_for_vm;
 | |
| 	}
 | |
| }
 | 
