 d65f6f7009
			
		
	
	
		d65f6f7009
		
	
	
	
	
		
			
			. common/include/arch/i386 is not actually an imported sys/arch/i386/include but leftover Minix files; remove and move to include/ . move include/ufs to sys/ufs, where it came from, now that we have a sys/ hierarchy . move mdocml/ to external/bsd/, now we have that . single sys/arch/i386/stand/ import for boot stuff
		
			
				
	
	
		
			662 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			662 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*	$NetBSD: lfs_subr.c,v 1.76 2010/06/25 10:03:52 hannken Exp $	*/
 | |
| 
 | |
| /*-
 | |
|  * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
 | |
|  * All rights reserved.
 | |
|  *
 | |
|  * This code is derived from software contributed to The NetBSD Foundation
 | |
|  * by Konrad E. Schroder <perseant@hhhh.org>.
 | |
|  *
 | |
|  * Redistribution and use in source and binary forms, with or without
 | |
|  * modification, are permitted provided that the following conditions
 | |
|  * are met:
 | |
|  * 1. Redistributions of source code must retain the above copyright
 | |
|  *    notice, this list of conditions and the following disclaimer.
 | |
|  * 2. Redistributions in binary form must reproduce the above copyright
 | |
|  *    notice, this list of conditions and the following disclaimer in the
 | |
|  *    documentation and/or other materials provided with the distribution.
 | |
|  *
 | |
|  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
 | |
|  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
 | |
|  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 | |
|  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
 | |
|  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 | |
|  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 | |
|  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 | |
|  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 | |
|  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 | |
|  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 | |
|  * POSSIBILITY OF SUCH DAMAGE.
 | |
|  */
 | |
| /*
 | |
|  * Copyright (c) 1991, 1993
 | |
|  *	The Regents of the University of California.  All rights reserved.
 | |
|  *
 | |
|  * Redistribution and use in source and binary forms, with or without
 | |
|  * modification, are permitted provided that the following conditions
 | |
|  * are met:
 | |
|  * 1. Redistributions of source code must retain the above copyright
 | |
|  *    notice, this list of conditions and the following disclaimer.
 | |
|  * 2. Redistributions in binary form must reproduce the above copyright
 | |
|  *    notice, this list of conditions and the following disclaimer in the
 | |
|  *    documentation and/or other materials provided with the distribution.
 | |
|  * 3. Neither the name of the University nor the names of its contributors
 | |
|  *    may be used to endorse or promote products derived from this software
 | |
|  *    without specific prior written permission.
 | |
|  *
 | |
|  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
 | |
|  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 | |
|  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 | |
|  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 | |
|  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 | |
|  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 | |
|  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 | |
|  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 | |
|  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 | |
|  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 | |
|  * SUCH DAMAGE.
 | |
|  *
 | |
|  *	@(#)lfs_subr.c	8.4 (Berkeley) 5/8/95
 | |
|  */
 | |
| 
 | |
| #include <sys/cdefs.h>
 | |
| __KERNEL_RCSID(0, "$NetBSD: lfs_subr.c,v 1.76 2010/06/25 10:03:52 hannken Exp $");
 | |
| 
 | |
| #include <sys/param.h>
 | |
| #include <sys/systm.h>
 | |
| #include <sys/namei.h>
 | |
| #include <sys/vnode.h>
 | |
| #include <sys/buf.h>
 | |
| #include <sys/mount.h>
 | |
| #include <sys/malloc.h>
 | |
| #include <sys/proc.h>
 | |
| #include <sys/kauth.h>
 | |
| 
 | |
| #include <ufs/ufs/inode.h>
 | |
| #include <ufs/lfs/lfs.h>
 | |
| #include <ufs/lfs/lfs_extern.h>
 | |
| 
 | |
| #include <uvm/uvm.h>
 | |
| 
 | |
| #ifdef DEBUG
 | |
| const char *lfs_res_names[LFS_NB_COUNT] = {
 | |
| 	"summary",
 | |
| 	"superblock",
 | |
| 	"file block",
 | |
| 	"cluster",
 | |
| 	"clean",
 | |
| 	"blkiov",
 | |
| };
 | |
| #endif
 | |
| 
 | |
| int lfs_res_qty[LFS_NB_COUNT] = {
 | |
| 	LFS_N_SUMMARIES,
 | |
| 	LFS_N_SBLOCKS,
 | |
| 	LFS_N_IBLOCKS,
 | |
| 	LFS_N_CLUSTERS,
 | |
| 	LFS_N_CLEAN,
 | |
| 	LFS_N_BLKIOV,
 | |
| };
 | |
| 
 | |
| void
 | |
| lfs_setup_resblks(struct lfs *fs)
 | |
| {
 | |
| 	int i, j;
 | |
| 	int maxbpp;
 | |
| 
 | |
| 	ASSERT_NO_SEGLOCK(fs);
 | |
| 	fs->lfs_resblk = (res_t *)malloc(LFS_N_TOTAL * sizeof(res_t), M_SEGMENT,
 | |
| 					  M_WAITOK);
 | |
| 	for (i = 0; i < LFS_N_TOTAL; i++) {
 | |
| 		fs->lfs_resblk[i].inuse = 0;
 | |
| 		fs->lfs_resblk[i].p = NULL;
 | |
| 	}
 | |
| 	for (i = 0; i < LFS_RESHASH_WIDTH; i++)
 | |
| 		LIST_INIT(fs->lfs_reshash + i);
 | |
| 
 | |
| 	/*
 | |
| 	 * These types of allocations can be larger than a page,
 | |
| 	 * so we can't use the pool subsystem for them.
 | |
| 	 */
 | |
| 	for (i = 0, j = 0; j < LFS_N_SUMMARIES; j++, i++)
 | |
| 		fs->lfs_resblk[i].size = fs->lfs_sumsize;
 | |
| 	for (j = 0; j < LFS_N_SBLOCKS; j++, i++)
 | |
| 		fs->lfs_resblk[i].size = LFS_SBPAD;
 | |
| 	for (j = 0; j < LFS_N_IBLOCKS; j++, i++)
 | |
| 		fs->lfs_resblk[i].size = fs->lfs_bsize;
 | |
| 	for (j = 0; j < LFS_N_CLUSTERS; j++, i++)
 | |
| 		fs->lfs_resblk[i].size = MAXPHYS;
 | |
| 	for (j = 0; j < LFS_N_CLEAN; j++, i++)
 | |
| 		fs->lfs_resblk[i].size = MAXPHYS;
 | |
| 	for (j = 0; j < LFS_N_BLKIOV; j++, i++)
 | |
| 		fs->lfs_resblk[i].size = LFS_MARKV_MAXBLKCNT * sizeof(BLOCK_INFO);
 | |
| 
 | |
| 	for (i = 0; i < LFS_N_TOTAL; i++) {
 | |
| 		fs->lfs_resblk[i].p = malloc(fs->lfs_resblk[i].size,
 | |
| 					     M_SEGMENT, M_WAITOK);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Initialize pools for small types (XXX is BPP small?)
 | |
| 	 */
 | |
| 	pool_init(&fs->lfs_clpool, sizeof(struct lfs_cluster), 0, 0, 0,
 | |
| 		"lfsclpl", &pool_allocator_nointr, IPL_NONE);
 | |
| 	pool_init(&fs->lfs_segpool, sizeof(struct segment), 0, 0, 0,
 | |
| 		"lfssegpool", &pool_allocator_nointr, IPL_NONE);
 | |
| 	maxbpp = ((fs->lfs_sumsize - SEGSUM_SIZE(fs)) / sizeof(int32_t) + 2);
 | |
| 	maxbpp = MIN(maxbpp, segsize(fs) / fs->lfs_fsize + 2);
 | |
| 	pool_init(&fs->lfs_bpppool, maxbpp * sizeof(struct buf *), 0, 0, 0,
 | |
| 		"lfsbpppl", &pool_allocator_nointr, IPL_NONE);
 | |
| }
 | |
| 
 | |
| void
 | |
| lfs_free_resblks(struct lfs *fs)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	pool_destroy(&fs->lfs_bpppool);
 | |
| 	pool_destroy(&fs->lfs_segpool);
 | |
| 	pool_destroy(&fs->lfs_clpool);
 | |
| 
 | |
| 	mutex_enter(&lfs_lock);
 | |
| 	for (i = 0; i < LFS_N_TOTAL; i++) {
 | |
| 		while (fs->lfs_resblk[i].inuse)
 | |
| 			mtsleep(&fs->lfs_resblk, PRIBIO + 1, "lfs_free", 0,
 | |
| 				&lfs_lock);
 | |
| 		if (fs->lfs_resblk[i].p != NULL)
 | |
| 			free(fs->lfs_resblk[i].p, M_SEGMENT);
 | |
| 	}
 | |
| 	free(fs->lfs_resblk, M_SEGMENT);
 | |
| 	mutex_exit(&lfs_lock);
 | |
| }
 | |
| 
 | |
| static unsigned int
 | |
| lfs_mhash(void *vp)
 | |
| {
 | |
| 	return (unsigned int)(((unsigned long)vp) >> 2) % LFS_RESHASH_WIDTH;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return memory of the given size for the given purpose, or use one of a
 | |
|  * number of spare last-resort buffers, if malloc returns NULL.
 | |
|  */
 | |
| void *
 | |
| lfs_malloc(struct lfs *fs, size_t size, int type)
 | |
| {
 | |
| 	struct lfs_res_blk *re;
 | |
| 	void *r;
 | |
| 	int i, s, start;
 | |
| 	unsigned int h;
 | |
| 
 | |
| 	ASSERT_MAYBE_SEGLOCK(fs);
 | |
| 	r = NULL;
 | |
| 
 | |
| 	/* If no mem allocated for this type, it just waits */
 | |
| 	if (lfs_res_qty[type] == 0) {
 | |
| 		r = malloc(size, M_SEGMENT, M_WAITOK);
 | |
| 		return r;
 | |
| 	}
 | |
| 
 | |
| 	/* Otherwise try a quick malloc, and if it works, great */
 | |
| 	if ((r = malloc(size, M_SEGMENT, M_NOWAIT)) != NULL) {
 | |
| 		return r;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If malloc returned NULL, we are forced to use one of our
 | |
| 	 * reserve blocks.  We have on hand at least one summary block,
 | |
| 	 * at least one cluster block, at least one superblock,
 | |
| 	 * and several indirect blocks.
 | |
| 	 */
 | |
| 
 | |
| 	mutex_enter(&lfs_lock);
 | |
| 	/* skip over blocks of other types */
 | |
| 	for (i = 0, start = 0; i < type; i++)
 | |
| 		start += lfs_res_qty[i];
 | |
| 	while (r == NULL) {
 | |
| 		for (i = 0; i < lfs_res_qty[type]; i++) {
 | |
| 			if (fs->lfs_resblk[start + i].inuse == 0) {
 | |
| 				re = fs->lfs_resblk + start + i;
 | |
| 				re->inuse = 1;
 | |
| 				r = re->p;
 | |
| 				KASSERT(re->size >= size);
 | |
| 				h = lfs_mhash(r);
 | |
| 				s = splbio();
 | |
| 				LIST_INSERT_HEAD(&fs->lfs_reshash[h], re, res);
 | |
| 				splx(s);
 | |
| 				mutex_exit(&lfs_lock);
 | |
| 				return r;
 | |
| 			}
 | |
| 		}
 | |
| 		DLOG((DLOG_MALLOC, "sleeping on %s (%d)\n",
 | |
| 		      lfs_res_names[type], lfs_res_qty[type]));
 | |
| 		mtsleep(&fs->lfs_resblk, PVM, "lfs_malloc", 0,
 | |
| 			&lfs_lock);
 | |
| 		DLOG((DLOG_MALLOC, "done sleeping on %s\n",
 | |
| 		      lfs_res_names[type]));
 | |
| 	}
 | |
| 	/* NOTREACHED */
 | |
| 	mutex_exit(&lfs_lock);
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| void
 | |
| lfs_free(struct lfs *fs, void *p, int type)
 | |
| {
 | |
| 	int s;
 | |
| 	unsigned int h;
 | |
| 	res_t *re;
 | |
| #ifdef DEBUG
 | |
| 	int i;
 | |
| #endif
 | |
| 
 | |
| 	ASSERT_MAYBE_SEGLOCK(fs);
 | |
| 	h = lfs_mhash(p);
 | |
| 	mutex_enter(&lfs_lock);
 | |
| 	s = splbio();
 | |
| 	LIST_FOREACH(re, &fs->lfs_reshash[h], res) {
 | |
| 		if (re->p == p) {
 | |
| 			KASSERT(re->inuse == 1);
 | |
| 			LIST_REMOVE(re, res);
 | |
| 			re->inuse = 0;
 | |
| 			wakeup(&fs->lfs_resblk);
 | |
| 			splx(s);
 | |
| 			mutex_exit(&lfs_lock);
 | |
| 			return;
 | |
| 		}
 | |
| 	}
 | |
| #ifdef DEBUG
 | |
| 	for (i = 0; i < LFS_N_TOTAL; i++) {
 | |
| 		if (fs->lfs_resblk[i].p == p)
 | |
| 			panic("lfs_free: inconsistent reserved block");
 | |
| 	}
 | |
| #endif
 | |
| 	splx(s);
 | |
| 	mutex_exit(&lfs_lock);
 | |
| 	
 | |
| 	/*
 | |
| 	 * If we didn't find it, free it.
 | |
| 	 */
 | |
| 	free(p, M_SEGMENT);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * lfs_seglock --
 | |
|  *	Single thread the segment writer.
 | |
|  */
 | |
| int
 | |
| lfs_seglock(struct lfs *fs, unsigned long flags)
 | |
| {
 | |
| 	struct segment *sp;
 | |
| 
 | |
| 	mutex_enter(&lfs_lock);
 | |
| 	if (fs->lfs_seglock) {
 | |
| 		if (fs->lfs_lockpid == curproc->p_pid &&
 | |
| 		    fs->lfs_locklwp == curlwp->l_lid) {
 | |
| 			++fs->lfs_seglock;
 | |
| 			fs->lfs_sp->seg_flags |= flags;
 | |
| 			mutex_exit(&lfs_lock);
 | |
| 			return 0;
 | |
| 		} else if (flags & SEGM_PAGEDAEMON) {
 | |
| 			mutex_exit(&lfs_lock);
 | |
| 			return EWOULDBLOCK;
 | |
| 		} else {
 | |
| 			while (fs->lfs_seglock) {
 | |
| 				(void)mtsleep(&fs->lfs_seglock, PRIBIO + 1,
 | |
| 					"lfs_seglock", 0, &lfs_lock);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	fs->lfs_seglock = 1;
 | |
| 	fs->lfs_lockpid = curproc->p_pid;
 | |
| 	fs->lfs_locklwp = curlwp->l_lid;
 | |
| 	mutex_exit(&lfs_lock);
 | |
| 	fs->lfs_cleanind = 0;
 | |
| 
 | |
| #ifdef DEBUG
 | |
| 	LFS_ENTER_LOG("seglock", __FILE__, __LINE__, 0, flags, curproc->p_pid);
 | |
| #endif
 | |
| 	/* Drain fragment size changes out */
 | |
| 	rw_enter(&fs->lfs_fraglock, RW_WRITER);
 | |
| 
 | |
| 	sp = fs->lfs_sp = pool_get(&fs->lfs_segpool, PR_WAITOK);
 | |
| 	sp->bpp = pool_get(&fs->lfs_bpppool, PR_WAITOK);
 | |
| 	sp->seg_flags = flags;
 | |
| 	sp->vp = NULL;
 | |
| 	sp->seg_iocount = 0;
 | |
| 	(void) lfs_initseg(fs);
 | |
| 
 | |
| 	/*
 | |
| 	 * Keep a cumulative count of the outstanding I/O operations.  If the
 | |
| 	 * disk drive catches up with us it could go to zero before we finish,
 | |
| 	 * so we artificially increment it by one until we've scheduled all of
 | |
| 	 * the writes we intend to do.
 | |
| 	 */
 | |
| 	mutex_enter(&lfs_lock);
 | |
| 	++fs->lfs_iocount;
 | |
| 	mutex_exit(&lfs_lock);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void lfs_unmark_dirop(struct lfs *);
 | |
| 
 | |
| static void
 | |
| lfs_unmark_dirop(struct lfs *fs)
 | |
| {
 | |
| 	struct inode *ip, *nip;
 | |
| 	struct vnode *vp;
 | |
| 	int doit;
 | |
| 
 | |
| 	ASSERT_NO_SEGLOCK(fs);
 | |
| 	mutex_enter(&lfs_lock);
 | |
| 	doit = !(fs->lfs_flags & LFS_UNDIROP);
 | |
| 	if (doit)
 | |
| 		fs->lfs_flags |= LFS_UNDIROP;
 | |
| 	if (!doit) {
 | |
| 		mutex_exit(&lfs_lock);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	for (ip = TAILQ_FIRST(&fs->lfs_dchainhd); ip != NULL; ip = nip) {
 | |
| 		nip = TAILQ_NEXT(ip, i_lfs_dchain);
 | |
| 		vp = ITOV(ip);
 | |
| 		if ((VTOI(vp)->i_flag & (IN_ADIROP | IN_ALLMOD)) == 0) {
 | |
| 			--lfs_dirvcount;
 | |
| 			--fs->lfs_dirvcount;
 | |
| 			vp->v_uflag &= ~VU_DIROP;
 | |
| 			TAILQ_REMOVE(&fs->lfs_dchainhd, ip, i_lfs_dchain);
 | |
| 			wakeup(&lfs_dirvcount);
 | |
| 			fs->lfs_unlockvp = vp;
 | |
| 			mutex_exit(&lfs_lock);
 | |
| 			vrele(vp);
 | |
| 			mutex_enter(&lfs_lock);
 | |
| 			fs->lfs_unlockvp = NULL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	fs->lfs_flags &= ~LFS_UNDIROP;
 | |
| 	wakeup(&fs->lfs_flags);
 | |
| 	mutex_exit(&lfs_lock);
 | |
| }
 | |
| 
 | |
| static void
 | |
| lfs_auto_segclean(struct lfs *fs)
 | |
| {
 | |
| 	int i, error, s, waited;
 | |
| 
 | |
| 	ASSERT_SEGLOCK(fs);
 | |
| 	/*
 | |
| 	 * Now that we've swapped lfs_activesb, but while we still
 | |
| 	 * hold the segment lock, run through the segment list marking
 | |
| 	 * the empty ones clean.
 | |
| 	 * XXX - do we really need to do them all at once?
 | |
| 	 */
 | |
| 	waited = 0;
 | |
| 	for (i = 0; i < fs->lfs_nseg; i++) {
 | |
| 		if ((fs->lfs_suflags[0][i] &
 | |
| 		     (SEGUSE_ACTIVE | SEGUSE_DIRTY | SEGUSE_EMPTY)) ==
 | |
| 		    (SEGUSE_DIRTY | SEGUSE_EMPTY) &&
 | |
| 		    (fs->lfs_suflags[1][i] &
 | |
| 		     (SEGUSE_ACTIVE | SEGUSE_DIRTY | SEGUSE_EMPTY)) ==
 | |
| 		    (SEGUSE_DIRTY | SEGUSE_EMPTY)) {
 | |
| 
 | |
| 			/* Make sure the sb is written before we clean */
 | |
| 			mutex_enter(&lfs_lock);
 | |
| 			s = splbio();
 | |
| 			while (waited == 0 && fs->lfs_sbactive)
 | |
| 				mtsleep(&fs->lfs_sbactive, PRIBIO+1, "lfs asb",
 | |
| 					0, &lfs_lock);
 | |
| 			splx(s);
 | |
| 			mutex_exit(&lfs_lock);
 | |
| 			waited = 1;
 | |
| 
 | |
| 			if ((error = lfs_do_segclean(fs, i)) != 0) {
 | |
| 				DLOG((DLOG_CLEAN, "lfs_auto_segclean: lfs_do_segclean returned %d for seg %d\n", error, i));
 | |
| 			}
 | |
| 		}
 | |
| 		fs->lfs_suflags[1 - fs->lfs_activesb][i] =
 | |
| 			fs->lfs_suflags[fs->lfs_activesb][i];
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * lfs_segunlock --
 | |
|  *	Single thread the segment writer.
 | |
|  */
 | |
| void
 | |
| lfs_segunlock(struct lfs *fs)
 | |
| {
 | |
| 	struct segment *sp;
 | |
| 	unsigned long sync, ckp;
 | |
| 	struct buf *bp;
 | |
| 	int do_unmark_dirop = 0;
 | |
| 
 | |
| 	sp = fs->lfs_sp;
 | |
| 
 | |
| 	mutex_enter(&lfs_lock);
 | |
| 	KASSERT(LFS_SEGLOCK_HELD(fs));
 | |
| 	if (fs->lfs_seglock == 1) {
 | |
| 		if ((sp->seg_flags & (SEGM_PROT | SEGM_CLEAN)) == 0 &&
 | |
| 		    LFS_STARVED_FOR_SEGS(fs) == 0)
 | |
| 			do_unmark_dirop = 1;
 | |
| 		mutex_exit(&lfs_lock);
 | |
| 		sync = sp->seg_flags & SEGM_SYNC;
 | |
| 		ckp = sp->seg_flags & SEGM_CKP;
 | |
| 
 | |
| 		/* We should have a segment summary, and nothing else */
 | |
| 		KASSERT(sp->cbpp == sp->bpp + 1);
 | |
| 
 | |
| 		/* Free allocated segment summary */
 | |
| 		fs->lfs_offset -= btofsb(fs, fs->lfs_sumsize);
 | |
| 		bp = *sp->bpp;
 | |
| 		lfs_freebuf(fs, bp);
 | |
| 
 | |
| 		pool_put(&fs->lfs_bpppool, sp->bpp);
 | |
| 		sp->bpp = NULL;
 | |
| 
 | |
| 		/*
 | |
| 		 * If we're not sync, we're done with sp, get rid of it.
 | |
| 		 * Otherwise, we keep a local copy around but free
 | |
| 		 * fs->lfs_sp so another process can use it (we have to
 | |
| 		 * wait but they don't have to wait for us).
 | |
| 		 */
 | |
| 		if (!sync)
 | |
| 			pool_put(&fs->lfs_segpool, sp);
 | |
| 		fs->lfs_sp = NULL;
 | |
| 
 | |
| 		/*
 | |
| 		 * If the I/O count is non-zero, sleep until it reaches zero.
 | |
| 		 * At the moment, the user's process hangs around so we can
 | |
| 		 * sleep.
 | |
| 		 */
 | |
| 		mutex_enter(&lfs_lock);
 | |
| 		if (--fs->lfs_iocount == 0) {
 | |
| 			LFS_DEBUG_COUNTLOCKED("lfs_segunlock");
 | |
| 		}
 | |
| 		if (fs->lfs_iocount <= 1)
 | |
| 			wakeup(&fs->lfs_iocount);
 | |
| 		mutex_exit(&lfs_lock);
 | |
| 		/*
 | |
| 		 * If we're not checkpointing, we don't have to block
 | |
| 		 * other processes to wait for a synchronous write
 | |
| 		 * to complete.
 | |
| 		 */
 | |
| 		if (!ckp) {
 | |
| #ifdef DEBUG
 | |
| 			LFS_ENTER_LOG("segunlock_std", __FILE__, __LINE__, 0, 0, curproc->p_pid);
 | |
| #endif
 | |
| 			mutex_enter(&lfs_lock);
 | |
| 			--fs->lfs_seglock;
 | |
| 			fs->lfs_lockpid = 0;
 | |
| 			fs->lfs_locklwp = 0;
 | |
| 			mutex_exit(&lfs_lock);
 | |
| 			wakeup(&fs->lfs_seglock);
 | |
| 		}
 | |
| 		/*
 | |
| 		 * We let checkpoints happen asynchronously.  That means
 | |
| 		 * that during recovery, we have to roll forward between
 | |
| 		 * the two segments described by the first and second
 | |
| 		 * superblocks to make sure that the checkpoint described
 | |
| 		 * by a superblock completed.
 | |
| 		 */
 | |
| 		mutex_enter(&lfs_lock);
 | |
| 		while (ckp && sync && fs->lfs_iocount) {
 | |
| 			(void)mtsleep(&fs->lfs_iocount, PRIBIO + 1,
 | |
| 				      "lfs_iocount", 0, &lfs_lock);
 | |
| 			DLOG((DLOG_SEG, "sleeping on iocount %x == %d\n", fs, fs->lfs_iocount));
 | |
| 		}
 | |
| 		while (sync && sp->seg_iocount) {
 | |
| 			(void)mtsleep(&sp->seg_iocount, PRIBIO + 1,
 | |
| 				     "seg_iocount", 0, &lfs_lock);
 | |
| 			DLOG((DLOG_SEG, "sleeping on iocount %x == %d\n", sp, sp->seg_iocount));
 | |
| 		}
 | |
| 		mutex_exit(&lfs_lock);
 | |
| 		if (sync)
 | |
| 			pool_put(&fs->lfs_segpool, sp);
 | |
| 
 | |
| 		if (ckp) {
 | |
| 			fs->lfs_nactive = 0;
 | |
| 			/* If we *know* everything's on disk, write both sbs */
 | |
| 			/* XXX should wait for this one	 */
 | |
| 			if (sync)
 | |
| 				lfs_writesuper(fs, fs->lfs_sboffs[fs->lfs_activesb]);
 | |
| 			lfs_writesuper(fs, fs->lfs_sboffs[1 - fs->lfs_activesb]);
 | |
| 			if (!(fs->lfs_ivnode->v_mount->mnt_iflag & IMNT_UNMOUNT)) {
 | |
| 				lfs_auto_segclean(fs);
 | |
| 				/* If sync, we can clean the remainder too */
 | |
| 				if (sync)
 | |
| 					lfs_auto_segclean(fs);
 | |
| 			}
 | |
| 			fs->lfs_activesb = 1 - fs->lfs_activesb;
 | |
| #ifdef DEBUG
 | |
| 			LFS_ENTER_LOG("segunlock_ckp", __FILE__, __LINE__, 0, 0, curproc->p_pid);
 | |
| #endif
 | |
| 			mutex_enter(&lfs_lock);
 | |
| 			--fs->lfs_seglock;
 | |
| 			fs->lfs_lockpid = 0;
 | |
| 			fs->lfs_locklwp = 0;
 | |
| 			mutex_exit(&lfs_lock);
 | |
| 			wakeup(&fs->lfs_seglock);
 | |
| 		}
 | |
| 		/* Reenable fragment size changes */
 | |
| 		rw_exit(&fs->lfs_fraglock);
 | |
| 		if (do_unmark_dirop)
 | |
| 			lfs_unmark_dirop(fs);
 | |
| 	} else if (fs->lfs_seglock == 0) {
 | |
| 		mutex_exit(&lfs_lock);
 | |
| 		panic ("Seglock not held");
 | |
| 	} else {
 | |
| 		--fs->lfs_seglock;
 | |
| 		mutex_exit(&lfs_lock);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Drain dirops and start writer.
 | |
|  *
 | |
|  * No simple_locks are held when we enter and none are held when we return.
 | |
|  */
 | |
| int
 | |
| lfs_writer_enter(struct lfs *fs, const char *wmesg)
 | |
| {
 | |
| 	int error = 0;
 | |
| 
 | |
| 	ASSERT_MAYBE_SEGLOCK(fs);
 | |
| 	mutex_enter(&lfs_lock);
 | |
| 
 | |
| 	/* disallow dirops during flush */
 | |
| 	fs->lfs_writer++;
 | |
| 
 | |
| 	while (fs->lfs_dirops > 0) {
 | |
| 		++fs->lfs_diropwait;
 | |
| 		error = mtsleep(&fs->lfs_writer, PRIBIO+1, wmesg, 0,
 | |
| 				&lfs_lock);
 | |
| 		--fs->lfs_diropwait;
 | |
| 	}
 | |
| 
 | |
| 	if (error)
 | |
| 		fs->lfs_writer--;
 | |
| 
 | |
| 	mutex_exit(&lfs_lock);
 | |
| 
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| void
 | |
| lfs_writer_leave(struct lfs *fs)
 | |
| {
 | |
| 	bool dowakeup;
 | |
| 
 | |
| 	ASSERT_MAYBE_SEGLOCK(fs);
 | |
| 	mutex_enter(&lfs_lock);
 | |
| 	dowakeup = !(--fs->lfs_writer);
 | |
| 	mutex_exit(&lfs_lock);
 | |
| 	if (dowakeup)
 | |
| 		wakeup(&fs->lfs_dirops);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Unlock, wait for the cleaner, then relock to where we were before.
 | |
|  * To be used only at a fairly high level, to address a paucity of free
 | |
|  * segments propagated back from lfs_gop_write().
 | |
|  */
 | |
| void
 | |
| lfs_segunlock_relock(struct lfs *fs)
 | |
| {
 | |
| 	int n = fs->lfs_seglock;
 | |
| 	u_int16_t seg_flags;
 | |
| 	CLEANERINFO *cip;
 | |
| 	struct buf *bp;
 | |
| 
 | |
| 	if (n == 0)
 | |
| 		return;
 | |
| 
 | |
| 	/* Write anything we've already gathered to disk */
 | |
| 	lfs_writeseg(fs, fs->lfs_sp);
 | |
| 
 | |
| 	/* Tell cleaner */
 | |
| 	LFS_CLEANERINFO(cip, fs, bp);
 | |
| 	cip->flags |= LFS_CLEANER_MUST_CLEAN;
 | |
| 	LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
 | |
| 
 | |
| 	/* Save segment flags for later */
 | |
| 	seg_flags = fs->lfs_sp->seg_flags;
 | |
| 
 | |
| 	fs->lfs_sp->seg_flags |= SEGM_PROT; /* Don't unmark dirop nodes */
 | |
| 	while(fs->lfs_seglock)
 | |
| 		lfs_segunlock(fs);
 | |
| 
 | |
| 	/* Wait for the cleaner */
 | |
| 	lfs_wakeup_cleaner(fs);
 | |
| 	mutex_enter(&lfs_lock);
 | |
| 	while (LFS_STARVED_FOR_SEGS(fs))
 | |
| 		mtsleep(&fs->lfs_avail, PRIBIO, "relock", 0,
 | |
| 			&lfs_lock);
 | |
| 	mutex_exit(&lfs_lock);
 | |
| 
 | |
| 	/* Put the segment lock back the way it was. */
 | |
| 	while(n--)
 | |
| 		lfs_seglock(fs, seg_flags);
 | |
| 
 | |
| 	/* Cleaner can relax now */
 | |
| 	LFS_CLEANERINFO(cip, fs, bp);
 | |
| 	cip->flags &= ~LFS_CLEANER_MUST_CLEAN;
 | |
| 	LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
 | |
| 
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Wake up the cleaner, provided that nowrap is not set.
 | |
|  */
 | |
| void
 | |
| lfs_wakeup_cleaner(struct lfs *fs)
 | |
| {
 | |
| 	if (fs->lfs_nowrap > 0)
 | |
| 		return;
 | |
| 
 | |
| 	wakeup(&fs->lfs_nextseg);
 | |
| 	wakeup(&lfs_allclean_wakeup);
 | |
| }
 |